CN114094962B - 一种电压电流转换电路、射频功率放大器和电子系统 - Google Patents

一种电压电流转换电路、射频功率放大器和电子系统 Download PDF

Info

Publication number
CN114094962B
CN114094962B CN202111390866.4A CN202111390866A CN114094962B CN 114094962 B CN114094962 B CN 114094962B CN 202111390866 A CN202111390866 A CN 202111390866A CN 114094962 B CN114094962 B CN 114094962B
Authority
CN
China
Prior art keywords
voltage
current
source
transistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111390866.4A
Other languages
English (en)
Other versions
CN114094962A (zh
Inventor
王启明
刘炽锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Huizhi Microelectronics Co ltd
Original Assignee
Guangzhou Huizhi Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Huizhi Microelectronics Co ltd filed Critical Guangzhou Huizhi Microelectronics Co ltd
Priority to CN202111390866.4A priority Critical patent/CN114094962B/zh
Publication of CN114094962A publication Critical patent/CN114094962A/zh
Application granted granted Critical
Publication of CN114094962B publication Critical patent/CN114094962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明实施例公开了一种电压电流转换电路,包括:第一电压源电路,第一电压源电路与第一电压源连接,用于基于所述第一电压源的第一输入电压输出第一电压;第二电压源电路,第二电压源电路与第二电压源连接,用于基于第二电压源的第二输入电压输出第二电压;电平移位电路,分别与所述第一电压源电路的输出端和第二电压源电路的输出端连接,用于将所述第一电压移动第一移位量,得到第一移位电压,且将所述第二电压移动第二移位量,得到第二移位电压;其中,所述第一移位量和所述第二移位量均与所述第一输入电压负相关;转换电路,与所述电平移位电路的输出端连接,用于根据所述第一移位电压和所述第二移位电压之间的电压差,输出电流。

Description

一种电压电流转换电路、射频功率放大器和电子系统
技术领域
本发明涉及电路技术领域,尤其涉及一种电压电流转换电路、射频功率放大器和电子系统。
背景技术
电子系统通常在较低的电源电压下表现出较低的功耗,通过降低电子系统的电源电压,直接减少了电源功率,由此节省电力。
随着经济社会的快速发展,电子系统的低功耗要求越来越强烈。但是,低功耗使得电子系统的电源电压越来越低,而越来越低的电源电压也限制了集成电路能够处理的信号的电压范围。
发明内容
有鉴于此,本发明实施例期望提供一种电压电流转换电路、射频功率放大器和电子系统。
第一方面,本发明实施例提供了一种电压电流转换电路,包括:第一电压源电路,所述第一电压源电路与第一电压源连接,用于基于所述第一电压源的第一输入电压输出第一电压;第二电压源电路,所述第二电压源电路与第二电压源连接,用于基于所述第二电压源的第二输入电压输出第二电压;电平移位电路,分别与所述第一电压源电路的输出端和第二电压源电路的输出端连接,用于将所述第一电压移位第一移位量,得到第一移位电压,且将所述第二电压移位第二移位量,得到第二移位电压;其中,所述第一移位量和所述第二移位量均与所述第一输入电压负相关;转换电路,与所述电平移位电路的输出端连接,用于根据所述第一移位电压和所述第二移位电压之间的电压差,输出电流。
在一个实施例中,所述电平移位电路,包括:第一晶体管,所述第一晶体管的栅极与所述第一电压源电路的输出端连接,所述第一晶体管的源极与所述转换电路连接,所述第一晶体管的漏极接地;第二晶体管,所述第二晶体管的栅极与所述第二电压源电路的输出端连接,所述第二晶体管的源极与所述转换电路连接,所述第二晶体管的漏极接地。
在一个实施例中,所述电平移位电路,还包括:第一电流源,所述第一电流源连接在供电电源和所述第一晶体管的源极之间,其中,所述第一电流源提供的电流与所述第一输入电压负相关;第二电流源,所述第二电流源连接在所述供电电源与所述第二晶体管的源极之间,所述第二电流源提供的电流与所述第一输入电压负相关。
在一个实施例中,所述第一电压源电路,包括:第一电阻;第三晶体管,所述第三晶体管的栅极与所述第一电压源连接,所述第三晶体管的源极经所述第一电阻与所述第一晶体管的栅极连接,所述第三晶体管的漏极接地;
第三电流源,所述第三电流源的一端与供电电源连接,另一端分别与所述第一晶体管的栅极,以及,与所述第一电阻连接。
在一个实施例中,所述第二电压源电路,包括:第二电阻;第四晶体管,所述第四晶体管的栅极与所述第二电压源连接,所述第四晶体管的源极经所述第二电阻与所述第二晶体管的栅极连接,所述第四晶体管的漏极接地;
第四电流源,所述第四电流源的一端与供电电源连接,另一端分别与所述第二晶体管的栅极,以及,与所述第二电阻连接。
在一个实施例中,所述第二电压源为恒压源。
在一个实施例中,所述转换电路包括:第五电流源,所述第五电流源的一端接地;电流输出支路,所述电流输出支路分别与所述第五电流源和所述电平移位电路连接,用于基于所述电平移位电路输出的第一移位电压产生第一电流,以及基于第二移位电压产生第二电流,并基于所述第一电流、第二电流和所述第五电流源提供的电流输出第三电流。
在一个实施例中,所述电流输出支路,包括:第一支路,所述第一支路分别与所述第五电流源和所述电平移位电路连接,用于基于所述电平移位电路输出的第一移位电压产生第一电流;第二支路,所述第二支路分别与所述第五电流源和所述电平移位电路连接,用于基于所述电平移位电路输出的第二移位电压产生第二电流。
在一个实施例中,所述第一支路,包括:第三电阻;第五晶体管,所述第五晶体管的漏极与供电电源连接,所述第五晶体管的源极经所述第三电阻与所述第五电流源连接,所述第五晶体管的栅极与所述电平移位电路连接。
在一个实施例中,所述第二支路,包括:第四电阻;电流镜像电路,所述电流镜像电路与供电电源连接;第六晶体管,所述第六晶体管的漏极与所述电流镜像电路连接,所述第六晶体管的源极经所述第四电阻与所述第五电流源连接,所述第六晶体管的栅极与所述电平移位电路连接。
第二方面,本发明实施例还提供了一种射频功率放大器,所述射频功率放大器包括上述任一项所述的电压电流转换电路。
第三方面,本发明实施例还提供了一种电子系统,所述电子系统包括上述任一项所述的射频功率放大器。
本实施例的电压电流转换电路通过电平移位电路对第一输入电压和第二输入电压进行移位,且使第一输入电压和第二输入电压对应的第一移位量和第二移位量均与第一输入电压负相关,并最终基于移位后的第一移位电压和第二移位电压之间的电压差,输出电流。本实施例通过对输入电压进行移位,且使移位量随输入电压的增大逐渐减小,在降低了电压电流转换电路的最低电压的同时,尽量减小电压电流转换电路的最高电压的影响,可增大电压电流转换电路的输入电压范围。
附图说明
图1为一种电压电流转换电路的结构示意图;
图2为本发明实施例提供的电压电流转换电路的框图;
图3为本发明实施例的第一移位量与第一输入电压的一种关系示意图;
图4为本发明实施例的第一移位量与第一输入电压的另一种关系示意图;
图5为本发明实施例提供的电压电流转换电路的结构示意图;
图6为本发明实施例的第一电流源的电流与第一输入电压的一种关系示意图;
图7为本发明实施例的第一电流源的电流与第一输入电压的另一种关系示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,所描述的实施例不应视为对本发明的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本发明实施例的目的,不是旨在限制本发明。
图1是一种电压电流转换电路的结构示意图。如图1所示,电压电流转换电路20将输入电压Vin1转化为输出电流Iout1
电阻R7的上端H点电位为:
VH=Vref1+VGS,MP8+IIB5*R6-VGS,MN3,其中,VGS,MP8为晶体管MP8的源极和栅极之间的电压差,VGS,MN3为晶体管MN3的源极和栅极之间的电压差,IIB5为电流源IB5提供的电流,R6为电阻R6的阻值。
电阻R8的上端I点电位为:
VI=Vin1+VGS,MP7+IIB4*R5-VGS,MN4,其中,VGS,MP7为晶体管MP7的源极和栅极之间的电压差,VGS,MN4为晶体管MN4的源极和栅极之间的电压差,IIB4为电流源IB4提供的电流,R5为电阻R5的阻值。
如果W9/L9=W10/L10,W11/L11=W12/L12,W13/L13=W14/L14,R5=R6,R7=R8,IIB4=IIB5,其中,
W9/L9为晶体管MP7的沟道宽度W与沟道长度L的比率;
W10/L10为晶体管MP8的沟道宽度W与沟道长度L的比率;
W11/L11为晶体管MP9的沟道宽度W与沟道长度L的比率;
W12/L12为晶体管MP10的沟道宽度W与沟道长度L的比率;
W13/L13为晶体管MN3的沟道宽度W与沟道长度L的比率;
W14/L14为晶体管MN4的沟道宽度W与沟道长度L的比率;
R5为第五电阻的阻值;
R6为第六电阻的阻值;
R7为第七电阻的阻值;
R8为第八电阻的阻值;
IIB4为第四电流源提供的电流;
IIB5为第五电流源提供的电流;
那么,电压电流转换电路20的输出电流为:
电阻R7的电流为:
基于该电压电流转换电路20,存在输入电压范围受限的问题,如下:
1.输入电压很低时,电路中电流源IB3的电压受限。J点电位为:VJ=Vref1+VGS,MP8+IIB5*R6-VGS,MN3-I7*R7,可知输入电压Vin1越小,J点电位越低,会使电流源IB3进入线性区,使得输出电流Iout1变小;
2.输入电压很高时,电路中电流源IB4的电压受限。为解决上述问题1,一般会增大电阻R5和R6的阻值的方法,从而抬高低输入电压时J点的电位。但是,随着电阻R5和R6的增大,L点电位相应抬高。从而导致在Vin1比较高的情况下,电流源IB4进入线性区,使得输出电流Iout1变小。L点电位为:VL=Vin1+VGS,MP7+IR5*R5
为了解决输入电压范围受限的问题,本申请实施例提供一种改进的电压电流转换电路。图2是本发明实施例提供的电压电流转换电路的框图。如图2所示,电压电流转换电路10,包括:
第一电压源电路110,所述第一电压源电路110与第一电压源(图中未示出)连接,用于基于所述第一电压源的第一输入电压输出第一电压;
第二电压源电路120,所述第二电压源电路120与第二电压源(图中未示出)连接,用于基于所述第二电压源的第二输入电压输出第二电压;
电平移位电路130,分别与所述第一电压源电路110的输出端和第二电压源电路120的输出端连接,用于将所述第一电压移位第一移位量,得到第一移位电压,且将所述第二电压移位第二移位量,得到第二移位电压;其中,所述第一移位量和所述第二移位量均与所述第一输入电压负相关;
转换电路140,与所述电平移位电路130的输出端连接,用于根据所述第一移位电压和所述第二移位电压之间的电压差,输出电流。
在本实施例中,第一移位量可以为正值或负值,当第一移位量为正值时,第一电压抬升第一移位量得到第一移位电压;当第一移位量为负值时,第一电压降低第一移位量得到第一移位电压。
第二移位量可以为正值或负值,当第二移位量为正值时,第二电压抬升第二移位量得到第二移位电压;当第二移位量为负值时,第二电压降低第二移位量得到第二移位电压。
在本实施例中,第一移位量与第一输入电压负相关,也即,第一移位量与第一输入电压的变动方向相反。例如,第一输入电压由大到小变化时,第一移位量由小到大变化;第一输入电压由小到大变化时,第一抬移位由大到小变化。
相应地,第二移位量与第一输入电压负相关,也即,第二移位量与第一输入电压的变动方向相反。例如,第一输入电压由大到小变化时,第二移位量由小到大变化;第一输入电压由小到大变化时,第二移位量由大到小变化。
示例性地,图3为本发明实施例第一移位量与第一输入电压,和/或,第二移位量与第一输入电压的一种关系示意图,图4为本发明实施例第一移位量与第一输入电压,和/或,第二移位量与第一输入电压的另一种关系示意图。在图3和图4中,纵轴VGS为第一移位量或第二移位量,横轴Vin为第一输入电压,可见,第一移位量与第一输入电压的变动方向相反,以及,第二移位量与第一输入电压的变动方向相反。
可以理解地,第一移位量与第一输入电压的关系,以及,第二移位量与第一输入电压的关系并不局限于上述两种关系示意图,只要满足第一移位量与第一输入电压负相关,以及,第二移位量与第一输入电压负相关即可,本申请对此不作限制。
本实施例通过电平移位电路对第一输入电压和第二输入电压进行移位,且使第一输入电压和第二输入电压对应的第一移位量和第二移位量均与第一输入电压负相关,并最终基于移位后的第一移位电压和第二移位电压之间的电压差,输出电流。本实施例通过对输入电压进行移位,且使移位量随输入电压的增大逐渐减小,在降低了电压电流转换电路的最低电压的同时,尽量减小电压电流转换电路的最高电压的影响,可增大电压电流转换电路的输入电压范围。
在一些实施例中,所述第二电压源为恒压源,也即,第二电压源的第二输入电压为恒定电压。
在一些实施例中,所述第一电压源为可变电压源,也即,第一电压源的第一输入电压为并不是恒定的。
在一些实施例中,所述第一移位量和第二移位量相等。
在本实施例中,若第一移位量和第二移位量相等,在第一电压源电路和第二电压源电路对于输入电压的调整量相同的情况下,第一移位电压和第二移位电压之间的电压差仍等于第一输入电压和第二输入电压之间的电压差,从而,在实际应用过程中,通过调整第一输入电压的大小,即可改变第一输入电压和第二输入电压之间的电压差,改变输出电流的大小。
具体地,图5是本发明实施例提供的电压电流转换电路的一种结构示意图。如图5所示,所述电平移位电路130,包括:
第一晶体管MP3,所述第一晶体管MP3的栅极与所述第一电压源电路110的输出端连接,所述第一晶体管MP3的源极与所述转换电路140连接,所述第一晶体管MP3的漏极接地;
第二晶体管MP4,所述第二晶体管MP4的栅极与所述第二电压源电路120的输出端连接,所述第二晶体管MP4的源极与所述转换电路140连接,所述第二晶体管MP4的漏极接地;
第一电流源Iramp1,所述第一电流源Iramp1连接在供电电源和所述第一晶体管MP3的源极之间,其中,所述第一电流源Iramp1提供的电流与所述第一输入电压负相关;
第二电流源Iramp2,所述第二电流源Iramp2连接在所述供电电源与所述第二晶体管MP4的源极之间,所述第二电流源Iramp2提供的电流与所述第一输入电压负相关。
在本实施例中,第一晶体管MP3和第二晶体管MP4均为P型MOS晶体管。
请继续参考图5,所述第一电压源电路110,包括:
第一电阻R1;
第三晶体管MP1,所述第三晶体管MP1的栅极与所述第一电压源连接,所述第三晶体管MP1的源极经所述第一电阻R1与所述第一晶体管MP3的栅极连接,所述第三晶体管MP1的漏极接地;
第三电流源IB1,所述第三电流源IB1的一端与供电电源连接,另一端分别与所述第一晶体管MP3的栅极,以及,与所述第一电阻R1连接。
同时,所述第二电压源电路120,包括:
第二电阻R2;
第四晶体管MP2,所述第四晶体管MP2的栅极与所述第二电压源连接,所述第四晶体管MP2的源极经所述第二电阻R2与所述第二晶体管MP4的栅极连接,所述第四晶体管MP2的漏极接地;
第四电流源IB2,所述第四电流源IB2的一端与供电电源连接,另一端分别与所述第二晶体管MP4的栅极,以及,与所述第二电阻R4连接。
在本实施例中,第三晶体管MP1和第四晶体管MP2均为P型MOS晶体管。
请继续参考图5,在第一输入电压Vin达到第三晶体管MP1的导通电压时,导通第三晶体管MP1,则,
G点的电位为:VG=Vin+VGS,MP1+IIB1*R1
E点的电位为:VE=Vin+VGS,MP1+IIB1*R1+VGS,MP3
C点的电位为:VC=Vin+VGS,MP1+IIB1*R1+VGS,MP3-VGS,MN2-I4*R4
其中,Vin为第一输入电压,VGS,MP1为第三晶体管MP1的源极和栅极之间的电压差,VGS,MP3为第一晶体管MP3的源极和栅极之间的电压差,VGS,MN2为第六晶体管MN2的源极和栅极之间的电压差,IIB1为第三电流源IB1提供的电流,I4为流经电阻R4的电流,R1为第一电阻R1的阻值,R4为第四电阻R4的阻值。
显然,G点到接地端的电压(也即,VG)对应于第一电压,VGS,MP3对应于第一移位量。
同时,在第二输入电压达到第四晶体管MP2的导通电压时,导通第四晶体管MP2,则,
F点的电位为:VF=Vref+VGS,MP2+IIB2*R2
D点的电位为:VD=Vref+VGS,MP2+IIB2*R2+VGS,MP4
C点的电位为:VC=Vref+VGS,MP2+IIB2*R2+VGS,MP4-VGS,MN1-I3*R3
其中,Vref为第二输入电压,VGS,MP2为第四晶体管MP2的源极和栅极之间的电压差,VGS,MP4为第二晶体管MP4的源极和栅极之间的电压差,VGS,MN1为第五晶体管MN1的源极和栅极之间的电压差,IIB2为第四电流源IB2提供的电流,I3为流经第三电阻R3的电流,R2为第二电阻R2的阻值,R3为第三电阻R3的阻值。
显然,F点到接地端的电压(也即,VF)对应于第二电压,VGS,MP4对应于第二移位量。
示例性地,图6为本发明实施例第一电流源Iramp1提供的电流与第一输入电压,和/或,第二电流源Iramp2提供的电流与第一输入电压的关系示意图,图6为本发明实施例第一电流源Iramp1提供的电流与第一输入电压的平方,和/或,第二电流源Iramp2提供的电流与第一输入电压的平方的关系示意图。在图5和图6中,纵轴Iramp为第一电流源Iramp1提供的电流或第二电流源Iramp2提供的电流,横轴Vin为第一输入电压,可见,如图5所示,第一电流源Iramp1提供的电流与第一输入电压的变动方向相反,以及,第二电流源Iramp2提供的电流与第一输入电压的变动方向相反;如图7所示,第一电流源Iramp1提供的电流与第一输入电压的平方的变动方向相反,以及,第二电流源Iramp2提供的电流与第一输入电压的平方的变动方向相反。
同时,如果W1/L1=W2/L2,W3/L3=W4/L4,W5/L5=W6/L6,R1=R2,R3=R4,IIB1=IIB2,IIramp1=IIramp2,其中,
W1/L1为第一晶体管MP3的沟道宽度W与沟道长度L的比率;
W2/L2为第二晶体管MP4的沟道宽度W与沟道长度L的比率;
W3/L3为第三晶体管MP1的沟道宽度W与沟道长度L的比率;
W4/L4为第四晶体管MP2的沟道宽度W与沟道长度L的比率;
W5/L5为第五晶体管MN1的沟道宽度W与沟道长度L的比率;
W6/L6为第六晶体管MN2的沟道宽度W与沟道长度L的比率;
R1为第一电阻的阻值;
R2为第二电阻的阻值;
R3为第三电阻的阻值;
R4为第四电阻的阻值;
IIB1为第三电流源IB1提供的电流;
IIB2为第四电流源IB2提供的电流;
IIramp1为第一电流源Iramp1提供的电流;
IIramp2为第二电流源Iramp2提供的电流;
那么,VGS,MP3=VGS,MP4,且,
上述(1)式中,I3为流经电阻R3的电流,I4为流经电阻R4的电流,Vin为第一输入电压,Vref为第二输入电压,R4为第三电阻R4的阻值。
同时,VGS,MP3和VGS,MP4均与第一输入电流Vin负相关。
示例性地,VGS,MP4均与第一输入电流Vin之间的关系可如图2或图3所示。
请继续参考图5,所述转换电路140包括:
第五电流源IB0,所述第五电流源IB0的一端接地;
电流输出支路1401,所述电流输出支路1401分别与所述第五电流源IB0和所述电平移位电路130的输出端连接,用于基于所述电平移位电路130输出的第一移位电压产生第一电流,以及基于第二移位电压产生第二电流,并基于所述第一电流、第二电流和所述第五电流源IB0提供的电流输出第三电流。
进一步地,所述电流输出支路1401,包括:
第一支路14011,所述第一支路14011分别与所述第五电流源IB0和所述电平移位电路130连接,用于基于所述电平移位电路130输出的第一移位电压产生第一电流;
第二支路14012,所述第二支路14012分别与所述第五电流源IB0和所述电平移位电路130连接,用于基于所述电平移位电路130输出的第二移位电压产生第二电流。
具体地,所述第一支路14011,包括:
第三电阻R3;
第五晶体管MN1,所述第五晶体管MN1的漏极与供电电源连接,所述第五晶体管MN1的源极经所述第三电阻R3与所述第五电流源IB0连接,所述第五晶体管MN1的栅极与所述电平移位电路130连接。
同时,所述第二支路14012,包括:
第四电阻R4;
电流镜像电路,所述电流镜像电路与供电电源连接;
第六晶体管MN2,所述第六晶体管MN2的漏极与所述电流镜像电路连接,所述第六晶体管MN2的源极经所述第四电阻R4与所述第五电流源IB0连接,所述第六晶体管MN2的栅极与所述电平移位电路130连接。
在本实施例中,第五晶体管MN1和第六晶体管MN2均为N型MOS晶体管。
请继续参考图5,显然,
I4-I3=IIB0 (2)
上述(2)式中,I3为流经电阻R3的电流,I4为流经电阻R4的电流,IIB0为第三电流源IB0提供的电流。
结合上述(1)式和(2)式,可以得到:
上述(3)式中,I4为流经电阻R4的电流,IIB0为第三电流源IB0提供的电流,Vin为第一输入电压,Vref为第二输入电压,R4为第三电阻R4的阻值。
请继续参考图5,电流镜像电路包括:第七晶体管MP5和第八晶体管MP6,所述第七晶体管MP5的栅极分别连接第七晶体管MP5的漏极和第八晶体管MP6的栅极,所述第七晶体管MP5的漏极连接第六晶体管MN2的漏极,所述第七晶体管MP5的源极和第八晶体管MP6的源极均分别连接供电电源。
在本实施例中,W7/L7=W8/L8,其中W7/L7为第七晶体管MP5的沟道宽度W与沟道长度L的比率;W8/L8为第八晶体管MP6的沟道宽度W与沟道长度L的比率。
最终,电压电流转换电路输出的第三电流Iout=k*I4,其中,k≠0。
在本实施例中,第七晶体管MP5和第八晶体管MP6均为P型MOS晶体管。
这里,如果没有特别说明,本申请所有实施例所涉及的供电电源均为同一供电电源。
本实施例提供的电压电流转换电路10,在第一输入电压Vin较小时,则VGS,MP3较大,进而可确保C点电位足够高,以使电流源IB0可工作在饱和区;同时,在第一输入电压Vin较大时,则VGS,MP3较小,进而可确保E点电位足够低,以使第一电流源Iramp1和第二电流源Iramp2均可工作在饱和区。最终,实现电压电流转换电路10可支持第一输入电压在较大的电压范围内,同时确保电压电流转换电路10工作在正常区域。
本实施例还提供一种射频功率放大器,所述射频功率放大器包括上述任一项实施例所述的电压电流转换电路。
本实施例还提供一种电子系统,所述电子系统包括上述任一项实施例所述的射频功率放大器。
这里,电子系统可以为通信终端,也可以为通信网络设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些端口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

1.一种电压电流转换电路,其特征在于,包括:
第一电压源电路,所述第一电压源电路与第一电压源连接,用于基于所述第一电压源的第一输入电压输出第一电压;
第二电压源电路,所述第二电压源电路与第二电压源连接,用于基于所述第二电压源的第二输入电压输出第二电压;
电平移位电路,分别与所述第一电压源电路的输出端和第二电压源电路的输出端连接,用于将所述第一电压移位第一移位量,得到第一移位电压,且将所述第二电压移位第二移位量,得到第二移位电压;其中,所述第一移位量和所述第二移位量均与所述第一输入电压负相关;
转换电路,与所述电平移位电路的输出端连接,用于根据所述第一移位电压和所述第二移位电压之间的电压差,输出电流。
2.根据权利要求1所述的电压电流转换电路,其特征在于,所述电平移位电路,包括:
第一晶体管,所述第一晶体管的栅极与所述第一电压源电路的输出端连接,所述第一晶体管的源极与所述转换电路连接,所述第一晶体管的漏极接地;
第二晶体管,所述第二晶体管的栅极与所述第二电压源电路的输出端连接,所述第二晶体管的源极与所述转换电路连接,所述第二晶体管的漏极接地。
3.根据权利要求2所述的电压电流转换电路,其特征在于,所述电平移位电路,还包括:
第一电流源,所述第一电流源连接在供电电源和所述第一晶体管的源极之间,其中,所述第一电流源提供的电流与所述第一输入电压负相关;
第二电流源,所述第二电流源连接在所述供电电源与所述第二晶体管的源极之间,所述第二电流源提供的电流与所述第一输入电压负相关。
4.根据权利要求2所述的电压电流转换电路,其特征在于,所述第一电压源电路,包括:
第一电阻;
第三晶体管,所述第三晶体管的栅极与所述第一电压源连接,所述第三晶体管的源极经所述第一电阻与所述第一晶体管的栅极连接,所述第三晶体管的漏极接地;
第三电流源,所述第三电流源的一端与供电电源连接,另一端分别与所述第一晶体管的栅极,以及,与所述第一电阻连接。
5.根据权利要求2所述的电压电流转换电路,其特征在于,所述第二电压源电路,包括:
第二电阻;
第四晶体管,所述第四晶体管的栅极与所述第二电压源连接,所述第四晶体管的源极经所述第二电阻与所述第二晶体管的栅极连接,所述第四晶体管的漏极接地;
第四电流源,所述第四电流源的一端与供电电源连接,另一端分别与所述第二晶体管的栅极,以及,与所述第二电阻连接。
6.根据权利要求1所述的电压电流转换电路,其特征在于,所述第二电压源为恒压源。
7.根据权利要求1所述的电压电流转换电路,其特征在于,所述转换电路包括:
第五电流源,所述第五电流源的一端接地;
电流输出支路,所述电流输出支路分别与所述第五电流源和所述电平移位电路连接,用于基于所述电平移位电路输出的第一移位电压产生第一电流,以及基于第二移位电压产生第二电流,并基于所述第一电流、第二电流和所述第五电流源提供的电流输出第三电流。
8.根据权利要求7所述的电压电流转换电路,其特征在于,所述电流输出支路,包括:
第一支路,所述第一支路分别与所述第五电流源和所述电平移位电路连接,用于基于所述电平移位电路输出的第一移位电压产生第一电流;
第二支路,所述第二支路分别与所述第五电流源和所述电平移位电路连接,用于基于所述电平移位电路输出的第二移位电压产生第二电流。
9.根据权利要求8所述的电压电流转换电路,其特征在于,所述第一支路,包括:
第三电阻;
第五晶体管,所述第五晶体管的漏极与供电电源连接,所述第五晶体管的源极经所述第三电阻与所述第五电流源连接,所述第五晶体管的栅极与所述电平移位电路连接。
10.根据权利要求8所述的电压电流转换电路,其特征在于,所述第二支路,包括:
第四电阻;
电流镜像电路,所述电流镜像电路与供电电源连接;
第六晶体管,所述第六晶体管的漏极与所述电流镜像电路连接,所述第六晶体管的源极经所述第四电阻与所述第五电流源连接,所述第六晶体管的栅极与所述电平移位电路连接。
11.一种射频功率放大器,其特征在于,所述射频功率放大器包括如权利要求1至10任一项所述的电压电流转换电路。
12.一种电子系统,其特征在于,所述电子系统包括如权利要求11所述的射频功率放大器。
CN202111390866.4A 2021-11-23 2021-11-23 一种电压电流转换电路、射频功率放大器和电子系统 Active CN114094962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111390866.4A CN114094962B (zh) 2021-11-23 2021-11-23 一种电压电流转换电路、射频功率放大器和电子系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111390866.4A CN114094962B (zh) 2021-11-23 2021-11-23 一种电压电流转换电路、射频功率放大器和电子系统

Publications (2)

Publication Number Publication Date
CN114094962A CN114094962A (zh) 2022-02-25
CN114094962B true CN114094962B (zh) 2023-08-29

Family

ID=80303180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111390866.4A Active CN114094962B (zh) 2021-11-23 2021-11-23 一种电压电流转换电路、射频功率放大器和电子系统

Country Status (1)

Country Link
CN (1) CN114094962B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218755A (ja) * 1992-01-31 1993-08-27 Sony Corp 広帯域出力回路
JPH0738348A (ja) * 1993-07-23 1995-02-07 Nec Corp 半導体集積回路
JP2003133868A (ja) * 2001-10-24 2003-05-09 Olympus Optical Co Ltd 広帯域差動増幅回路
CN101471628A (zh) * 2007-12-24 2009-07-01 瑞昱半导体股份有限公司 Ab类放大器
KR20100089447A (ko) * 2009-02-04 2010-08-12 (주)카이로넷 제어전압 발생회로 및 이를 포함하는 연산 증폭기
TW201340056A (zh) * 2012-03-19 2013-10-01 Raydium Semiconductor Corp 電位平移電路
KR20140071176A (ko) * 2012-12-03 2014-06-11 현대자동차주식회사 전류 발생 회로
JP2016171409A (ja) * 2015-03-12 2016-09-23 日本電信電話株式会社 トランスインピーダンスアンプ回路
JP2018093653A (ja) * 2016-12-06 2018-06-14 ローム株式会社 絶縁型のdc/dcコンバータ、一次側コントローラ、電源アダプタおよび電子機器
CN109976432A (zh) * 2017-11-15 2019-07-05 英飞凌科技股份有限公司 用于调节回路的反馈电路
CN110109502A (zh) * 2019-05-22 2019-08-09 上海猎芯半导体科技有限公司 电源电路及用电设备
CN110442181A (zh) * 2019-05-22 2019-11-12 上海猎芯半导体科技有限公司 电源电路及用电设备
CN110690864A (zh) * 2018-07-05 2020-01-14 立积电子股份有限公司 能隙电压参考电路
CN113037222A (zh) * 2021-02-26 2021-06-25 广州慧智微电子有限公司 一种偏置电路及放大器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076800A (ja) * 2000-08-30 2002-03-15 Nec Corp 電圧減算・加算回路及びそれを実現するmos差動増幅回路
KR100441248B1 (ko) * 2001-02-22 2004-07-21 삼성전자주식회사 저항 변화에 둔감한 전류 발생 회로
JP4088247B2 (ja) * 2003-12-25 2008-05-21 株式会社東芝 電圧減算回路及びそれを用いた強度検波回路
JP2006135560A (ja) * 2004-11-05 2006-05-25 Matsushita Electric Ind Co Ltd レベルシフト回路およびこれを含む半導体集積回路装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218755A (ja) * 1992-01-31 1993-08-27 Sony Corp 広帯域出力回路
JPH0738348A (ja) * 1993-07-23 1995-02-07 Nec Corp 半導体集積回路
JP2003133868A (ja) * 2001-10-24 2003-05-09 Olympus Optical Co Ltd 広帯域差動増幅回路
CN101471628A (zh) * 2007-12-24 2009-07-01 瑞昱半导体股份有限公司 Ab类放大器
KR20100089447A (ko) * 2009-02-04 2010-08-12 (주)카이로넷 제어전압 발생회로 및 이를 포함하는 연산 증폭기
TW201340056A (zh) * 2012-03-19 2013-10-01 Raydium Semiconductor Corp 電位平移電路
KR20140071176A (ko) * 2012-12-03 2014-06-11 현대자동차주식회사 전류 발생 회로
JP2016171409A (ja) * 2015-03-12 2016-09-23 日本電信電話株式会社 トランスインピーダンスアンプ回路
JP2018093653A (ja) * 2016-12-06 2018-06-14 ローム株式会社 絶縁型のdc/dcコンバータ、一次側コントローラ、電源アダプタおよび電子機器
CN109976432A (zh) * 2017-11-15 2019-07-05 英飞凌科技股份有限公司 用于调节回路的反馈电路
CN110690864A (zh) * 2018-07-05 2020-01-14 立积电子股份有限公司 能隙电压参考电路
CN110109502A (zh) * 2019-05-22 2019-08-09 上海猎芯半导体科技有限公司 电源电路及用电设备
CN110442181A (zh) * 2019-05-22 2019-11-12 上海猎芯半导体科技有限公司 电源电路及用电设备
CN113037222A (zh) * 2021-02-26 2021-06-25 广州慧智微电子有限公司 一种偏置电路及放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
范涛 等.《电子科技大学学报》新型的电平移位电路设计.2011,第40卷(第1期),第138-141页. *

Also Published As

Publication number Publication date
CN114094962A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US7323853B2 (en) Low drop-out voltage regulator with common-mode feedback
US7893671B2 (en) Regulator with improved load regulation
KR100666977B1 (ko) 다전원 공급 회로 및 다전원 공급 방법
US7633330B2 (en) Reference voltage generation circuit
US7701183B2 (en) Power circuit and charge pumping circuit
CN110737298B (zh) 一种参考电压产生电路
JP4855197B2 (ja) シリーズレギュレータ回路
US9785163B2 (en) Regulator
CN114094962B (zh) 一种电压电流转换电路、射频功率放大器和电子系统
CN117055682A (zh) 基于片上环路高阶补偿的内环电阻高阶补偿电路
US7880532B2 (en) Reference voltage generating circuit
CN111446949B (zh) 上电复位电路和集成电路
KR101939147B1 (ko) 가변 기준전압 발생회로 및 이를 포함한 아날로그 디지털 변환기
JP2004248497A (ja) 電源回路、液晶装置及び電子機器
US10996698B2 (en) Output circuit
US20240126314A1 (en) Low dropout regulator
CN109542158B (zh) 一种应用于高频头供电电源的梯形电流产生电路
KR102400267B1 (ko) 전압 승압 회로 및 관련 회로, 칩 및 웨어러블 장치
CN112230707B (zh) 输出电路
CN111580437B (zh) 一种使能控制电路及电子设备
US11677359B2 (en) Circuit which reuses current to synthesize negative impedance
CN116009641B (zh) 一种电流镜电路、保护电路、偏置电路及电子设备
CN109861657B (zh) 叠管输出级嵌位电路
CN109818488B (zh) 输出级电路
JP6771852B2 (ja) 周波数変換器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant