CN115124331A - 一种高导热高膨胀低温共烧陶瓷材料及其制备方法 - Google Patents

一种高导热高膨胀低温共烧陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115124331A
CN115124331A CN202210705991.8A CN202210705991A CN115124331A CN 115124331 A CN115124331 A CN 115124331A CN 202210705991 A CN202210705991 A CN 202210705991A CN 115124331 A CN115124331 A CN 115124331A
Authority
CN
China
Prior art keywords
temperature
ball
thermal
ceramic material
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210705991.8A
Other languages
English (en)
Inventor
钟朝位
王明霞
秦天应
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210705991.8A priority Critical patent/CN115124331A/zh
Publication of CN115124331A publication Critical patent/CN115124331A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种高导热高膨胀低温共烧陶瓷材料,属于电子信息功能材料技术领域。所述陶瓷材料包括主基料和添加剂,主基料中各成分占陶瓷材料的质量百分比:MgO:5~10wt%,Li2CO3:25~60wt%,SiO2:35~50wt%,Al2O3:1~10wt%,添加剂中各成分占陶瓷材料的质量百分比:H3BO3:0~5wt%,LiF:1~10wt%,CaO:0~5wt%,ZrO2:0~5wt%。本发明提供的陶瓷材料,烧结温度≤940℃,热导率8.535~11.362W/mK,热膨胀系数~12×10‑6/K,兼具低烧结温度、高导热、高膨胀系数性能。

Description

一种高导热高膨胀低温共烧陶瓷材料及其制备方法
技术领域
本发明属于电子信息功能材料及器件技术领域,特别涉及用于超大规模集成电路二级封装用高导热高热膨胀系数低温共烧陶瓷基板材料及其制备方法,适用于制作超大规模集成电路的CBGA封装陶瓷基板。
背景技术
随着无线通信系统、电子、航天工业的快速发展,电子元器件向小型化、数字化、集成化方向转变,电子元器件对基板和封装材料的性能有着更高的要求。由于芯片尺寸越做越小,内核增加和运算速度极大提高,在封装器件工作的过程中,高功耗和高电流会产生大量热对电子元件产生致命性的影响。根据美国《航空电子设备完整性大纲》的统计数据,影响电子设备可靠性的主要环境因素有:温度、振动与冲击、湿度和粉尘,其中温度每升高10℃,电子元器件失效率增加一倍。电子设备长时间工作时若不能及时散热可能使器件本身产生过应力失效,热场或者长时间多次热量循环冲击也会引起封装器件中接合/接触面间由于热膨胀系数不匹配而产生热应力,从而导致封装器件开裂失效等。因此对用于电子封装质量要求日益提高的今天,如何提高封装产品的寿命和可靠性变得越来越重要。
目前的电子封装行业主要以球栅阵列(BGA)及衍生出的芯片尺寸(CSP)技术为主导。在各种类型的BGA结构中,陶瓷球栅阵列封装(CBGA)显示出优良的介电性能和热性能,其散热性能好;具有良好的密封性能,对湿气不敏感;且I/O引脚多;缩短了芯片与基板之间的距离,提高了信号传输速率等。作为CBGA封装中的陶瓷材料,其机械、介电及热学性能是决定器件可靠性和稳定性的关键。在众多的陶瓷材料中,氧化铝(Al2O3)及其它高温共烧陶瓷(HTCC)材料由于导热性好、机械强度高、电气性能好、价格低廉、产量大等优点而被广泛应用于CBGA的基板封装中。但是,由于其烧结温度通常较高(约1500℃),而只能与Au、Pt等贵金属或者Mo、Mn等高电阻导体材料在高温下共烧,使得这类产品消耗能量较多,生产成本较高。为了使基板陶瓷能够和一些低熔点高导金属共烧并且降低生产成本,低温共烧陶瓷(LTCC)技术应运而生。LTCC的典型烧结温度低于1000℃,因此它们可以用高导电性电极(例如银或铜金属)进行微细化布线,降低生产能耗和成本。对于新型的LTCC材料要考虑到把芯片在工作过程中产生的热量有效的传导到热沉以维持芯片正常的工作温度,这需要材料在满足低温共烧的同时且有较高的导热系数。另外由于封装陶瓷基板位于芯片和PCB板之间,而一般芯片的热膨胀系数约为2~4×10-6/K,PCB板热膨胀系数约为17~18×10-6/K,为了避免热失配则需要一种热膨胀系数约为12×10-6/K的低温共烧陶瓷材料。但目前的LTCC产品存在热导率较低,热膨胀较低,或者性能单一不能同时兼顾高导热和高膨胀等缺点。为了解决超大规模集成电路二级封装中陶瓷封装材料所存在的问题,需要研究出一种同时具备高导热高膨胀性能的陶瓷材料,在满足介电性能和热性能的同时又能实现与银(Ag)或铜(Cu)金属电极共烧。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种高导热高膨胀低温共烧陶瓷材料及其制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种高导热高膨胀低温共烧陶瓷材料,包括主基料和添加剂;其中,所述主基料中各成分占陶瓷材料的质量百分比分别为:MgO:5~10wt%,Li2CO3:25~60wt%,SiO2:35~50wt%,Al2O3:1~10wt%,所述添加剂中各成分占陶瓷材料的质量百分比分别为:H3BO3:0~5wt%,LiF:1~10wt%,CaO:0~5wt%,ZrO2:0~5wt%。
一种高导热高膨胀低温共烧陶瓷材料的制备方法,包括以下步骤:
步骤1、配料:
以MgO、Li2CO3、SiO2、Al2O3、H3BO3、LiF、CaO和ZrO2作为原材料,按照“MgO:5~10wt%,Li2CO3:25~60wt%,SiO2:35~50wt%,Al2O3:1~10wt%,H3BO3:0~5wt%,LiF:1~10wt%,CaO:0~5wt%,ZrO2:0~5wt%”的比例称取各原料;
步骤2、一次球磨:
以MgO、Li2CO3、SiO2、Al2O3作为主基料,将MgO、Li2CO3、SiO2、Al2O3混合后进行一次球磨,烘干,过筛,得到一次球磨料;
步骤3、预烧:
将步骤2得到的一次球磨料在750~850℃下预烧2~4小时,得到预烧粉体;
步骤4、二次配料:
将步骤1称取的H3BO3、LiF、CaO、ZrO2加入步骤3得到的预烧粉体中,混合均匀,得到混合粉料;
步骤5、二次球磨:
将步骤4得到的混合粉料进行二次球磨,烘干,过筛,得到二次球磨料;
步骤6、造粒、成型:
将步骤5得到的二次球磨料进行造粒、成型,得到生坯;
步骤7、排胶、烧结:
将步骤6得到的生坯进行排胶处理,然后在920~940℃下烧结2~4小时,即可得到所述高导热高膨胀低温共烧陶瓷材料。
进一步的,步骤2所述一次球磨的过程具体为:以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将MgO、Li2CO3、SiO2、Al2O3原料球磨混合,原料、球磨介质和溶剂的质量比为1:5:2,球磨转速为260~280r/min,球磨时间为4~6小时。
进一步的,步骤3预烧过程中,升温速率为2℃/min。
进一步的,步骤5所述二次球磨的过程具体为:以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将混合粉料球磨混合,混合粉料、球磨介质和溶剂的质量比为1:5:1.5,球磨转速为260~280r/min,球磨时间为6~8小时。
进一步的,步骤6中,造粒过程中选择的粘合剂为质量浓度为50%的丙烯酸溶液;成型的工艺为干压成型或等静压成型。
进一步的,步骤7中所述排胶处理的过程具体为:将生坯置于空气气氛的马弗炉中,以2℃/min的升温速率将炉内温度升至450~550℃,并在450~550℃下保温2~3小时,实现充分排胶。
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种高导热高膨胀低温共烧陶瓷材料,烧结温度≤940℃,热导率为8.535~11.362W/mK,热膨胀系数~12×10-6/K(100℃),兼具低烧结温度、高导热、高膨胀系数性能,满足超大规模集成电路的CBGA封装对LTCC陶瓷基板材料的要求。
2、本发明提供的一种高导热高膨胀低温共烧陶瓷材料中,不添加任何玻璃成分,采用微量的碱金属卤化物LiF掺杂,不仅降低了陶瓷的烧结温度,同时促进了晶粒的生长,改善了陶瓷的微观形貌,降低了声子的散射程度,得到了兼具低烧结温度、高导热、高膨胀系数的陶瓷材料。
3、本发明提供的一种高导热高膨胀低温共烧陶瓷材料的制备方法,工艺简单,易于操作,能实现大规模工业化生产。
附图说明
图1为实施例1~4制备得到的陶瓷材料的XRD衍射分析图;
图2为实施例5~8制备得到的陶瓷材料的XRD衍射分析图;
图3为实施例1~4制备得到的陶瓷材料的SEM图;其中,(a)对应实施例1,(b)对应实施例2,(c)对应实施例3,(d)对应实施例4。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1~4
步骤1、配料:
以MgO、Li2CO3、SiO2、Al2O3、H3BO3、LiF、CaO和ZrO2作为原材料,按照表1所示的质量百分比称取各原料;
步骤2、一次球磨:
以MgO、Li2CO3、SiO2、Al2O3作为主基料,以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将MgO、Li2CO3、SiO2、Al2O3原料球磨混合,其中,原料、球磨介质和溶剂的质量比为1:5:2,球磨转速为260r/min,球磨时间为4小时;球磨后在120℃下烘干,过60目筛网,得到一次球磨料;
步骤3、预烧:
将步骤2得到的一次球磨料置于空气气氛的马弗炉中在750℃下预烧2小时,升温速率为2℃/min,预烧完成后,自然冷却至室温,得到预烧粉体;
步骤4、二次配料:
将步骤1称取的H3BO3、LiF、CaO、ZrO2加入步骤3得到的预烧粉体中,混合均匀,得到混合粉料;
步骤5、二次球磨:
以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将步骤4得到的混合粉料球磨混合,混合粉料、球磨介质和溶剂的质量比为1:5:1.5,球磨转速为280r/min,球磨时间为6小时;球磨后在120℃下烘干,过100目筛网,得到二次球磨料;
步骤6、造粒、成型:
以质量浓度为50%的丙烯酸溶液作为粘合剂,对步骤5得到的二次球磨料进行造粒;然后在20Mpa压力下干压成型,得到生坯(Ф14mm×1.5mm);
步骤7、排胶、烧结:
将生坯置于空气气氛的马弗炉中,以2℃/min的升温速率将炉内温度升至450℃,并在450℃下保温2小时,进行排胶处理;然后以2℃/min的升温速率继续升温至940℃,在940℃下烧结2小时,即可得到所述高导热高膨胀低温共烧陶瓷材料。
实施例5~8
步骤1、配料:
以MgO、Li2CO3、SiO2、Al2O3、H3BO3、LiF、CaO和ZrO2作为原材料,按照表1所示的质量百分比称取各原料;
步骤2、一次球磨:
以MgO、Li2CO3、SiO2、Al2O3作为主基料,以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将MgO、Li2CO3、SiO2、Al2O3原料球磨混合,其中,原料、球磨介质和溶剂的质量比为1:5:2,球磨转速为260r/min,球磨时间为4小时;球磨后在120℃下烘干,过60目筛网,得到一次球磨料;
步骤3、预烧:
将步骤2得到的一次球磨料置于空气气氛的马弗炉中在750℃下预烧2小时,升温速率为2℃/min,预烧完成后,自然冷却至室温,得到预烧粉体;
步骤4、二次配料:
将步骤1称取的H3BO3、LiF、CaO、ZrO2加入步骤3得到的预烧粉体中,混合均匀,得到混合粉料;
步骤5、二次球磨:
以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将步骤4得到的混合粉料球磨混合,混合粉料、球磨介质和溶剂的质量比为1:5:1.5,球磨转速为280r/min,球磨时间为6小时;球磨后在120℃下烘干,过100目筛网,得到二次球磨料;
步骤6、造粒、成型:
以质量浓度为50%的丙烯酸溶液作为粘合剂,对步骤5得到的二次球磨料进行造粒;然后在20Mpa压力下干压成型,得到生坯(Ф14mm×1.5mm);
步骤7、排胶、烧结:
将生坯置于空气气氛的马弗炉中,以2℃/min的升温速率将炉内温度升至450℃,并在450℃下保温2小时,进行排胶处理;然后以2℃/min的升温速率继续升温至920℃,在920℃下烧结2小时,即可得到所述高导热高膨胀低温共烧陶瓷材料。
表1各实施例中原料的质量百分比及烧结温度
Figure BDA0003705320590000061
表2各实施例制得的陶瓷材料的热性能参数
Figure BDA0003705320590000062
由表1~2可知,实施例1~8得到的陶瓷材料兼具低烧结温度、高导热、高膨胀系数的优异性能,在室温下实施例2的热导率高达11.362W/mK。根据实施例1和2的性能参数可知,随着LiF添加剂含量的增加,陶瓷材料的热导系数增大,这是因为低熔点的添加剂在高温时融化,材料中的液相增多,适量液相的存在可以促进颗粒重排,除去材料中的空气,通过润湿陶瓷晶界使得材料进一步致密化,提高陶瓷材料的体密度,从而提升陶瓷材料的热导性能。但是当添加剂含量进一步增加时,样品内部引入了较多的掺杂物和高温时低熔点添加剂的液相,导致样品结构不致密,液相在材料内部表现出过大的流动性,使得空气被包覆在材料内部,降低材料密度,使得陶瓷材料内部声子散射增强从而导热系数稍有所降低。因此,对比实施例2,其它实施例的热导率稍有下降但仍保持在较好的水平。另外,实施例3~8在100℃时的热膨胀系数均为12×10-6/K左右,满足超大规模集成电路二级封装中陶瓷封装基板材料对热膨胀系数的要求。
图1为实施例1~4制备得到的陶瓷材料的XRD衍射分析图;其中,S1代表实施例1,S2代表实施例2,S3代表实施例3,S4代表实施例4。由图1可知,实施例1~4得到的陶瓷材料中均含有Li2SiO3相,随着添加剂含量的增加,Li4SiO4含量逐渐减少并消失,并开始出现Li2Si2O5相。当添加剂适量时制得的实施例2,其热导率达到了最高值11.362W/mK且热膨胀系数最低为10.4×10-6/K。实施例3至4中出现较多的Li2Si2O5第二相,而第二相的出现使得材料的杂质和晶界增多,增加了声子的散射几率,使得材料的热导率有所降低。
图2为实施例5~8制备得到的陶瓷材料的XRD衍射分析图;其中,S5代表实施例5,S6代表实施例6,S7代表实施例7,S8代表实施例8。由图2可知,实施例5~8得到的陶瓷材料中都出现少量的SiO2第二相,均表现出整体较高的热导率且相对稳定的热膨胀系数。
图3为实施例1~4制备得到的陶瓷材料的SEM图;其中,(a)对应实施例1,(b)对应实施例2,(c)对应实施例3,(d)对应实施例4。由图3可知,实施例2得到的陶瓷材料,气孔相对减少,并且晶粒较大,晶界数量较少,更加致密化;实施例4得到的陶瓷材料,晶粒有规则生长,晶粒尺寸较小,晶界清晰且有少量气孔,因此较实施例2的热导率略有降低而热膨胀系数略有升高。

Claims (7)

1.一种高导热高膨胀低温共烧陶瓷材料,其特征在于,包括主基料和添加剂;其中,所述主基料中各成分占陶瓷材料的质量百分比分别为:MgO:5~10wt%,Li2CO3:25~60wt%,SiO2:35~50wt%,Al2O3:1~10wt%,所述添加剂中各成分占陶瓷材料的质量百分比分别为:H3BO3:0~5wt%,LiF:1~10wt%,CaO:0~5wt%,ZrO2:0~5wt%。
2.一种高导热高膨胀低温共烧陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1、配料:
以MgO、Li2CO3、SiO2、Al2O3、H3BO3、LiF、CaO和ZrO2作为原材料,按照“MgO:5~10wt%,Li2CO3:25~60wt%,SiO2:35~50wt%,Al2O3:1~10wt%,H3BO3:0~5wt%,LiF:1~10wt%,CaO:0~5wt%,ZrO2:0~5wt%”的比例称取各原料;
步骤2、一次球磨:
以MgO、Li2CO3、SiO2、Al2O3作为主基料,将MgO、Li2CO3、SiO2、Al2O3混合后进行一次球磨,烘干,过筛,得到一次球磨料;
步骤3、预烧:
将步骤2得到的一次球磨料在750~850℃下预烧2~4小时,得到预烧粉体;
步骤4、二次配料:
将步骤1称取的H3BO3、LiF、CaO、ZrO2加入步骤3得到的预烧粉体中,混合均匀,得到混合粉料;
步骤5、二次球磨:
将步骤4得到的混合粉料进行二次球磨,烘干,过筛,得到二次球磨料;
步骤6、造粒、成型:
将步骤5得到的二次球磨料进行造粒、成型,得到生坯;
步骤7、排胶、烧结:
将步骤6得到的生坯进行排胶处理,然后在920~940℃下烧结2~4小时,即可得到所述高导热高膨胀低温共烧陶瓷材料。
3.根据权利要求2所述的高导热高膨胀低温共烧陶瓷材料的制备方法,其特征在于,步骤2所述一次球磨的过程具体为:以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将MgO、Li2CO3、SiO2、Al2O3原料球磨混合,原料、球磨介质和溶剂的质量比为1:5:2,球磨转速为260~280r/min,球磨时间为4~6小时。
4.根据权利要求2所述的高导热高膨胀低温共烧陶瓷材料的制备方法,其特征在于,步骤3预烧过程中,升温速率为2℃/min。
5.根据权利要求2所述的高导热高膨胀低温共烧陶瓷材料的制备方法,其特征在于,步骤5所述二次球磨的过程具体为:以去离子水为溶剂,采用二氧化锆为球磨介质,在行星球磨机中将混合粉料球磨混合,混合粉料、球磨介质和溶剂的质量比为1:5:1.5,球磨转速为260~280r/min,球磨时间为6~8小时。
6.根据权利要求2所述的高导热高膨胀低温共烧陶瓷材料的制备方法,其特征在于,步骤6中,造粒过程中选择的粘合剂为质量浓度为50%的丙烯酸溶液;成型的工艺为干压成型或等静压成型。
7.根据权利要求2所述的高导热高膨胀低温共烧陶瓷材料的制备方法,其特征在于,步骤7中所述排胶处理的过程具体为:将生坯置于空气气氛的马弗炉中,以2℃/min的升温速率将炉内温度升至450~550℃,并在450~550℃下保温2~3小时。
CN202210705991.8A 2022-06-21 2022-06-21 一种高导热高膨胀低温共烧陶瓷材料及其制备方法 Pending CN115124331A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210705991.8A CN115124331A (zh) 2022-06-21 2022-06-21 一种高导热高膨胀低温共烧陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210705991.8A CN115124331A (zh) 2022-06-21 2022-06-21 一种高导热高膨胀低温共烧陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115124331A true CN115124331A (zh) 2022-09-30

Family

ID=83379469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210705991.8A Pending CN115124331A (zh) 2022-06-21 2022-06-21 一种高导热高膨胀低温共烧陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115124331A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894002A (zh) * 2022-12-06 2023-04-04 中国科学院合肥物质科学研究院 一种双相陶瓷增强低温共烧陶瓷材料及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215157A (zh) * 2008-01-11 2008-07-09 清华大学 掺氟硅铝玻璃基低温共烧陶瓷材料及其制备方法
CN103265276A (zh) * 2013-05-27 2013-08-28 上海大学 无玻璃相添加的低温微波介质陶瓷材料的制备方法
KR101668685B1 (ko) * 2015-07-31 2016-10-24 강릉원주대학교산학협력단 유리를 함유하지 않는 저온 동시 소성용 마그네시아 세라믹 조성물 및 마그네시아 세라믹스
CN109836141A (zh) * 2019-03-29 2019-06-04 电子科技大学 一种高热导率低温共烧陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215157A (zh) * 2008-01-11 2008-07-09 清华大学 掺氟硅铝玻璃基低温共烧陶瓷材料及其制备方法
CN103265276A (zh) * 2013-05-27 2013-08-28 上海大学 无玻璃相添加的低温微波介质陶瓷材料的制备方法
KR101668685B1 (ko) * 2015-07-31 2016-10-24 강릉원주대학교산학협력단 유리를 함유하지 않는 저온 동시 소성용 마그네시아 세라믹 조성물 및 마그네시아 세라믹스
CN109836141A (zh) * 2019-03-29 2019-06-04 电子科技大学 一种高热导率低温共烧陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Z.B. FENG等: "Sintering behavior and microwave dielectric properties of Li4Mg3[Ti0.8(Mg1/3Ta2/3)0.2]2O9 ceramics with LiF additive for LTCC applications", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
秦洋: "Li-Al-Si基高导热陶瓷材料研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894002A (zh) * 2022-12-06 2023-04-04 中国科学院合肥物质科学研究院 一种双相陶瓷增强低温共烧陶瓷材料及其制备方法和用途
CN115894002B (zh) * 2022-12-06 2023-09-22 中国科学院合肥物质科学研究院 一种双相陶瓷增强低温共烧陶瓷材料及其制备方法和用途

Similar Documents

Publication Publication Date Title
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN107602088B (zh) 一种与高温导电银浆高匹配的低温共烧陶瓷材料及其制备方法
CN112624617B (zh) 介电常数系列可调的低介电常数ltcc材料用玻璃粉体及其制备方法
CN109836141B (zh) 一种高热导率低温共烧陶瓷材料及其制备方法
CN106904953B (zh) 高密度封装用高热膨胀系数陶瓷材料及其制备方法
JP3426926B2 (ja) 配線基板およびその実装構造
CN108558215A (zh) 一种高强度低热膨胀系数微晶玻璃及其制备方法
CN108585517A (zh) 一种镁铝硅系低热膨胀系数微晶玻璃材料及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN115124331A (zh) 一种高导热高膨胀低温共烧陶瓷材料及其制备方法
CN110357597A (zh) 一种钙硼硅系高热膨胀陶瓷基板材料及其制备方法
CN109320232A (zh) 一种微波介质用陶瓷材料及其制备方法
CN108424132B (zh) 一种高热膨胀高强度陶瓷封装材料及其制备方法
JP3339999B2 (ja) 配線基板とそれを用いた半導体素子収納用パッケージおよびその実装構造
JP3323074B2 (ja) 配線基板、半導体素子収納用パッケージおよびその実装構造
JP2002167265A (ja) 低温焼成磁器組成物および低温焼成磁器並びにそれを用いた配線基板
CN110304911B (zh) 热膨胀系数连续可调的低温共烧陶瓷材料和制备方法
JP3450167B2 (ja) 半導体素子収納用パッケージ
JP3323043B2 (ja) 配線基板とそれを用いた半導体素子収納用パッケージおよびその実装構造
JP3450998B2 (ja) 配線基板およびその実装構造
JP4540239B2 (ja) アルミノシリケート系焼結体及びこれを用いた応力緩和部材
JP3305579B2 (ja) 配線基板、半導体素子収納用パッケージおよび実装構造
JP3439962B2 (ja) 半導体素子収納用パッケージ
JP2004161562A (ja) 回路基板用セラミックス材料
CN117510187A (zh) 一种高导热氧化铝陶瓷基片材料及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220930