CN110737298B - 一种参考电压产生电路 - Google Patents

一种参考电压产生电路 Download PDF

Info

Publication number
CN110737298B
CN110737298B CN201910653706.0A CN201910653706A CN110737298B CN 110737298 B CN110737298 B CN 110737298B CN 201910653706 A CN201910653706 A CN 201910653706A CN 110737298 B CN110737298 B CN 110737298B
Authority
CN
China
Prior art keywords
node
transistor
nmos transistor
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910653706.0A
Other languages
English (en)
Other versions
CN110737298A (zh
Inventor
林嘉亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Realtek Semiconductor Corp
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Publication of CN110737298A publication Critical patent/CN110737298A/zh
Application granted granted Critical
Publication of CN110737298B publication Critical patent/CN110737298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/463Sources providing an output which depends on temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种参考电压产生电路,包括:第一P型金属氧化物半导体晶体管、第一N型金属氧化物半导体晶体管、第二P型金属氧化物半导体晶体管以及第二N型金属氧化物半导体晶体管,其中:第一P型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第一节点、第二节点以及第三节点;第一N型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第四节点、第三节点以及第二节点;第二P型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第三节点、第四节点以及第二节点;以及第二N型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第二节点、第一节点以及第三节点。

Description

一种参考电压产生电路
技术领域
本发明涉及一种参考电压产生电路,且特别涉及一种具工艺及温度追踪机制的参考电压产生器。
背景技术
利用互补式金属氧化物半导体晶体管(complementary metal oxidesemiconductor;CMOS)技术所制造的电路(例如反相器)的速度,通常与包括工艺(manufacturing Process)、供应电压(supply Voltage)、接面温度(junctionTemperature)的PVT参数高度相关。和工艺与接面温度相较下,供应电压相对地较容易控制。因此,电路设计者通常选择调整电路的供应电压,以维持电路理想的速度。为了建立稳定的供应电压,常需要使用稳压器,其中供应电压利用闭环的方式控制,以追踪参考电压。在这样的情形下,电路设计者需要根据工艺和温度调整参考电压,以使供应电压可以为了电路进行调整,不论工艺和温度的变化如何均可维持其理想的速度。由于电路在较高的供应电压下工作的较快,提升参考电压(进而提升供应电压)是个可以有效弥补由于工艺及/或温度变化造成的速度下降的方法。然而,提高参考电压(进而提升供应电压)将增加功率消耗,而这是为了维持理想速度所需付出的代价。另一方面,降低参考电压(进而降低供应电压)将降低功率消耗。因此,当碰到速度由于工艺及/或温度变化而上升时,较佳的方式是降低参考电压(进而降低供应电压)。
互补式金属氧化物半导体晶体管的工艺有五个角落(corner):典型-典型(typical-typical;TT),其中N型金属氧化物半导体晶体管以及P型金属氧化物半导体晶体管在速度上都是典型;慢-慢(slow-slow;SS),其中N型金属氧化物半导体晶体管以及P型金属氧化物半导体晶体管在速度上都是慢;快-快(fast-fast;FF),其中N型金属氧化物半导体晶体管以及P型金属氧化物半导体晶体管在速度上都是快;快-慢(fast-slow;FS),其中N型金属氧化物半导体晶体管在速度上是快,而P型金属氧化物半导体晶体管在速度上是慢;以及慢-快(slow-fast;SF),其中N型金属氧化物半导体晶体管在速度上是慢,而P型金属氧化物半导体晶体管在速度上是快。较理想的是:在角落为慢-慢、快-慢以及慢-快时,将供应电压设定为较高(与典型-典型时的供应电压相较),以确保N型金属氧化物半导体晶体管以及P型金属氧化物半导体晶体管可以至少与在典型-典型的角落时一样快,并且在角落为快-快时,将供应电压设定为较低(与典型-典型时的供应电压相较),以降低功率消耗。如果供应电压是根据工艺角落以上述的方式设定,则供应电压是被认为具有工艺追踪的机制。
温度亦对金属氧化物半导体晶体管装置的速度有非常深的影响。N型金属氧化物半导体晶体管以及P型金属氧化物半导体晶体管在温度升高时,速度均会变慢,并在温度降低时变快。如果供应电压根据温度调整,以使N型金属氧化物半导体晶体管以及P型金属氧化物半导体晶体管可以在不论温度如何改变仍大致保持速度,则供应电压是被认为具有温度追踪的机制。
较理想的状况是能有具有工艺及温度追踪机制的参考电压,以使电路的供应电压同样具有工艺及温度追踪机制。通过这样的方式,电路可在不论工艺或是温度如何变化,均达到理想的速度,且在装置够快时,不需要浪费功率消耗。
反相器常用以在互补式金属氧化物半导体晶体管芯片中区别装置的速度。如图1所示,参考电压产生器100包含配置以输出参考电流IREF的电流源110以及配置以转换参考电流IREF为参考电压VREF的参考负载120。参考负载120为自偏压的反相器,包含P型金属氧化物半导体晶体管121以及N型金属氧化物半导体晶体管122。在此,VDD表示一个电源节点。P型金属氧化物半导体晶体管121配置为二极管连接的拓扑结构,其栅极和漏极相连接。N型金属氧化物半导体晶体管122亦配置为二极管连接的拓扑结构,其栅极和漏极相连接。参考电压VREF输出至P型金属氧化物半导体晶体管121的源极。通过对金属氧化物半导体晶体管运用平方定律模型(square law model,为本领域熟知技艺者能了解,因此不再赘述细节),可以针对P型金属氧化物半导体晶体管121以及N型金属氧化物半导体晶体管122推导出下列两个式子:
Figure BDA0002136145600000021
Figure BDA0002136145600000031
在此,Vthp、Wp和Lp分别为P型金属氧化物半导体晶体管121的阈值电压、宽度以及长度;Vthn、Wn和Ln分别为N型金属氧化物半导体晶体管122的阈值电压、宽度以及长度;Cox为每单位区域的栅极介电层电容值;μn为电子移动率(mobility);μp为空穴移动率;且VMID代表P型金属氧化物半导体晶体管121的漏极电压,同时也为N型金属氧化物半导体晶体管122的漏极电压。须注意的是,在部分文献中,P型金属氧化物半导体晶体管的阈值电压是相对栅极至源极间的电压,因此为负值。在此,P型金属氧化物半导体晶体管的阈值电压是相对源极至栅极间的电压,因此为正值。这仅是习惯的不同,并不改变其背后的物理原则。
式(1)和式(2)必须满足每个角落。在实作中,Vthp、Vthn及Cox与工艺高度相关。此外,Vthp、Vthn、μp及μn与温度高度相关。为简化讨论,将假设温度固定于室温,而工艺则有所变化。在典型-典型角落,Vthp、Vthn及Cox各具有标准值。因此,VREF及VMID分别具有标准值,以使式(1)和式(2)可满足典型-典型角落。在慢-慢角落,Vthp及Vthn较高,而Cox较低(相较于各自的标准值);在这样的情形下VREF及VMID均需要较高的值(相较于各自的标准值),否则无法满足式(1)和式(2)。在快-快角落,Vthp及Vthn较低,且Cox较高(相较于各自的标准值);在这样的情形下VREF及VMID均需要较低的值(相较于各自的标准值),否则无法满足式(1)和式(2)。在快-慢角落,Vthn为例如小于标准值100毫伏特,Vthp为例如大于标准值100毫伏特,而Cox为与标准值相同。为了满足式(1)和式(2),VMID需小于标准值约100毫伏特,VREF需与标准值大致相同。在这样的情形下,接收参照参考电压VREF的供应电压的电路,将由于内部的P型金属氧化物半导体晶体管可能速度太慢,而无法工作的够好。在慢-快角落,Vthn为例如大于标准值100毫伏特,Vthp为例如小于标准值100毫伏特,而Cox为与标准值相同。为了满足式(1)和式(2),VMID需大于标准值约100毫伏特,VREF需与标准值大致相同。在这样的情形下,接收参照参考电压VREF的供应电压的电路,将由于内部的N型金属氧化物半导体晶体管可能速度太慢,而无法工作的够好。因此,参考电压产生器100无法有效地追踪快-慢角落或是慢-快角落的工艺。
因此,如何设计一个新的具工艺及温度追踪机制的参考电压产生器,以达到可追踪所有角落的目的,乃为此一业界亟待解决的问题。
发明内容
本发明的目的在于提供一种参考电压产生电路,包括:第一P型金属氧化物半导体晶体管(p-channel metal oxide semiconductor;PMOS)、第一N型金属氧化物半导体晶体管(n-channel metal oxide semiconductor;NMOS)、第二P型金属氧化物半导体晶体管以及第二N型金属氧化物半导体晶体管,其中:第一P型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第一节点、第二节点以及第三节点;第一N型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第四节点、第三节点以及第二节点;第二P型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第三节点、第四节点以及第二节点;以及第二N型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第二节点、第一节点以及第三节点。
本发明的另一目的在于提供一种参考电压产生电路,包括:电流源、参考负载网络、源极随耦器以及负载电路。电流源配置以产生参考电流。参考负载网络配置以通过配置为二极管连接拓扑结构的主要N型金属氧化物半导体晶体管接收参考电流。源极随耦器(source follower),由次要N型金属氧化物半导体晶体管实现,配置以接收在主要N型金属氧化物半导体晶体管的栅极建立的控制电压,并在稳压节点输出供应电压。负载电路配置以自稳压节点接收功率,其中参考负载网络包含:第一P型金属氧化物半导体晶体管、第一N型金属氧化物半导体晶体管、第二P型金属氧化物半导体晶体管以及第二N型金属氧化物半导体晶体管,其中:第一P型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第一节点、第二节点以及第三节点;第一N型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第四节点、第三节点以及第二节点;第二P型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第三节点、第四节点以及第二节点;以及第二N型金属氧化物半导体晶体管的源极、栅极以及漏极分别耦接于第二节点、第一节点以及第三节点。
应用本发明的优点在于利用参考电压产生电路的结构配置,使其所产生的参考电压具有追踪工艺及温度的机制。
附图说明
图1为本发明一实施例中,现有技术中的参考电压产生器的方框图;
图2为本发明一实施例中,参考电压产生电路的方框图;
图3为本发明一实施例中,应用电路的方框图;以及
图4为本发明一实施例中,另一应用电路的方框图。
附图标记说明:
100:参考电压产生器 110:电流源
120:参考负载 121:P型金属氧化物半导体晶体管
122:N型金属氧化物半导体晶体管 200、200’:参考电压产生电路
210、210’:电流源 220、220’:参考负载网络
221:主动负载 300:应用电路
310:稳压器 311:运算放大器
312:N型金属氧化物半导体晶体管 320:负载电路
340:低通滤波器 341:串联电阻
342:分流电容 400:应用电路
410:源极随耦器 411:主要N型金属氧化物半导体晶体管
412:次要N型金属氧化物半导体晶体管 420:负载电路
440:低通滤波器 IREF:参考电流
Iref、I’ref:参考电流 RS1:第一可酌意采用的电阻
RS2:第二可酌意采用的电阻 Vctl、V’ctl:控制电压
VDD:电源节点 VDD1:第一电源节点
VDD2:第二电源节点 Vdd、V’dd:供应电压
VMID:漏极电压 VREF:参考电压
Vref、V’ref:参考电压 MN1:第一N型金属氧化物半导体晶体管
MN2:第二N型金属氧化物半导体晶体管 MP1:第一P型金属氧化物半导体晶体管
MP2:第二P型金属氧化物半导体晶体管 N210、N210’:参考节点
N221:第一节点 N222:第二节点
N223:第三节点 N224:第四节点
N310:稳压节点 N410:稳压节点
V1~V4:电压
具体实施方式
本发明与参考电压的产生技术相关。本说明书中描述本发明数个范例性的实施例,做为实现本发明的优选形式,但须注意的是本发明可用多种方式实现,并不限于下述的特定范例或是这些范例中任何特征的特定实现方式。此外,为避免模糊本发明的特征,众所皆知的细节不再此示出或是描述。
本领域熟知此技艺者可了解本公开内容中关于微电子学的技术以及基本概念,例如“电路”、“负载”、“电压”、“电流”、“电阻”、“电容”、“低通滤波器”、“晶体管”、“金属氧化物半导体导体”、“P型金属氧化物半导体导体”、“N型金属氧化物半导体导体”、“互补式金氧晶体管”、“节点”、“供应电源”、“稳压器”、“运算放大器”、“源极”、“栅极”、“漏极”、“接地节点”、“电源节点”、“串联”、“电流源”、“二极管连接”、“源极随耦器”以及“电流镜」。本领域熟知此技艺者亦可认知金属氧化物半导体晶体管的代号,以及与其相关的“源极”、“栅极”、“漏极”的端点。类似上述的术语以及基本概念对于本领域熟知此技艺者来说是明显的,因此不再此赘述相关细节。
图2为本发明一实施例中,参考电压产生电路200的方框图。参考电压产生电路200包含:配置以输出参考电流Iref的电流源210以及参考负载网络220。参考负载网络220包含相串联的第一可酌意采用的电阻RS1、主动负载221以及第二可酌意采用的电阻RS2,配置以接收参考电流Iref并在参考节点N210建立参考电压Vref。在此,“VDD1”代表第一电源节点。主动负载221包含第一P型金属氧化物半导体晶体管MP1、第一N型金属氧化物半导体晶体管MN1、第二P型金属氧化物半导体晶体管MP2以及第二N型金属氧化物半导体晶体管MN2。第一P型金属氧化物半导体晶体管MP1的源极、栅极以及漏极分别耦接于第一节点N221、第二节点N222以及第三节点N223;第一N型金属氧化物半导体晶体管MN1的源极、栅极以及漏极分别耦接于第四节点N224、第三节点N223以及第二节点N222;第二P型金属氧化物半导体晶体管MP2的源极、栅极以及漏极分别耦接于第三节点N223、第四节点N224以及第二节点N222;以及第二N型金属氧化物半导体晶体管MN2的源极、栅极以及漏极分别耦接于第二节点N222、第一节点N221以及第三节点N223。在第一(第二、第三、第四)节点N221(N222、N223、N224)上的电压是以V1(V2、V3、V4)表示。令第一P型金属氧化物半导体晶体管MP1的宽度及长度分别为Wp1及Lp1。令第二P型金属氧化物半导体晶体管MP2的宽度及长度分别为Wp2及Lp2。令第一N型金属氧化物半导体晶体管MN1的宽度及长度分别为Wn1及Ln1。令第二N型金属氧化物半导体晶体管MN2的宽度及长度分别为Wn2及Ln2。令第一P型金属氧化物半导体晶体管MP1及第二P型金属氧化物半导体晶体管MP2的阈值电压为Vthp。令第一N型金属氧化物半导体晶体管MN1及第二N型金属氧化物半导体晶体管MN2的阈值电压为Vthn。在此,是假设所有的P型金属氧化物半导体晶体管具有相同的阈值电压,而所有的N型金属氧化物半导体晶体管具有相同的阈值电压。这样的假设并不是必需的,但使本发明的说明较容易进行。在实作中,所有的P型金属氧化物半导体晶体管可能不具有相同的阈值电压,但是其阈值电压是高度互相关的。类似地,所有的N型金属氧化物半导体晶体管可能不具有相同的阈值电压,但是其阈值电压是高度互相关的。由于所有为同型的金属氧化物半导体晶体管间距有高度互相关的阈值电压,本发明即便在阈值电压不同的情形下也可以运行。
参考负载网络220的目的是使参考电压Vref达到具有可追踪工艺和温度的机制。在本公开内容中,“工艺”是指“互补式金属氧化物半导体装置的制造过程”。以下将先讨论与工艺变化的相关性,温度则假设是固定于室温。温度变化的相关性则将在稍后再行讨论。
通过对金属氧化物半导体晶体管采用平方定律模型,并忽略通道长度变化,以下三个式子对所有角落均成立:
Figure BDA0002136145600000071
Figure BDA0002136145600000072
Figure BDA0002136145600000073
式(3)是根据第一P型金属氧化物半导体晶体管MP1的漏极电流必须等于Iref而成立。式(4)是根据第一N型金属氧化物半导体晶体管MN1的漏极电流必须等于Iref而成立。式(5)是根据第二P型金属氧化物半导体晶体管MP2的漏极电流以及第二N型金属氧化物半导体晶体管MN2的漏极电流的总和必须等于Iref而成立。需注意的是,Vthp、Vthn及Cox的数值与工艺高度相关,但Iref的数值是由电流源210决定,因此实质上与金属氧化物半导体装置的工艺无关。
于一实施例中,第二P型金属氧化物半导体晶体管MP2的宽长比大致上与第二N型金属氧化物半导体晶体管MN2的宽长比相等。这样的配置方式并非必须,但可在偏斜的角落(亦即快-慢或慢-快)的情形下,帮助限缩主动负载221的不平衡。于一实施例中,第一P型金属氧化物半导体晶体管MP1的宽长比大致上与第一N型金属氧化物半导体晶体管MN1的宽长比相等。这样的配置方式并非必须,但可在偏斜的角落(亦即快-慢或慢-快)的情形下,帮助限缩主动负载221的不平衡。
Vthp(Vthn、Cox)在典型-典型角落且位于室温下的数值,是被认定为Vthp(Vthn、Cox)的标准值。当Vthp(Vthn、Cox)的数值高于Vthp(Vthn、Cox)的标准值时,将被认定为Vthp(Vthn、Cox)的数值在标准值上。当Vthp(Vthn、Cox)的数值低于Vthp(Vthn、Cox)的标准值时,将被认定为Vthp(Vthn、Cox)的数值在标准值下。V1(V2、V3、V4)在典型-典型角落且位于室温下的数值,是被认定为V1(V2、V3、V4)的标准值。当V1(V2、V3、V4)的数值高于V1(V2、V3、V4)的标准值时,将被认定为V1(V2、V3、V4)的数值在标准值上。当V1(V2、V3、V4)的数值低于V1(V2、V3、V4)的标准值时,将被认定为V1(V2、V3、V4)的数值在标准值下。
V1-V4,亦即主动负载221的跨压,可表示为以下的形式:
V1-V4=(V1-V2-Vthp)+(V3-V4-Vthn)+(Vthp+Vthn)-(V3-V2) (6)
在式(6)的右侧有四个项次。在快-慢角落的情形下,Vthn在标准值下100毫伏特,Vthp在标准值上100毫伏特,Cox则为标准值。第三项次(Vthp+Vthn)将与标准值相同。第一项次(V1-V2-Vthp)将因为式(3)而由与标准值相同。第二项次(V3-V4-Vthn)亦将因为式(4)而与标准值相同。因此,V1的数值将与第四项次(V3-V2)相牵连。需注意的是,式(4)迫使V3-V4大致在标准值下100毫伏特,而式(3)迫使V1-V2大致在标准值上100毫伏特。因此,V3-V4-Vthp必须在标准值下200毫伏特,而V1-V2-Vthn必须在标准值上200毫伏特。现在请参照式(5)。项次
Figure BDA0002136145600000091
将大于标准值,而项次
Figure BDA0002136145600000092
则小于标准值。项次
Figure BDA0002136145600000093
是二次方程式,并具有参数V1-V2-Vthn,其大致上在标准值上200毫伏特。项次
Figure BDA0002136145600000094
是二次方程式,并具有参数V3-V4-Vthp,其大致上在标准值下200毫伏特。二次方程式在变数上升时造成其数值的上升速度,比变数下降时造成其数值的下降速度为快。因此,项次
Figure BDA0002136145600000095
的上升量(从标准值开始)将会比项次
Figure BDA0002136145600000096
的下降量(从标准值开始)大。因此,
Figure BDA0002136145600000097
Figure BDA0002136145600000098
总和将大于标准值,而使式(5)无法维持。这是因为式(5)并未考虑通道变化,并高估第二P型金属氧化物半导体晶体管MP2以及第二N型金属氧化物半导体晶体管MN2的漏极电流。为了修正这个问题,必须考虑通道长度变化,且V3-V2必须小于标准值,以使第二P型金属氧化物半导体晶体管MP2以及第二N型金属氧化物半导体晶体管MN2的电流总和可相当于标准值。由式(6)可知,其表示V1-V4将高于标准值。因此,V1-V4将在快-慢角落高于标准值,且V1-V4可由此追踪快-慢角落。
在慢-快角落的情形下,Vthn在标准值上100毫伏特,Vthp在标准值下100毫伏特,Cox则为标准值。现在请参照式(6)的右侧,第三项次(Vthp+Vthn)将与标准值相同。第一项次(V1-V2-Vthp)将因为式(3)而由与标准值相同。第二项次(V3-V4-Vthn)亦将因为式(4)而与标准值相同。因此,V1的数值将与第四项次(V3-V2)相牵连。需注意的是,式(4)迫使V3-V4大致在标准值上100毫伏特,而式(3)迫使V1-V2大致在标准值下100毫伏特。因此,V3-V4-Vthp必须在标准值上200毫伏特,而V1-V2-Vthn必须在标准值下200毫伏特。现在请参照式(5)。项次
Figure BDA0002136145600000099
将小于标准值,而项次
Figure BDA00021361456000000910
则大于标准值。项次
Figure BDA00021361456000000911
是二次方程式,并具有参数V1-V2-Vthn,其大致上在标准值下200毫伏特。项次
Figure BDA00021361456000000912
是二次方程式,并具有参数V3-V4-Vthp,其大致上在标准值上200毫伏特。二次方程式在变数上升时造成其数值的上升速度,比变数下降时造成其数值的下降速度为快。因此,项次
Figure BDA0002136145600000101
的下降量(从标准值开始)将会比项次
Figure BDA0002136145600000102
的上升量(从标准值开始)小。因此,
Figure BDA0002136145600000103
Figure BDA0002136145600000104
总和将大于标准值,而使式(5)无法维持。这是因为式(5)并未考虑通道变化,并高估第二P型金属氧化物半导体晶体管MP2以及第二N型金属氧化物半导体晶体管MN2的漏极电流。为了修正这个问题,必须考虑通道长度变化,且V3-V2必须小于标准值,以使第二P型金属氧化物半导体晶体管MP2以及第二N型金属氧化物半导体晶体管MN2的电流总和可相当于标准值。由式(6)可知,其表示V1-V4将高于标准值。因此,V1-V4将在慢-快角落高于标准值,且V1-V4可由此追踪慢-快角落。
在慢-慢角落的情形下,Vthp及Vthn在标准值上,而Cox在标准值下。四个晶体管MP1、MN1、MP2及MN2将弱于标准状态,且分别需要大于标准值的源栅极电压(运用于P型金属氧化物半导体晶体管)以及闸源极电压(运用于N型金属氧化物半导体晶体管),来使其漏极电流与标准值相同。除非V1-V4大于标准值,不然无法实现。因此,V1-V4需大于标准值,且V1-V4可由此追踪慢-慢角落。
在快-快角落的情形下,Vthp及Vthn在标准值下,而Cox在标准值上。四个晶体管MP1、MN1、MP2及MN2将强于标准状态,且分别需要小于标准值的源栅极电压(运用于P型金属氧化物半导体晶体管)以及闸源极电压(运用于N型金属氧化物半导体晶体管),来使其漏极电流与标准值相同。除非V1-V4小于标准值,不然无法实现。因此,V1-V4需小于标准值,且V1-V4可由此追踪快-快角落。
总结来说,V1-V4在慢-慢、快-慢以及慢-快角落的情形下,需大于标准值,以确保所有的装置都至少与标准状态一样快。V1-V4在快-快角落的情形下,需小于标准值,以确保所有的装置都至少与标准状态具有一样的速度。因此,V1-V4可追踪任何角落。
接着考虑温度的部分。给定任何角落,装置总是因为较低(高)的移动率(亦即μp及μn),而在较高(低)的温度下,有较慢(快)的速度。这适用于不论任何类型的晶体管。因此,温度的升高(降低)的效应,将相当于偏向慢-慢(快-快)角落的工艺的效应。由于V1-V4可有效地追踪所有角落,包括慢-慢以及快-快角落,因此亦可以有效地追踪温度。
参考电压Vref是自参考节点N210所接收。如果有配置第一可酌意采用的电阻Rs1的话,其将设置于参考节点N210以及第一节点N221间。如果有配置第二可酌意采用的电阻Rs2的话,其将设置于第四节点N224以及接地节点间。明显地,下式的关系成立:
Vref=V1-V4+Iref(RS1+RS2) (7)
因此,Vref将大于V1-V4一个偏移电压,此偏移电压可由第一可酌意采用的电阻Rs1以及第二可酌意采用的电阻Rs2的电阻值控制。由于V1-V4可有效地追踪所有的角落及温度,Vref将也可以做到。当第一可酌意采用的电阻Rs1没有被配置时,将被短路线段所取代,且Vref将等于V1。当第二可酌意采用的电阻Rs2没有被配置时,将被短路线段所取代,且V4将为0伏特(因为将直接接地)。
图3为本发明一实施例中,图2的参考电压产生电路200的应用电路300的方框图。应用电路300包含配置以输出参考电压Vref的参考电压产生电路200、配置以接收参考电压Vref(通过可酌意采用的设置的低通滤波器340,如果有配置低通滤波器340的话)并在稳压节点N310输出供应电压Vdd的稳压器(voltage regulator)310以及配置以自稳压节点N310接收电源的负载电路320。稳压器310包含:配置以根据参考电压Vref以及供应电压Vdd的差值输出控制电压Vctl的运算放大器311以及配置为源极随耦器拓扑结构以根据控制电压Vctl输出供应电压Vdd的N型金属氧化物半导体晶体管312。在此,「VDD2」表示第二电源节点。稳压器310广泛地应用于先前技艺中,故不再此赘述。稳压器310以闭环的方式调整控制电压Vctl,以使供应电压Vdd实质上与参考电压Vref相等。由于Vref可如前所解释地,追踪工艺与温度,Vdd亦可追踪工艺与温度。负载电路320因此可在所有的状况下维持足够好的表现。虽然图3中参考电压产生电路200以及稳压器310从不同的电源节点接收电源(亦即前者从VDD1,而后者从VDD2),这样的配置仅为一个范例,而非限制。电路设计者可选择让它们从共同的电源节点接收电源。图3所示的稳压器310的实施方式仅为一个范例,而非限制。本领域熟知此技艺者可选择不同的电路拓扑结构。举例来说,一个开关式稳压器可替代使用。在一个可酌意采用的实施例中,低通滤波器340可设置于参考电压产生电路200以及稳压器310间,其中低通滤波器340包含串联电阻341以及分流电容(shunt capacitor)。低通滤波器340可被用以抑制参考电压Vref的噪声。
图4为本发明一实施例中,另一应用电路400的方框图。应用电路400包含配置以输出控制电压V’ctl的参考电压产生电路200’、配置以接收控制电压V’ctl(通过可酌意采用的设置的低通滤波器440,如果有配置低通滤波器440的话)并在稳压节点N410输出供应电压V’dd的源极随耦器410以及配置以自稳压节点N410接收电源的负载电路420。参考电压产生电路200’包含:配置以输出参考电流I’ref的电流源210’以及配置以通过主要N型金属氧化物半导体晶体管411接收参考电流I’ref的参考负载网络220’,其配置为二极管连接拓扑结构,并在参考节点N210’建立参考电压V’ref。参考负载网络220’与图2所示的参考负载网络220相同,因此参考电压V’ref具有追踪工艺和温度的机制。参考电压产生电路200’与图2的参考电压产生电路200除了还包含主要N型金属氧化物半导体晶体管411外,其他元件为相同。源极随耦器410包含次要N型金属氧化物半导体晶体管412。次要N型金属氧化物半导体晶体管412的宽长比被选择为大于主要N型金属氧化物半导体晶体管411的宽长比,且大的一比例大致上与负载电路420的负载电流Iload与参考电流I’ref间的比值相同。当次要N型金属氧化物半导体晶体管412以这样的尺寸时现实,两个N型金属氧化物半导体晶体管411与412等效地形成电流镜,且供应电压V’dd大致与参考电压V’ref相等。通过这样的设计,可不需配置稳压器。
需注意的是,虽然各个晶体管MP1、MN1、MP2以及MN2在图中示为单一晶体管,本领域熟知此技艺者可选择使用多个晶体管达到与单一晶体管相同的技术效果。举例来说,具有10微米宽度以及1微米长度的单一晶体管,在功能上与分别具有10微米宽度以及0.5微米长度且相串联的第一晶体管及第二晶体管等效,其中第一晶体管的栅极与第二晶体管的栅极相接,且第二晶体管的源极与第一晶体管的漏极相接。在这样的情形下,第二晶体管的源极是做为等效的单一晶体管的源极,第二晶体管的漏极是做为等效的单一晶体管的漏极。因此,在所附的专利申请范围中,“一源极”用来替代与晶体管相关的“源极”,因为在实际的实施方式中一个晶体管可能不是字面意义上的单一晶体管,也可能不只有单一个源极端。同理,“一栅极”用来替代与晶体管相关的“栅极”,而“一漏极”用来替代与晶体管相关的“漏极”。
以上所述仅为本发明的优选实施例而已,并不用以限制本发明,凡在本发明的原则的内所作的任何修改,等同替换和改进等均应包含本发明的保护范围之内。

Claims (9)

1.一种参考电压产生电路,包括:
一第一P型金属氧化物半导体晶体管、一第一N型金属氧化物半导体晶体管、一第二P型金属氧化物半导体晶体管以及一第二N型金属氧化物半导体晶体管,其中:
该第一P型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于一第一节点、一第二节点以及一第三节点;
该第一N型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于一第四节点、该第三节点以及该第二节点;
该第二P型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于该第三节点、该第四节点以及该第二节点;以及
该第二N型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于该第二节点、该第一节点以及该第三节点;
其中,通过该第一节点接收一参考电流。
2.如权利要求1所述的电路,还包含一电流源,配置以输出该参考电流至该第一节点。
3.如权利要求2所述的电路,还包含:
一稳压器,配置以接收该电流源的一输出终端的一电压,并在一稳压节点输出一供应电压;以及
一负载电路,配置以自该稳压节点接收电源。
4.如权利要求1所述的电路,其中该第一P型金属氧化物半导体晶体管的一宽长比大致相等于该第一N型金属氧化物半导体晶体管的一宽长比。
5.如权利要求1所述的电路,其中该第二P型金属氧化物半导体晶体管的一宽长比大致相等于该第二N型金属氧化物半导体晶体管的一宽长比。
6.一种参考电压产生电路,包括:
一电流源,配置以产生一参考电流;
一参考负载网络,配置以通过配置为一二极管连接拓扑结构的一主要N型金属氧化物半导体晶体管接收该参考电流;
一源极随耦器,由一次要N型金属氧化物半导体晶体管实现,配置以接收在该主要N型金属氧化物半导体晶体管的一栅极建立的一控制电压,并在一稳压节点输出一供应电压;
一负载电路,配置以自该稳压节点接收电源,其中该参考负载网络包含:一第一P型金属氧化物半导体晶体管、一第一N型金属氧化物半导体晶体管、一第二P型金属氧化物半导体晶体管以及一第二N型金属氧化物半导体晶体管,其中:
该第一P型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于一第一节点、一第二节点以及一第三节点;
该第一N型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于一第四节点、该第三节点以及该第二节点;
该第二P型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于该第三节点、该第四节点以及该第二节点;以及
该第二N型金属氧化物半导体晶体管的一源极、一栅极以及一漏极分别耦接于该第二节点、该第一节点以及该第三节点;
其中,通过该第一节点接收该参考电流。
7.如权利要求6所述的电路,其中该次要N型金属氧化物半导体晶体管的一宽长比大于该主要N型金属氧化物半导体晶体管的一宽长比,且大的一比例大致上与该负载电路的一电流与该参考电流间的一比值相同。
8.如权利要求6所述的电路,其中该第一P型金属氧化物半导体晶体管的一宽长比大致相等于该第一N型金属氧化物半导体晶体管的一宽长比。
9.如权利要求6所述的电路,其中该第二P型金属氧化物半导体晶体管的一宽长比大致相等于该第二N型金属氧化物半导体晶体管的一宽长比。
CN201910653706.0A 2018-07-19 2019-07-19 一种参考电压产生电路 Active CN110737298B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/039,379 2018-07-19
US16/039,379 US10222818B1 (en) 2018-07-19 2018-07-19 Process and temperature tracking reference voltage generator

Publications (2)

Publication Number Publication Date
CN110737298A CN110737298A (zh) 2020-01-31
CN110737298B true CN110737298B (zh) 2021-02-09

Family

ID=65495872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910653706.0A Active CN110737298B (zh) 2018-07-19 2019-07-19 一种参考电压产生电路

Country Status (3)

Country Link
US (1) US10222818B1 (zh)
CN (1) CN110737298B (zh)
TW (1) TWI697752B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087744A1 (zh) * 2019-11-05 2021-05-14 深圳市汇顶科技股份有限公司 Ldo、mcu、指纹模组及终端设备
US11566950B2 (en) 2020-04-06 2023-01-31 Realtek Semiconductor Corp. Process and temperature tracking reference load and method thereof
US11720129B2 (en) * 2020-04-27 2023-08-08 Realtek Semiconductor Corp. Voltage regulation system resistant to load changes and method thereof
US11422578B2 (en) * 2020-04-28 2022-08-23 Nxp B.V. Parallel low dropout regulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488735A (zh) * 2008-01-17 2009-07-22 瑞昱半导体股份有限公司 高分辨率数字控制调谐电路元件
JP2010152911A (ja) * 1997-12-12 2010-07-08 Hynix Semiconductor Inc 内部電圧発生回路
CN102053646A (zh) * 2009-11-02 2011-05-11 南亚科技股份有限公司 由温度与工艺所驱动的参考电压产生电路
CN102171710A (zh) * 2008-10-02 2011-08-31 株式会社半导体能源研究所 半导体器件及使用该半导体器件的rfid标签
CN104007778A (zh) * 2013-02-22 2014-08-27 精工电子有限公司 基准电压产生电路
WO2016112751A1 (en) * 2015-01-12 2016-07-21 Huawei Technologies Co., Ltd. Low-noise sampled voltage regulator
CN205912022U (zh) * 2016-08-26 2017-01-25 哈尔滨工业大学(威海) 具有工艺及温度补偿的环形振荡器
CN108052154A (zh) * 2018-02-05 2018-05-18 成都信息工程大学 一种无运放高阶低温漂带隙基准电路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422563A (en) * 1993-07-22 1995-06-06 Massachusetts Institute Of Technology Bootstrapped current and voltage reference circuits utilizing an N-type negative resistance device
US5453679A (en) * 1994-05-12 1995-09-26 National Semiconductor Corporation Bandgap voltage and current generator circuit for generating constant reference voltage independent of supply voltage, temperature and semiconductor processing
US7038530B2 (en) * 2004-04-27 2006-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reference voltage generator circuit having temperature and process variation compensation and method of manufacturing same
TWI255399B (en) * 2004-06-18 2006-05-21 Integrated Circuit Solution In Input buffer circuit for transforming TTL into CMOS and for reducing the consumed powe
US7280002B2 (en) * 2005-03-03 2007-10-09 Avago Technologies General Ip Pte Ltd Method and apparatus for biasing a metal-oxide-semiconductor capacitor for capacitive tuning
US7956597B2 (en) * 2008-06-24 2011-06-07 Mediatek Inc. Reference buffer circuits for providing reference voltages
TW201009309A (en) * 2008-08-25 2010-03-01 Beyond Innovation Tech Co Ltd Temperature sensing circuit
JP5306094B2 (ja) * 2009-07-24 2013-10-02 セイコーインスツル株式会社 基準電圧回路及び電子機器
US9042162B2 (en) * 2012-10-31 2015-05-26 Marvell World Trade Ltd. SRAM cells suitable for Fin field-effect transistor (FinFET) process
US9632521B2 (en) * 2013-03-13 2017-04-25 Analog Devices Global Voltage generator, a method of generating a voltage and a power-up reset circuit
US9525407B2 (en) * 2013-03-13 2016-12-20 Analog Devices Global Power monitoring circuit, and a power up reset generator
CN103701411B (zh) * 2013-12-13 2017-01-25 电子科技大学 一种具有温度和工艺自补偿特性的cmos松弛振荡器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152911A (ja) * 1997-12-12 2010-07-08 Hynix Semiconductor Inc 内部電圧発生回路
CN101488735A (zh) * 2008-01-17 2009-07-22 瑞昱半导体股份有限公司 高分辨率数字控制调谐电路元件
CN102171710A (zh) * 2008-10-02 2011-08-31 株式会社半导体能源研究所 半导体器件及使用该半导体器件的rfid标签
CN102053646A (zh) * 2009-11-02 2011-05-11 南亚科技股份有限公司 由温度与工艺所驱动的参考电压产生电路
CN104007778A (zh) * 2013-02-22 2014-08-27 精工电子有限公司 基准电压产生电路
WO2016112751A1 (en) * 2015-01-12 2016-07-21 Huawei Technologies Co., Ltd. Low-noise sampled voltage regulator
CN205912022U (zh) * 2016-08-26 2017-01-25 哈尔滨工业大学(威海) 具有工艺及温度补偿的环形振荡器
CN108052154A (zh) * 2018-02-05 2018-05-18 成都信息工程大学 一种无运放高阶低温漂带隙基准电路

Also Published As

Publication number Publication date
CN110737298A (zh) 2020-01-31
TW202008100A (zh) 2020-02-16
TWI697752B (zh) 2020-07-01
US10222818B1 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
CN110737298B (zh) 一种参考电压产生电路
JP5649857B2 (ja) レギュレータ回路
US9030186B2 (en) Bandgap reference circuit and regulator circuit with common amplifier
JP3575453B2 (ja) 基準電圧発生回路
KR101163457B1 (ko) 저전압 레귤레이티드 캐스코드 회로 및 이를 이용한 시모스아날로그 회로
CN212183486U (zh) 误差放大器、电路和电压调节器
TWI463792B (zh) 具有過衝抑制功能的放大電路
JP2008083831A (ja) シリーズレギュレータ回路
JP2022135949A (ja) 負荷変化に対する即応を提供する電圧レギュレータ
US6157178A (en) Voltage conversion/regulator circuit and method
US20210286394A1 (en) Current reference circuit with current mirror devices having dynamic body biasing
CN116185115A (zh) 一种ldo复合零点跟踪补偿电路
CN111580437B (zh) 一种使能控制电路及电子设备
JP2020166648A (ja) 基準電圧発生回路、および半導体装置
CN112798919B (zh) 基于fgd nmos管的电源低电压监测电路
JP6038100B2 (ja) 半導体集積回路
Dwibedy et al. Fully on chip low dropout (LDO) voltage regulator with improved transient response
US10095251B1 (en) Voltage regulating circuit
JP2022069919A (ja) 電源回路
Du et al. An ultra-low quiescent current CMOS low-dropout regulator with small output voltage variations
CN116633116B (zh) 低功耗电流源、电流源电路、芯片及具有其的电子设备
CN114442729B (zh) 一种抑制过冲的分布式线性稳压器
Tong et al. A High-Efficiency Receiving Circuit for Wireless Power Transmission
CN115202427B (zh) 一种稳压电路及电源管理芯片
US20060139018A1 (en) Device and method for low-power fast-response voltage regulator with improved power supply range

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant