CN111995386A - 一种铁氧体固废基陶瓷吸波材料的制备方法 - Google Patents

一种铁氧体固废基陶瓷吸波材料的制备方法 Download PDF

Info

Publication number
CN111995386A
CN111995386A CN202010939829.3A CN202010939829A CN111995386A CN 111995386 A CN111995386 A CN 111995386A CN 202010939829 A CN202010939829 A CN 202010939829A CN 111995386 A CN111995386 A CN 111995386A
Authority
CN
China
Prior art keywords
powder
solid waste
carbon black
ferrite
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010939829.3A
Other languages
English (en)
Other versions
CN111995386B (zh
Inventor
汪嘉恒
吴运飞
吴玉程
沈宏江
蔡忠贤
鲍智勇
张勇
石旭杰
李欣兴
吕楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANHUI HUALIN MAGNETIC TECHNOLOGY
Hefei University of Technology
Original Assignee
ANHUI HUALIN MAGNETIC TECHNOLOGY
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI HUALIN MAGNETIC TECHNOLOGY, Hefei University of Technology filed Critical ANHUI HUALIN MAGNETIC TECHNOLOGY
Priority to CN202010939829.3A priority Critical patent/CN111995386B/zh
Publication of CN111995386A publication Critical patent/CN111995386A/zh
Application granted granted Critical
Publication of CN111995386B publication Critical patent/CN111995386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种铁氧体固废基陶瓷吸波材料的制备方法,利用不同颗粒度的固废原料混合,并加入导电炭黑作为修饰。通过惰性气氛中的两段热处理,以亚微米细晶在大晶粒晶界间的优先生长,结合炭黑纳米颗粒的钉扎,形成固废基晶界的致密结构和炭黑的嵌入式界面。该嵌入式致密吸收体结构解决了固废基吸波材料因晶粒尺寸差异而形成的空气隙通病,同时通过导电炭黑的活性基团激活了晶界的界面介电弛豫,抵消了混合固废的磁损耗差异且避免了涡流损耗,从而获得高性能的低频段吸波材料及器件。本发明原料价格低廉且工艺简单,可广泛应用于铁氧体磁芯固废的环保循环利用。

Description

一种铁氧体固废基陶瓷吸波材料的制备方法
技术领域
本发明涉及一种陶瓷微波吸收材料的制备方法,具体地说是一种铁氧体固废基陶瓷吸波材料的制备方法,属于功能陶瓷材料领域。
背景技术
面向磁芯应用的软磁铁氧体具有高磁导率、高电阻率、低损耗等特点,且兼有批量生产工艺成熟、性能稳定、机械加工性能高、成本低等优点,被广泛用于通讯设备、智能传感、开关电源、磁记录等方面。随着软磁铁氧体材料需求量的不断增加,中国软磁铁氧体的产量在2018年就已达到23.92万吨,约占全球的80%。而在如此庞大的铁氧体磁芯工业化生产中,对于熟坯磁芯的切割、磨削、清洗等加工环节会产生大量的铁氧体粉体废料,生产中也会因加工精度和尺寸问题产生许多磁芯废品。大部分企业均以简单的回收填埋方式对铁氧体固废进行处理,导致环境污染的同时又浪费了资源。尽管目前行业已经开始重视软磁铁氧体废料的回收利用,但具体实施方案仍存在许多缺陷和问题有待解决。
比如:中国专利CN103979946、CN103102150、CN105060875、CN102557606等通过以特定牌号的废料与同牌号的颗粒料共混作为原料的处理方案。该类方案在具体实施时无法对多种配方和比例的铁氧体混合废料进行回收处理,产线仅进行单一牌号产品的生产和回收也存在一定的资源浪费,因此具有极大的限制。废料中的各类杂质较多且尺寸不均匀,最终产品若作为磁芯应用,性能稳定性和可靠性均有待商榷。中国专利CN109896849、CN105819521、CN101412623、CN107188293、CN101521071等通过引入硫酸等将废料中的有效金属离子化后,利用共沉淀法烧结得到铁氧体。此类方案中强酸的使用和排放不仅难以符合当前严苛的环保要求,而且提高了废料回收的成本。
以上诸多专利和方法都只是针对磁芯的器件应用,考虑到软磁固废仍具有较好的微波磁导率,将其应用于吸波材料将极具潜力,但相关关键技术仍有待进一步研究。吸波材料能够有效解决现代社会严重的电磁污染问题,广泛应用于民用领域的电磁兼容和军事领域的电磁隐身。特别是随着现代通讯技术的发展和5G时代万物互联的热潮,电子电气产品对电磁屏蔽和电磁兼容的需求日益增多。然而,电磁波吸收材料的价格因原料成本和关键配方而居高不下,亟待开发性价比较高的电磁屏蔽产品。软磁固废基吸波材料的开发可以极大的降低产品的成本,十分适合市场未来大规模电磁兼容布局的要求。但固废基吸波材料仍存在因成分、杂质、晶粒、批次等因素而影响产品电磁性能和力学性能的问题,有待新方法和工艺的研究和改进。
发明内容
本发明针对上述现有铁氧体废料回收方案中存在的技术缺陷,旨在提出一种成本极低的高性能铁氧体固废基陶瓷吸波材料的制备方法。本方法的主料使用锰锌铁氧体、镍锌铁氧体等软磁铁氧体材料及器件在生产过程中产生的磨削固废和废品的粉碎固废,引入导电炭黑嵌入式分布在铁氧体晶粒的晶界。在不影响电磁吸收体力学性能的前提下,炭黑的晶界嵌入不仅填补了固废晶粒在生长过程中因尺寸差异而形成的不可避免的空气隙,而且通过炭黑团簇表面的活性基团激活铁氧体固废的界面介电弛豫,同时炭黑在晶界的不连续分布也有效的避免了趋肤效应产生的涡流损耗。本发明通过高能机械合金化和两段烧结工艺,在控制晶粒大小和嵌入式介电改性的同时,实现了电磁吸收体整体结构的致密化。
本发明铁氧体固废基陶瓷吸波材料的制备方法,包括如下步骤:
步骤1:将已破碎的铁氧体固废均匀分散于水中并洗涤,而后通过磁选将铁氧体颗粒与金刚砂等杂质分离开,重复3~4次后在烘箱内以60℃干燥5~20h,过200~250目筛,获得颗粒粒径1~75μm的铁氧体固废粉料1。
步骤2:将炭黑与步骤1获得的粉料1均匀混合,混合后的粉体放入球磨罐中,并以200~600rpm的转速匀速湿法球磨2~24h,之后取出粉体进行干燥、过筛,获得铁氧体晶粒尺寸200nm~10μm、颗粒粒径0.5~20μm的粉料2;
步骤3:将步骤2获得的粉料2与步骤1获得的粉料1混匀,加入造粒剂充分搅拌均匀后,不断研磨、过筛得到具有良好流动性的粉料3;称取适量的粉料3放入模具中,以0.5–10T/cm2的压力压制成型,获得生坯;
步骤4:将生坯放入热处理炉中,在保护气氛下升温至300~500℃并保温0.5~5h,接着再升温至700~1400℃并保温1~4h,随后降至600~1100℃并继续保温1~24h,之后冷却至室温,可得到熟坯,经过加工后获得不同形状的吸波体。
步骤2中,所述炭黑包括超导电炭黑、导电炭黑、乙炔炭黑等中的一种或几种,其粒径约为10~100nm;炭黑的添加质量为粉料1质量的0.1~5%。
步骤2中,湿法球磨时,粉体、水、球磨珠混合的质量比为1:1~4:0.5~2。
步骤3中,步骤2获得的粉料2与步骤1获得的粉料1混合时的质量比为100:1~10。
步骤3中,所述造粒剂为聚乙烯醇、聚乙二醇、羧甲基纤维素钠中的一种或几种,用量为粉料质量的1%~10%。
步骤4中,所述保护气氛为氮气、氩气、氢气等中的一种。
步骤4中,升温速率为1~10℃/min;冷却至室温时的降温速率为1~20℃/min。
本发明的有益效果体现在:
1、本发明的主要原料为各类软磁铁氧体固废,对于减少环境污染和节约资源成本具有重要意义,属于节能环保的环境友好型发明。
2、本发明可以使用单一或混合固废,包括磨削料和破碎料,原料成本极其低廉且易获取,工艺简单,可大批量工业化生产,产品重复性好,性能可靠稳定,极具市场竞争力。
3、本发明在铁氧体的晶界上均匀嵌入炭黑团簇,依靠炭黑活性基团在晶界上引起的界面介电弛豫增强,提升复合电磁吸收体在微波频段的性能,避免了过量修饰形成晶界导电网络后的吸收频率过低和涡流损耗。
4、本发明通过铁氧体固废晶粒球磨至亚微米级别,结合两段烧结法的温度和时间控制,利用固废晶体的生长使炭黑颗粒在其晶界形成钉扎和嵌入式分布,在不影响力学性能的同时,有效的降低了固废吸波产品的空气隙密度,进一步提升有效吸收性能。
5、本发明中炭黑在固废晶界的嵌入式分布可以极大的增强吸波材料的介电损耗,从而抵消不同配方固废磁损耗的差异,因此可以使用不同批次的混合固废作为原料,并不会对性能产生较大的影响。
附图说明
图1为实施例1的吸收体在频率为10MHz~1GHz和厚度为2.02mm时的反射损耗(RL)。吸收体在该频段内的RL值均超过了-26.7dB,在10~300MHz频段超过了-38.6dB,在频率为25.9MHz时,RL达到了最小值-73.2dB。
图2为实施例1中粉料1的SEM图像,可见过筛的未球磨铁氧体固废粉料晶粒尺寸为1~14μm。
图3为实施例1中粉料2的SEM图像,可见球磨后粉料的晶粒尺寸急剧下降至200~500nm。
图4为实施例1获得的吸波体的截面SEM图像,可以明显看出铁氧体的晶粒尺寸约为4~10μm,且晶粒间结合较为紧密。
图5为实施例1获得的吸波体截面的EDS面扫描图像,可见在致密均匀的锰锌铁氧体背景下,炭黑均匀的分布在铁氧体的晶界表面。
图6为实施例1和对比例1的吸收体在10~350MHz和2.02mm厚度时的反射损耗(RL)对比图。可见对比例1在VHF应用频段内的反射损耗出现了明显的减弱。
图7为对比例1中粉料2的SEM图像,可以看出低速的常规球磨方案仅能使粉料颗粒粒径均匀,粉料晶粒尺寸较大,约为1~9μm,相比1~14μm的原料差别并不大。
图8为对比例1获得的吸波体截面SEM图像,晶粒尺寸主要分布在10~15μm,较实施例1明显长大,并可见较多的空气隙。该对比例吸收体产品会因空气隙密度较大而影响单位体积的有效吸波性能,且在实际使用中极易发生脆断和晶斑等问题。
图9为实施例2的吸收体在频率为10MHz~1GHz和厚度为2.00mm时的反射损耗(RL)。吸收体的RL值在该频段内均超过了-26.0dB,在10~300MHz频段超过-37.4dB,在频率为10MHz时,RL达到了最小值-106.22dB。
图10为实施例2获得的吸波体截面SEM图像,可见晶粒尺寸主要分布在6~13μm,且各晶粒间结合较为致密。
图11为实施例3的吸收体在频率为10MHz~1GHz和厚度为2.00mm时的反射损耗(RL)。吸收体的RL值在该频段内均超过了-26.7dB,在10~300MHz频段超过-37.5dB,在频率为10MHz时,RL达到了最小值-94.11dB。
图12为实施例3获得的吸波体截面SEM图像,可见晶粒尺寸约为4~12μm,且各晶粒间结合的较为紧密。
具体实施方式
实施例1:
本实例通过提纯、混料、球磨、再混料、造粒、压制成型、两段烧结等步骤获得的铁氧体固废基陶瓷吸波材料,其中,粉料2由导电炭黑和粉料1组成,比例为1:89,粉料3由粉料2和粉料1构成,混合比例为9:1,具体包括如下步骤:
步骤1:将6g已破碎的晶粒尺寸约为1~14μm的铁氧体固废均匀分散于水中并洗涤,而后磁选将材料中的铁氧体颗粒与金刚砂等杂质分离,重复4次后在60°烘箱内干燥12h,过200目筛,获得颗粒粒径1~75μm的铁氧体固废粉料1。
步骤2:取0.4494g粒径50nm的导电炭黑,4g粉料1均匀混合,混合后的粉体放入球磨罐,以500rpm的转速匀速湿法球磨12h之后,取出粉体干燥、过筛,获得晶粒尺寸200~500nm、颗粒粒径约0.5~20μm的粉料2。
步骤3:取3g粉料2、0.3333g粉料1、0.333g的10%聚乙烯醇水溶液并充分搅拌均匀后喷雾造粒,分别过200目和300目筛网,得到粒径约47~74μm且具有良好流动性的粉料3。称取1.4g粉料3放入模具中,松装密度约为1.18g/cm3,以5T/cm2的压力压制成型,获得生坯。
步骤4:将生坯放入热处理炉中,在氮气气氛中,以5℃/min的升温速率升至300℃并保温1h,以3℃/min的升温速率升至1300℃并保温5min,随后降至1100℃并继续保温6h,再以5℃/min的降温速率冷却至室温,可得到熟坯,经过加工后获得吸波体。
对比例1:
本对比例通过提纯、混料、球磨、再混料、造粒、压制成型、高温烧结等步骤获得的铁氧体固废基陶瓷吸波材料,其中,粉料2由导电炭黑和粉料1组成,比例为0.3:89.7,粉料3由粉料2和粉料1构成,混合比例为9:1,具体包括如下步骤:
步骤1:将6g已破碎的晶粒尺寸约为1~14μm的铁氧体固废均匀分散于水中并洗涤,而后磁选将材料中的铁氧体颗粒与金刚砂等杂质分离,重复4次后在60°烘箱内干燥12h,过200目筛,获得颗粒粒径1~75μm的铁氧体固废粉料1。
步骤2:取0.0134g粒径50nm的导电炭黑,4g粉料1均匀混合,混合后的粉体放入球磨罐,以250rpm的转速匀速湿法球磨12h之后,取出粉体干燥、过筛,获得晶粒尺寸1~15μm、颗粒粒径约0.5~20μm的粉料2。
步骤3:取3g粉料2、0.3333g粉料1、0.333g的10%聚乙烯醇水溶液并充分搅拌均匀后喷雾造粒,分别过200目和300目筛网,得到粒径约47~74μm且具有良好流动性的粉料3。称取1.4g粉料3放入模具中,松装密度约为1.18g/cm3,以5T/cm2的压力压制成型,获得生坯。
步骤4:将生坯放入热处理炉中,在氮气气氛中,以5℃/min的升温速率升至300℃并保温1h,以3℃/min的升温速率升至1300℃并保温4h,随后以5℃/min的降温速率冷却至室温,可得到熟坯,经过加工后获得吸波体。
实施例2:
本实例通过提纯、混料、球磨、再混料、造粒、压制成型、两段烧结等步骤获得的铁氧体固废基陶瓷吸波材料,其中,粉料2由乙炔炭黑和粉料1组成,比例为0.5:79.5,粉料3由粉料2和粉料1构成,混合比例为4:1,具体包括如下步骤:
步骤1:将6g已破碎的晶粒尺寸约为1~14μm的铁氧体固废均匀分散于水中并洗涤,而后磁选将材料中的铁氧体颗粒与金刚砂等杂质分离,重复4次后在60°烘箱内干燥12h,过200目筛,获得颗粒粒径1~75μm的铁氧体固废粉料1。
步骤2:取0.025g粒径30nm的乙炔炭黑,4g粉料1均匀混合,混合后的粉体放入球磨罐,以550rpm的转速匀速湿法球磨18h之后,取出粉体干燥、过筛,获得晶粒尺寸200~500nm、颗粒粒径约0.5~20μm的粉料2。
步骤3:取3g粉料2、0.75g粉料1、0.375g的10%聚乙烯醇水溶液并充分搅拌均匀后喷雾造粒,分别过200目和300目筛网,得到粒径约47~74μm且具有良好流动性的粉料3。称取1.4g粉料3放入模具中,松装密度约为1.25g/cm3,以4T/cm2的压力压制成型,获得生坯。
步骤4:将生坯放入热处理炉中,在氮气气氛中,以5℃/min的升温速率升至300℃并保温1h,以2℃/min的升温速率升至1200℃并保温2min,随后降至1000℃并继续保温10h,再以3℃/min的降温速率冷却至室温,可得到熟坯,经过加工后获得吸波体。
实施例3:
本实例通过提纯、混料、球磨、再混料、造粒、压制成型、两段烧结等步骤获得的铁氧体固废基陶瓷吸波材料,其中,粉料2由导电炭黑和粉料1组成,比例为2:88,粉料3由粉料2和粉料1构成,混合比例为9:1,具体包括如下步骤:
步骤1:将6g已破碎的晶粒尺寸约为1~14μm的铁氧体固废均匀分散于水中并洗涤,而后磁选将材料中的铁氧体颗粒与金刚砂等杂质分离,重复4次后在60°烘箱内干燥12h,过200目筛,获得颗粒粒径1~75μm的铁氧体固废粉料1。
步骤2:取0.0909g粒径50nm的导电炭黑,4g粉料1均匀混合,混合后的粉体放入球磨罐,以540rpm的转速匀速湿法球磨16h之后,取出粉体干燥、过筛,获得晶粒尺寸200~500nm、颗粒粒径约0.5~20μm的粉料2。
步骤3:取3g粉料2、0.3333g粉料1、0.333g的10%聚乙烯醇水溶液并充分搅拌均匀后喷雾造粒,分别过200目和300目筛网,得到粒径约47~74μm且具有良好流动性的粉料3。称取1.4g粉料3放入模具中,松装密度约为1.20g/cm3,以4T/cm2的压力压制成型,获得生坯。
步骤4:将生坯放入热处理炉中,在氮气气氛中,以5℃/min的升温速率升至300℃并保温1h,以3℃/min的升温速率升至1300℃并保温5min,随后降至1000℃并继续保温7h,再以5℃/min的降温速率冷却至室温,可得到熟坯,经过加工后获得吸波体。
综上所述,通过实施例1和对比例1的对比发现,本发明采用小尺寸晶粒的晶界填充和两段烧结法,利用固废微晶在界面的快速生长使炭黑颗粒在其大尺寸晶粒的晶界上形成嵌入式分布和钉扎,有效的降低了固废基吸波产品中的空气隙密度,进一步提升了其有效吸收性能,并强化了其力学性能。图6显示两段烧结法制备的吸波体在VHF应用频段(30~300MHz)的反射损耗明显提升,且多段热处理工艺也极大的降低了铁氧体材料的制备能耗。此外,本发明发现炭黑材料加入的含量对铁氧体固废基吸收体的吸波性能有显著的影响,呈现出先正相关后负相关的关系。适量的炭黑比例可以通过其团簇表面的活性基团激活铁氧体固废晶界的界面介电弛豫,改善和提升吸收体在微波频段的输入阻抗和性能;过多的炭黑比例则会在固废晶界上形成导电网络,致使吸收体的吸收频率过低和涡流损耗。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都涵盖在本发明的保护范围之内。

Claims (9)

1.一种铁氧体固废基陶瓷吸波材料的制备方法,其特征在于包括如下步骤:
步骤1:将已破碎的铁氧体固废均匀分散于水中并洗涤,而后磁选将材料中的铁氧体颗粒与金刚砂等杂质分离,重复3-4次后在60℃烘箱内干燥12h,过200~250目筛,获得铁氧体固废粉料1;
步骤2:将炭黑与步骤1获得的粉料1均匀混合,混合后的粉体放入球磨罐,以200~600rpm的转速匀速湿法球磨2~24h之后,取出粉体并进行干燥过筛,获得粉料2;
步骤3:将步骤2获得的粉料2与步骤1中的粉料1混匀,加入造粒剂充分搅拌均匀后,不断研磨过筛得到具有良好流动性的粉料3;称取适量的粉料3放入模具中,以0.5–10T/cm2的压力压制成型,获得生坯;
步骤4:将生坯放入热处理炉中,在保护气氛下升温至300-500℃并保温0.5~5h,接着升温至700~1400℃并保温0~4h,随后降至600~1100℃并继续保温1~24h,再冷却至室温,可得到熟坯,经过加工后获得不同形状的吸波体。
2.根据权利要求1所述的制备方法,其特征在于:
步骤1中,获得的铁氧体固废粉料1的颗粒粒径为1~75μm。
3.根据权利要求1所述的制备方法,其特征在于:
步骤2中,获得的粉料2中的铁氧体晶粒尺寸为200nm~10μm、颗粒粒径为0.5~20μm。
4.根据权利要求1所述的制备方法,其特征在于:
步骤2中,所述炭黑包括超导电炭黑、导电炭黑、乙炔炭黑等中的一种或几种,粒径约为10~100nm;炭黑的添加质量为粉料1质量的0.1~5%。
5.根据权利要求1所述的制备方法,其特征在于:
步骤2中,湿法球磨时,粉体、水、球磨珠混合的质量比为1:1~4:0.5~2。
6.根据权利要求1所述的制备方法,其特征在于:
步骤3中,步骤2获得的粉料2与步骤1获得的粉料1混合时的质量比为100:1~10。
7.根据权利要求1所述的制备方法,其特征在于:
步骤3中,所述造粒剂为聚乙烯醇、聚乙二醇、羧甲基纤维素钠中的一种,用量为粉料质量的1%~10%。
8.根据权利要求1所述的制备方法,其特征在于:
步骤4中,所述保护气氛为氮气、氩气、氢气等中的一种。
9.根据权利要求1所述的制备方法,其特征在于:
步骤4中,升温速率为1~10℃/min;冷却至室温时的降温速率为1~20℃/min。
CN202010939829.3A 2020-09-09 2020-09-09 一种铁氧体固废基陶瓷吸波材料的制备方法 Active CN111995386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010939829.3A CN111995386B (zh) 2020-09-09 2020-09-09 一种铁氧体固废基陶瓷吸波材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010939829.3A CN111995386B (zh) 2020-09-09 2020-09-09 一种铁氧体固废基陶瓷吸波材料的制备方法

Publications (2)

Publication Number Publication Date
CN111995386A true CN111995386A (zh) 2020-11-27
CN111995386B CN111995386B (zh) 2022-07-26

Family

ID=73469070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010939829.3A Active CN111995386B (zh) 2020-09-09 2020-09-09 一种铁氧体固废基陶瓷吸波材料的制备方法

Country Status (1)

Country Link
CN (1) CN111995386B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690778A (en) * 1984-05-24 1987-09-01 Tdk Corporation Electromagnetic shielding material
CN102557606A (zh) * 2012-03-16 2012-07-11 南京深宁磁电有限公司 镁锌软磁铁氧体材料的制备方法及镁锌软磁铁氧体材料
CN103524125A (zh) * 2013-10-22 2014-01-22 沈阳理工大学 制备炭黑负载钴锌铁氧体吸波材料的工艺方法
CN108102393A (zh) * 2017-12-20 2018-06-01 合肥工业大学 一种基于铁氧体固废的电磁波吸收材料的制备方法
CN109413976A (zh) * 2018-11-06 2019-03-01 杭州如墨科技有限公司 一种宽频高灵敏电磁波吸波材料及其制备方法
CN110526701A (zh) * 2019-10-12 2019-12-03 合肥工业大学 一种铁氧体固废循环再利用制备电磁波吸收材料的方法
CN110526702A (zh) * 2019-10-12 2019-12-03 合肥工业大学 一种碳复合锰锌铁氧体宽频吸波材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690778A (en) * 1984-05-24 1987-09-01 Tdk Corporation Electromagnetic shielding material
CN102557606A (zh) * 2012-03-16 2012-07-11 南京深宁磁电有限公司 镁锌软磁铁氧体材料的制备方法及镁锌软磁铁氧体材料
CN103524125A (zh) * 2013-10-22 2014-01-22 沈阳理工大学 制备炭黑负载钴锌铁氧体吸波材料的工艺方法
CN108102393A (zh) * 2017-12-20 2018-06-01 合肥工业大学 一种基于铁氧体固废的电磁波吸收材料的制备方法
CN109413976A (zh) * 2018-11-06 2019-03-01 杭州如墨科技有限公司 一种宽频高灵敏电磁波吸波材料及其制备方法
CN110526701A (zh) * 2019-10-12 2019-12-03 合肥工业大学 一种铁氧体固废循环再利用制备电磁波吸收材料的方法
CN110526702A (zh) * 2019-10-12 2019-12-03 合肥工业大学 一种碳复合锰锌铁氧体宽频吸波材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王迎军主编: "《新型材料科学与技术 无机材料卷》", 31 October 2016, 华南理工大学出版社 *

Also Published As

Publication number Publication date
CN111995386B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN105624445B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN205061895U (zh) 一种氧化镁联产系统
CN102671842A (zh) 一种低频电磁吸波涂层的制备方法
CN109536771A (zh) 一种弥散强化无氧铜合金板材的制备方法
CN111644612A (zh) 一种等离子烧结团聚金属陶瓷热喷涂复合粉的制备方法
CN110494030B (zh) 一种树脂强化的铁氧体固废基宽频带电磁波吸收体的制备方法
CN103866126A (zh) 一种利用气流磨废粉制备钕铁硼的方法
CN100530454C (zh) 磁导率μ=26的铁硅铝磁粉芯的制造方法
CN111732421A (zh) 一种氧化铝陶瓷复合粉体的制备方法
CN112592169A (zh) 一种led用宽温高频低损耗、高磁导率锰锌铁氧体及其制备方法
CN104140258A (zh) 永磁铁氧体的再利用制备方法及其磁体
CN111995386B (zh) 一种铁氧体固废基陶瓷吸波材料的制备方法
CN108516816B (zh) 一种直流电机用y30h-2永磁铁氧体磁瓦及其制备方法
CN111774561B (zh) 一种3d冷打印制备电磁屏蔽用铜铁合金网的方法
CN111545746B (zh) 一种提升微波烧结铁磁性高熵合金致密度与性能的方法
CN111233479B (zh) 一种高纯度、高致密度、大尺寸碳化硼陶瓷的制备方法
CN105070454A (zh) 一种高机械强度铁氧体磁芯材料
CN111995387B (zh) 一种低成本环保微波吸收体的制备方法
CN110526701B (zh) 一种铁氧体固废循环再利用制备电磁波吸收材料的方法
CN108538409A (zh) 一种二氧化铀/纳米金刚石核燃料芯块的快速制备方法及其产品
CN110563454B (zh) 一种过量锌掺杂的铁氧体固废基电磁波吸收材料的制备方法
CN109957673B (zh) 一种铁精矿金属陶瓷及其制备方法
CN109898029B (zh) 一种低成本铁钴合金的制备方法
CN103159445B (zh) 防磁饰面板
CN111243850A (zh) 一种高效环保的钐钴加工工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant