CN110526701A - 一种铁氧体固废循环再利用制备电磁波吸收材料的方法 - Google Patents

一种铁氧体固废循环再利用制备电磁波吸收材料的方法 Download PDF

Info

Publication number
CN110526701A
CN110526701A CN201910966766.8A CN201910966766A CN110526701A CN 110526701 A CN110526701 A CN 110526701A CN 201910966766 A CN201910966766 A CN 201910966766A CN 110526701 A CN110526701 A CN 110526701A
Authority
CN
China
Prior art keywords
ferrite
oxide
solid waste
compound
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910966766.8A
Other languages
English (en)
Other versions
CN110526701B (zh
Inventor
汪嘉恒
李政杰
刘中阳
张勇
吴玉程
吕楠
吴运飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Polytechnic University
Original Assignee
Hefei Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Polytechnic University filed Critical Hefei Polytechnic University
Priority to CN201910966766.8A priority Critical patent/CN110526701B/zh
Publication of CN110526701A publication Critical patent/CN110526701A/zh
Application granted granted Critical
Publication of CN110526701B publication Critical patent/CN110526701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种铁氧体固废循环再利用制备电磁波吸收材料的方法,是通过介电氧化物在铁氧体界面上的复合和改性,以介电损耗性能的增强平衡磁损耗性能的差异,改善界面阻抗匹配并制备出宽频带的高效电磁波吸收材料及其器件。本发明中铁氧体晶界上的介电氧化物复合,极大的改善了吸波体因固废颗粒的差异而导致的裂纹、凹凸、脆断等力学性能问题,并同时增强了吸波体的热力学稳定性。

Description

一种铁氧体固废循环再利用制备电磁波吸收材料的方法
技术领域
本发明涉及一种铁氧体固废循环再利用制备电磁波吸收材料的方法,属于电磁功能材料领域。
背景技术
电磁兼容性能已经成为目前电子电气产品的行业强制标准,这对于电磁波吸收材料及器件也提出了宽频带吸收、高环境适应性、抗磨损、耐高温、抗腐蚀、集成兼容性等众多综合性能要求。软磁铁氧体在电磁波条件下仍保持较高的磁导率,配合其介电损耗性能,已经成为当前工业产品中应用最为广泛的电磁波吸收材料。锰锌铁氧体以其低廉的价格和优良的性能,已经成为电磁屏蔽和抗电磁干扰应用的热点材料。此外,锰锌铁氧体也是变压器、逆变器、换能器、俘能器等器件制造中磁芯的首选材料,广泛应用于智能物联、无线充电、电动汽车、互联通讯、超级公路等前沿领域。铁氧体器件在制造的过程中,因热处理导致的晶粒暴长会形成体积膨胀,需要通过磨削加工保证器件的设计尺寸。然而,这一过程会产生大量的固体磨削废料,约为产品总量的5~20%,且回收处理性价比很低,产生了极大的环境污染问题。因此,目前迫切需要开发一种锰锌铁氧体磨削固废的有效循环利用方法。
关于锰锌铁氧体磨削废料循环利用的相关专利,采用的方法主要有三类,包括废料离子化后共沉淀、废料晶格掺杂改性、废料与原料混合再生长。例如:专利CN101412623A的一种用锰锌铁氧体废料生产锰锌铁氧体颗粒料的方法,使用强酸离子化废料中的有效金属元素,再共沉淀和预烧得到制造铁氧体的颗粒原料;专利CN104045332A的一种固体废弃物的再利用方法,通过在锰锌铁氧体废料中大比例加入镁、镍等元素进行晶格掺杂,获得MgMnZn、NiMnZn等铁氧体材料;专利CN103819183A的一种锰锌铁氧体废料回收再利用的方法,通过向废料中加入一定比例的氧化物生料,再重复常规预处理和造粒过程得到颗粒原料。然而,共沉淀法的酸洗等步骤严重超出了环保要求,Mg、Ni等元素较高的价格又大幅度提高了循环应用的成本。除此之外,废料和原料混合的方式也存在废料晶粒尺寸的巨大差异、晶界残留的巨大缝隙、金刚砂杂质等问题,导致器件力学性能差,无法作为常规产品应用。从电磁波吸收的应用角度,晶粒的尺寸差异和空气隙的增加会导致磁损耗性能的下降和反射损耗性能的不稳定,严重影响产品的可靠性。因此,从电磁阻抗匹配和器件力学性能角度出发,铁氧体磨削废料的界面处理技术应该是其循环利用和相关器件制备的关键问题所在。
发明内容
本发明旨在提供一种铁氧体固废循环再利用制备电磁波吸收材料的方法,通过一系列介电氧化物在铁氧体界面上的复合和改性,以介电损耗性能的增强平衡磁损耗性能的差异,改善界面阻抗匹配并制备出宽频带的高效电磁波吸收材料及其器件。
本发明铁氧体固废循环再利用制备电磁波吸收材料的方法,包括铁氧体固废的提纯、介电氧化物的添加、球磨的均匀化复合、造粒、成型、热处理等工艺流程,具体包括如下步骤:
步骤1:铁氧体固废的提纯
将铁氧体固废与去离子水混合,持续超声处理0~3小时,使铁氧体颗粒与金刚砂、灰尘、金属碎屑等杂质在水中充分分散;对分散液施加磁场,使废料中的铁氧体颗粒在磁场的驱动下与杂质分离开来,然后除去余下的杂质悬浊液;重复上述磁分选提纯过程1~5次,干燥5~12小时,获得提纯后的铁氧体废料;
步骤2:复合均匀化
将步骤1提纯后的铁氧体废料与介电氧化物混合,混合物以50~800rpm的速度匀速球磨1~24小时,使铁氧体和介电氧化物充分混合且晶粒尺寸均匀,收集球磨后的混合料并干燥,获得介电氧化物/铁氧体复合生料;
所述介电氧化物为氧化锰、氧化锌、氧化钛、氧化铝、氧化铌、氧化钙、氧化镁、氧化铜、氧化钡等中的一种或几种的复合;介电氧化物的添加质量为铁氧体废料质量的0.5%~15%。
步骤3:热处理
使用聚乙烯醇(PVA)对步骤2获得的复合生料进行造粒,并以0.5~10T/cm2的压力在模具中压制成型,获得生胚;将生胚放入电炉,在一定气氛下(氮气或氩气为载气,其中氧气含量0~15%)进行退火处理,然后以1~10℃/min的速度升温至300~1000℃,并保温0.5~5小时;随后1~15℃/min的速度冷却至室温,获得熟胚;所得熟胚经过加工、打磨和清洗后获得块体、贴片等电磁波吸收材料及器件,可应用于DC~18GHz频段的电磁兼容、抗电磁辐射和抗电磁干扰。
本发明制备方法具有简单高效、能耗低、成本低、重复性好、可靠性好、力学性能优秀等特点。本发明制备方法所需的介电氧化物均为低成本、非稀土的常规原料;制备方法提供的工艺仅涉及常规的粉碎、球磨、造粒、热处理工艺,基本的生产设备即可满足需要;热处理所需的温度较低,有利于废料产品的成本控制和节能环保。本发明制备的电磁波吸收材料及其器件可以广泛应用于贴片、角锥、涂层、薄膜、衣料、复合材料等方面,以及未来超级公路、新能源汽车、无线充电等大规模低成本的抗电磁干扰、电磁屏蔽和电磁兼容应用的需要。
本发明所涉及的主要原料为软磁锰锌铁氧体及其器件生产中产生的磨削固体废料,配方不同的功率料、高导料、吸波料等及其混合料均适用。另外,镍锌铁氧体的相关磨削废料也同样可以通过本发明的制备方法进行复合改性并获得高性能的电磁波吸收材料及其器件。
本发明的有益效果体现在:
1、本发明以软磁铁氧体固废作为电磁波吸收材料的主要原料,复合常见的介电氧化物,以及结合低温热处理工艺的制备方法,与同类产品相比,在相同性能的前提下极大幅度的降低了成本和能耗,产品极具竞争力。
2、本发明实现了磁芯生产中大量软磁铁氧体磨削固废的循环利用,适用性强且覆盖铁氧体品类广泛,具有极高的环保价值。
3、本发明通过介电氧化物在铁氧体固废晶界上的复合,增强了界面的介电偶极极化,更好的改善了材料界面的阻抗匹配,减少界面反射,极大的提升了其电磁波吸收性能。
4、本发明中铁氧体晶界上的介电氧化物复合,极大的改善了吸波体因固废颗粒尺寸的差异而导致的裂纹、凹凸、脆断等力学性能问题,并同时增强了吸波体的热力学稳定性。
5、本发明通过氧化物的复合拓宽了吸波体的有效吸收频带,适用于DC~Ku频段使用,可以用于块体、贴片、角锥、劈锥、涂层、薄膜等多种产品。
附图说明
图1为实施例1吸收体在10MHz~1GHz和2mm厚度时的反射损耗(RL)。吸收体的RL值在10MHz~1GHz频段内均超过了-29.1dB,在10~115MHz频段超过-50dB,在10-300MHz频段超过-40dB,在f为25.9MHz时,RL达到了最小值-69.09dB。
图2为实施例2吸收体在10MHz~1GHz和2mm厚度时的反射损耗(RL)。吸收体的RL值在10MHz~1GHz频段内均超过了-27.4dB,在10~605MHz频段超过-30dB,在f为25.9MHz时,RL达到了最小值-49.44dB。
图3为实施例3吸收体在10MHz~1GHz和2mm厚度时的反射损耗(RL)。吸收体的RL值在10MHz~1GHz频段内均超过了-28.02dB,在10-742MHz频段超过-30dB,在f为25.9MHz时,RL达到了最小值-45.49dB。
图4为实施例1吸收体截面的扫描电子显微镜图像。图中可以清晰地看出该吸收体中的铁氧体晶粒较大,尺寸分布为1~2.5μm;许多较小的氧化物晶粒紧密的复合在铁氧体晶粒的表面和界面,平均晶粒尺寸为100~300nm。
具体实施方式
实施例1:
本实施例以锰锌铁氧体固废为原料,通过提纯、复合、成型、热处理等步骤获得固废/氧化锌(ZnO)的质量比为10:1制备的复合电磁波吸收材料,具体包括如下步骤:
1、固废的提纯
将5g未经处理的锰锌铁氧体磨削固废在研钵中充分研磨直至变为粉状;将研磨后的固废粉体分散于50ml去离子水中,使用500rpm的速度进行机械搅拌,直至形成均匀的分散液;将分散液进行30min的超声处理,使固废晶粒与杂质完全分离并分散于水中;将分散液置于0.5T的磁场中,直至铁氧体固废晶粒在磁场的驱动下运动并吸附至容器的一侧,之后倾倒剩余的杂质分散液;重复以上磁分选过程3次,收集固废粉体并放入烘箱中于60℃干燥6h,得到提纯的锰锌铁氧体原料。
2、复合均匀化
将步骤1中提纯的锰锌铁氧体原料,以质量比10:1的比例与ZnO粉体混合,一起放入球磨罐,并以200rpm的速度进行8h的球磨;收集球磨后的粉体,并在水中进行3次超声清洗和离心,之后在60℃下干燥6h,获得平均晶粒尺寸约为1~2μm的锰锌铁氧体和平均晶粒尺寸约为100~500nm的ZnO的均匀混合前驱复合生料。
3、热处理
配置质量比为5%的PVA水溶液,并以80℃水浴加热2h;将步骤2中获得的复合生料与PVA水溶液进行混合造粒,之后放入烘箱中以60℃干燥4h;待冷却至室温,颗粒使用100目的标准分样筛进行筛选后储存待用。
将造粒粉体,装入模具型腔内,使用压片机以5T/cm2的压力压制成生胚;将生胚放入窑炉中,以5℃/min的速度升温至925℃,并保温烧结2h;之后,以10℃/min的速度冷却至室温,获得ZnO复合的锰锌铁氧体固废基电磁波吸收体。
实施例2:
本实施例以锰锌铁氧体固废为原料,通过提纯、复合、成型、热处理等步骤获得固废/氧化钛(TiO2)的质量比为10:0.3制备的复合电磁波吸收材料,具体包括如下步骤:
1、固废的提纯
将5g未经处理的锰锌铁氧体磨削固废在研钵中充分研磨直至变为粉状;将研磨后的固废粉体分散于50ml去离子水中,使用500rpm的速度进行机械搅拌,直至形成均匀的分散液;将分散液进行30min的超声处理,使固废晶粒与杂质完全分离并分散于水中;将分散液置于0.5T的磁场中,直至铁氧体固废晶粒在磁场的驱动下运动并吸附至容器的一侧,之后倾倒剩余的杂质分散液;重复以上磁分选过程3次,收集固废粉体并放入烘箱中于60℃干燥6h,得到提纯的锰锌铁氧体原料。
2、复合均匀化
将步骤1中提纯的锰锌铁氧体原料,以质量比10:1的比例与TiO2粉体混合,一起放入球磨罐,并以200rpm的速度进行8h的球磨;收集球磨后的粉体,并在水中进行3次超声清洗和离心,之后在60℃下干燥6h,获得平均晶粒尺寸约为1~2μm的锰锌铁氧体和平均晶粒尺寸约为100~500nm的TiO2的均匀混合前驱复合生料。
4、热处理
配置质量比为5%的PVA水溶液,并以80℃水浴加热2h;将步骤2中获得的复合生料与PVA水溶液进行混合造粒,之后放入烘箱中以60℃干燥4h;待冷却至室温,颗粒使用100目的标准分样筛进行筛选后储存待用。
将造粒粉体,装入模具型腔内,使用压片机以5T/cm2的压力压制成生胚;将生胚放入窑炉中,以5℃/min的速度升温至600℃,并保温烧结4h;之后,以10℃/min的速度冷却至室温,获得TiO2复合的锰锌铁氧体固废基电磁波吸收体。
实施例3:
本实施例以锰锌铁氧体固废为原料,通过提纯、复合、成型、热处理等步骤获得固废/氧化锌(ZnO)/氧化钛(TiO2)的质量比为10:1:0.5制备的复合电磁波吸收材料,具体包括如下步骤:
1、固废的提纯
将5g未经处理的锰锌铁氧体磨削固废在研钵中充分研磨直至变为粉状;将研磨后的固废粉体分散于50ml去离子水中,使用500rpm的速度进行机械搅拌,直至形成均匀的分散液;将分散液进行30min的超声处理,使固废晶粒与杂质完全分离并分散于水中;将分散液置于0.5T的磁场中,直至铁氧体固废晶粒在磁场的驱动下运动并吸附至容器的一侧,之后倾倒剩余的杂质分散液;重复以上磁分选过程3次,收集固废粉体并放入烘箱中于60℃干燥6h,得到提纯的锰锌铁氧体原料。
2、复合均匀化
将步骤1中提纯的锰锌铁氧体原料,以质量比10:1的比例与ZnO和TiO2粉体混合,一起放入球磨罐,并以200rpm的速度进行8h的球磨;收集球磨后的粉体,并在水中进行3次超声清洗和离心,之后在60℃下干燥6h,获得平均晶粒尺寸约为1~2μm的锰锌铁氧体和平均晶粒尺寸约为100~500nm的ZnO和TiO2的均匀混合前驱复合生料。
5、热处理
配置质量比为5%的PVA水溶液,并以80℃水浴加热2h;将步骤2中获得的复合生料与PVA水溶液进行混合造粒,之后放入烘箱中以60℃干燥4h;待冷却至室温,颗粒使用100目的标准分样筛进行筛选后储存待用。
将造粒粉体,装入模具型腔内,使用压片机以5T/cm2的压力压制成生胚;将生胚放入窑炉中,以5℃/min的速度升温至650℃,并保温烧结5h;之后,以10℃/min的速度冷却至室温,获得ZnO/TiO2共复合的锰锌铁氧体固废基电磁波吸收体。

Claims (7)

1.一种铁氧体固废循环再利用制备电磁波吸收材料的方法,其特征在于:
通过介电氧化物在铁氧体界面上的复合和改性,以介电损耗性能的增强平衡磁损耗性能的差异,改善界面阻抗匹配并制备出宽频带的高效电磁波吸收材料及其器件。
2.根据权利要求1所述的方法,其特征在于包括如下步骤:
步骤1:铁氧体固废的提纯
将铁氧体固废与去离子水混合,持续超声处理0~3小时,使铁氧体颗粒与金刚砂、灰尘、金属碎屑等杂质在水中充分分散;对分散液施加磁场,使废料中的铁氧体颗粒在磁场的驱动下与杂质分离开来,然后除去余下的杂质悬浊液;重复上述磁分选提纯过程1~5次,干燥5~12小时,获得提纯后的铁氧体废料;
步骤2:复合均匀化
将步骤1提纯后的铁氧体废料与介电氧化物混合,混合物以50~800rpm的速度匀速球磨1~24小时,使铁氧体和介电氧化物充分混合且晶粒尺寸均匀,收集球磨后的混合料并干燥,获得介电氧化物/铁氧体复合生料;
步骤3:热处理
使用聚乙烯醇对步骤2获得的复合生料进行造粒,并以0.5~10T/cm2的压力在模具中压制成型,获得生胚;将生胚放入电炉,在一定气氛下进行退火处理,然后升温至300~1000℃,并保温0.5~5小时;随后冷却至室温,获得熟胚;所得熟胚经过加工、打磨和清洗后获得块体、贴片等电磁波吸收材料及器件。
3.根据权利要求2所述的方法,其特征在于:
步骤2中,所述介电氧化物为氧化锰、氧化锌、氧化钛、氧化铝、氧化铌、氧化钙、氧化镁、氧化铜、氧化钡等中的一种或几种的复合。
4.根据权利要求2或3所述的方法,其特征在于:
所述介电氧化物的添加质量为铁氧体废料质量的0.5%~15%。
5.根据权利要求2所述的方法,其特征在于:
步骤3中,升温至300~900℃的升温速率为1~10℃/min;冷却至室温的降温速率为1~15℃/min。
6.根据权利要求2所述的方法,其特征在于:
步骤3中,所述一定气氛是以氮气或氩气为载气,其中氧气含量为0~15%。
7.根据权利要求2所述的方法,其特征在于:
步骤3中,所得电磁波吸收材料及器件可应用于DC~18GHz频段的电磁兼容、抗电磁辐射和抗电磁干扰。
CN201910966766.8A 2019-10-12 2019-10-12 一种铁氧体固废循环再利用制备电磁波吸收材料的方法 Active CN110526701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910966766.8A CN110526701B (zh) 2019-10-12 2019-10-12 一种铁氧体固废循环再利用制备电磁波吸收材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910966766.8A CN110526701B (zh) 2019-10-12 2019-10-12 一种铁氧体固废循环再利用制备电磁波吸收材料的方法

Publications (2)

Publication Number Publication Date
CN110526701A true CN110526701A (zh) 2019-12-03
CN110526701B CN110526701B (zh) 2022-06-07

Family

ID=68671723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910966766.8A Active CN110526701B (zh) 2019-10-12 2019-10-12 一种铁氧体固废循环再利用制备电磁波吸收材料的方法

Country Status (1)

Country Link
CN (1) CN110526701B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995386A (zh) * 2020-09-09 2020-11-27 合肥工业大学 一种铁氧体固废基陶瓷吸波材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569346B1 (en) * 2001-12-28 2003-05-27 Industrial Technology Research Institute Ferrite with high permeability and high dielectric constant and method for making the same
CN1807537A (zh) * 2005-12-01 2006-07-26 上海交通大学 介电/磁性复合吸波粉体的制备方法
CN104045332A (zh) * 2014-05-21 2014-09-17 肇庆冠磁科技有限公司 一种固体废弃物的再利用方法
CN106637507A (zh) * 2016-10-13 2017-05-10 江苏科技大学 一种磁性合金/介电氧化物复合纳米纤维及制法与采用该纤维制备的吸波涂层
CN108102393A (zh) * 2017-12-20 2018-06-01 合肥工业大学 一种基于铁氧体固废的电磁波吸收材料的制备方法
CN109437634A (zh) * 2018-12-19 2019-03-08 成都新柯力化工科技有限公司 一种用于建筑涂料防电磁辐射的微球吸波材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569346B1 (en) * 2001-12-28 2003-05-27 Industrial Technology Research Institute Ferrite with high permeability and high dielectric constant and method for making the same
CN1807537A (zh) * 2005-12-01 2006-07-26 上海交通大学 介电/磁性复合吸波粉体的制备方法
CN104045332A (zh) * 2014-05-21 2014-09-17 肇庆冠磁科技有限公司 一种固体废弃物的再利用方法
CN106637507A (zh) * 2016-10-13 2017-05-10 江苏科技大学 一种磁性合金/介电氧化物复合纳米纤维及制法与采用该纤维制备的吸波涂层
CN108102393A (zh) * 2017-12-20 2018-06-01 合肥工业大学 一种基于铁氧体固废的电磁波吸收材料的制备方法
CN109437634A (zh) * 2018-12-19 2019-03-08 成都新柯力化工科技有限公司 一种用于建筑涂料防电磁辐射的微球吸波材料及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995386A (zh) * 2020-09-09 2020-11-27 合肥工业大学 一种铁氧体固废基陶瓷吸波材料的制备方法

Also Published As

Publication number Publication date
CN110526701B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN111326723B (zh) 锂离子电池用硅碳复合负极材料及其制备方法
WO2022062677A1 (zh) 一种三元单晶正极材料及其制备方法和应用
JP2021535580A (ja) 正極材料の回収方法、得られた正極材料およびその用途
CN108706564A (zh) 一种高压实锂离子电池正极材料磷酸铁锂的制备方法
CN111732421A (zh) 一种氧化铝陶瓷复合粉体的制备方法
CN104140258A (zh) 永磁铁氧体的再利用制备方法及其磁体
CN100530454C (zh) 磁导率μ=26的铁硅铝磁粉芯的制造方法
CN114314548A (zh) 钛、锆共掺杂碳包覆磷酸铁锂材料及其制备方法与应用
CN110494030B (zh) 一种树脂强化的铁氧体固废基宽频带电磁波吸收体的制备方法
CN104150911B (zh) 一种微波辅助低温快速合成纳米氮化硅-碳化硅复合粉体的方法
CN110526701A (zh) 一种铁氧体固废循环再利用制备电磁波吸收材料的方法
WO2015124094A1 (zh) 高可靠高比容电解电容器用钽粉的制备方法
CN107673347A (zh) 一种球形微晶石墨的制备方法
CN104402427B (zh) 一种低矫顽力LiZnTi旋磁铁氧体材料及其制备方法
CN112713264A (zh) 一种人造石墨负极材料、制备方法、应用和电池
CN112259739A (zh) 一种磁性包覆球磨生产锂电池硅碳负极活性材料的方法
CN103570344A (zh) 一种用废旧锌锰电池制备锰锌铁氧体的方法
CN114204023B (zh) 一种低温型磷酸铁锂正极材料的制备方法
CN110903083A (zh) 无线充电器用铁氧体磁片配方及其制备新方法
JPH11100253A (ja) Ito焼結体の再生方法および用途
CN110563454B (zh) 一种过量锌掺杂的铁氧体固废基电磁波吸收材料的制备方法
CN109898029B (zh) 一种低成本铁钴合金的制备方法
CN111995386B (zh) 一种铁氧体固废基陶瓷吸波材料的制备方法
CN111995387B (zh) 一种低成本环保微波吸收体的制备方法
CN112645333A (zh) 一种纳米硅粉制备方法、制得的纳米硅粉及用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant