CN113809170B - 低接触电阻高Al组分氮化物器件及其制备方法 - Google Patents

低接触电阻高Al组分氮化物器件及其制备方法 Download PDF

Info

Publication number
CN113809170B
CN113809170B CN202110984088.5A CN202110984088A CN113809170B CN 113809170 B CN113809170 B CN 113809170B CN 202110984088 A CN202110984088 A CN 202110984088A CN 113809170 B CN113809170 B CN 113809170B
Authority
CN
China
Prior art keywords
layer
substrate
drain electrode
source electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110984088.5A
Other languages
English (en)
Other versions
CN113809170A (zh
Inventor
马晓华
芦浩
邓龙格
杨凌
侯斌
武玫
张濛
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110984088.5A priority Critical patent/CN113809170B/zh
Publication of CN113809170A publication Critical patent/CN113809170A/zh
Application granted granted Critical
Publication of CN113809170B publication Critical patent/CN113809170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • H01L29/454Ohmic electrodes on AIII-BV compounds on thin film AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Abstract

本发明公开了一种低接触电阻高Al组分氮化物及其制备方法,该氮化物器件包括:衬底、依次位于衬底一侧的成核层、缓冲层、沟道层、插入层、势垒层,以及位于势垒层远离衬底一侧的钝化层、源电极、漏电极和栅电极;其中,源电极和漏电极,源电极和漏电极相对设置于势垒层第一表面的两侧,且至少部分源电极位于第一凹槽内、至少部分漏电极位于第二凹槽内;钝化层位于源电极与漏电极之间,包括在垂直于衬底所在平面的方向上贯穿钝化层的开孔,栅电极位于钝化层远离衬底的一侧,至少部分栅电极位于开孔内。由于上述氮化物的制备过程中未使用源漏再生长和离子注入工艺,因而无需引入额外的工艺制程,也避免了高温激活造成势垒层解离及表面缺陷的风险。

Description

低接触电阻高Al组分氮化物器件及其制备方法
技术领域
本发明属于半导体技术领域,具体涉及一种低接触电阻高Al组分氮化物器件及其制备方法。
背景技术
随着科技水平的提高,现有的第一、二代半导体材料已经无法满足更高频率、更高功率电子器件的需求,而基于氮化物半导体材料的电子器件则可满足这一要求,大大提高了器件性能,使得以GaN为代表的第三代半导体材料在微波毫米波器件制造中有了广泛的应用。
GaN是一种新型宽禁带化合物半导体材料,具有许多硅基半导体材料所不具备的优良特性,如宽禁带宽度、高击穿电场、以及较高的热导率,且耐腐蚀、抗辐射等。现阶段大多数GaN器件为AlGaN/GaN HEMT,当其应用在面向5G毫米波时,需要减小器件栅长来获得更高的频率特性,为了在减小栅长的同时保持对沟道的栅控性能、抑制短沟道效应,势垒层的厚度也必须尽量小。然而,常规的AlGaN势垒层减薄后会使得沟道中的电子密度减小,导致饱和电流密度降低,恶化器件特性。因此,为了克服上述问题,需要高Al组分的势垒层,而这些势垒应用的问题集中在低阻欧姆接触,常规的金半接触制作方法中较大的接触势垒导致低阻欧姆接触不易形成。
为了获得高质量的欧姆触点,相关技术中,在器件工艺中主要采用源漏再生长和离子注入的方式形成高Al氮化物势垒的欧姆接触,以实现欧姆区的性能优化。然而,源漏再生长会引入额外工艺,增大了工艺复杂性的同时,工艺难度大,MBE/MOCVD再生长设备维护成本高;而离子注入的方式由于需要激活注入Si离子,激活温度往往在1000℃以上,易使得势垒组分解离,质量变差,并且还会增加势垒表面的缺陷态,恶化器件动态特性。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种低接触电阻高Al组分氮化物。本发明要解决的技术问题通过以下技术方案实现:
第一发明,本发明提供了一种低接触电阻高Al组分氮化物器件,包括:衬底;
位于所述衬底一侧的成核层;
位于所述成核层远离所述衬底一侧的缓冲层;
位于所述缓冲层远离所述衬底一侧的沟道层;
位于所述沟道层远离所述衬底一侧的插入层;
位于所述插入层远离所述衬底一侧的势垒层;
位于所述势垒层远离所述衬底一侧的钝化层、源电极、漏电极和栅电极;其中,
所述势垒层包括远离所述插入层的第一表面,所述第一表面包括第一凹槽、第二凹槽、源电极和漏电极,所述源电极和所述漏电极相对设置于第一表面的两侧,且至少部分源电极位于所述第一凹槽内、至少部分漏电极位于所述第二凹槽内;
所述钝化层位于所述源电极与所述漏电极之间,所述钝化层包括开孔,所述开孔在垂直于衬底所在平面的方向上贯穿所述钝化层,所述栅电极位于所述钝化层远离衬底的一侧,至少部分所述栅电极位于所述开孔内。
在本发明的一个实施例中,所述势垒层包括AlN、AlxGa1-xN或ScyAl1-yN,其中,x表示Al的原子比,y表示Sc的原子比,x>0.6,y>0.6。
在本发明的一个实施例中,沿垂直于衬底所在平面的方向,所述势垒层的厚度为6~15nm。
在本发明的一个实施例中,沿垂直于衬底所在平面的方向,所述第一凹槽及所述第二凹槽的深度为h,其中,4nm≤h≤15nm。
在本发明的一个实施例中,沿衬底指向势垒层的方向,所述源电极和所述漏电极包括接触层、催化层、间隔层和帽层;
其中,所述接触层包括In或InxAly,所述催化层包括Al,所述间隔层包括Ni、Mo、Cr或Ti,所述帽层包括Au、TiN、TaN、W或Pt。
在本发明的一个实施例中,所述源电极和所述漏电极还包括预沉积层;
沿垂直于衬底所在平面的方向,所述预沉积层位于所述接触层远离所述催化层的一侧。
在本发明的一个实施例中,所述预沉积层包括Si或Ge。
在本发明的一个实施例中,沿垂直于所述衬底所在平面的方向,所述预沉积层的厚度为x,其中,x≤4nm。
第二方面,本发明还提供了一种低接触电阻高Al组分氮化物器件的制备方法,其特征在于,包括:
提供异质结材料,所述异质结材料包括衬底、以及依次生长于所述衬底一侧的成核层、缓冲层、沟道层、插入层和势垒层;
采用感应耦合等离子体ICP设备,刻蚀所述异质结材料至缓冲层;
在所述势垒层表面涂覆光刻胶后,光刻出预设区域,并利用ICP对所述势垒层进行预刻蚀,形成第一凹槽和第二凹槽;
在势垒层上涂覆光刻胶后,光刻出源电极区域和漏电极区域,并制备InxAly合金靶材,采用磁控溅射机台溅射欧姆金属;
对所述欧姆金属进行剥离和快速热退火,形成源电极和漏电极;
利用等离子增强化学气相沉积PECVD在所述势垒层上淀积SiN薄膜,形成钝化层;
光刻所述钝化层形成开孔,并利用ICP设备刻蚀所述源电极区域、所述漏电极区域和所述开孔的SiN钝化层;
在所述钝化层表面涂覆光刻胶,光刻出栅电极区域后,采用磁控溅射工艺沉积栅金属,形成栅电极;
在所述栅电极、所述源电极和所述漏电极表面涂覆光刻胶,光刻互联图形后,采用电子束蒸发工艺沉积互联金属层,得到所述氮化物器件。
与现有技术相比,本发明的有益效果在于:
本发明提供一种低接触电阻高Al组分氮化物器件及其制备方法,由于氮化物的制备过程中未使用源漏再生长和离子注入工艺,因而无需引入额外的工艺制程和再生长设备高昂的维护成本,也避免了高温激活造成势垒层解离及表面缺陷的风险。
此外,本发明利用In金属功函数小的特点,使之与高Al势垒层形成的接触势垒高度更低,特别是,In易与氮化物形成InAlN或InAlGaN化合物,容易使金属下渗,提高了载流子直接输运的几率,进而降氮化物器件的欧姆接触电阻。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的低接触电阻高Al组分氮化物器件的一种结构示意图;
图2是本发明实施例提供的源电极的一种结构示意图;
图3是本发明实施例提供的源电极的另一种结构示意图;
图4是本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的一种流程示意图;
图5是本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的一种过程示意图;
图6是本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图;
图7本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图;
图8本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图;
图9本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图;
图10本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图;
图11本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图;
图12本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的另一种过程示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
图1是本发明实施例提供的低接触电阻高Al组分氮化物器件的一种结构示意图。如图1所示,本发明实施例提供一种低接触电阻高Al组分氮化物器件,包括:衬底1;
位于衬底1一侧的成核层2;
位于成核层2远离衬底1一侧的缓冲层3;
位于缓冲层3远离衬底1一侧的沟道层4;
位于沟道层4远离衬底1一侧的插入层5;
位于插入层5远离衬底1一侧的势垒层6;
位于势垒层6远离衬底1一侧的钝化层9、源电极7、漏电极8和栅电极10;其中,
势垒层6包括远离插入层5的第一表面S1,第一表面S1包括第一凹槽A1、第二凹槽A2、源电极7和漏电极8,源电极7和漏电极8相对设置于第一表面S1的两侧,且至少部分源电极7位于第一凹槽A1内、至少部分漏电极8位于第二凹槽A2内;
钝化层9位于源电极7与漏电极8之间,钝化层9包括开孔B,开孔B在垂直于衬底1所在平面的方向上贯穿钝化层9,栅电极10位于钝化层9远离衬底1的一侧,至少部分栅电极10位于开孔B内。
具体而言,上述氮化物器件包括衬底1、以及依次生长于衬底1一侧的成核层2、缓冲层3、沟道层4、插入层5和势垒层6,其中,势垒层6包括远离插入层5一侧的第一表面S1,第一表面S1包括源电极7和漏电极8;在图1所示视角下,源电极7和漏电极8相对设置于第一表面S1的左右两侧。可选地,第一表面S1还包括第一凹槽A1和第二凹槽A2,二者均朝向靠近插入层5的一侧凹陷,沿垂直于衬底1所在平面的方向,源电极7的正投影覆盖第一凹槽A1,漏电极8的正投影覆盖第二凹槽A2。
示例性地,如图1所示,源电极7和漏电极8均由第一子部及第二子部组成,其中,源电极7和漏电极8的第一子部位于钝化层9远离插入层5的一侧、源电极7的第二子部位于第一凹槽A1内、漏电极8的第二子部则位于第二凹槽A2内。可以理解的是,本实施例通过设置第一凹槽A2和第二凹槽A2,能够增大源电极7与势垒层6、以及漏电极8与势垒层6之间的欧姆接触面积,并使欧姆接触下方保持较高的载流子密度。
需要说明的是,本实施例中第一凹槽A1位于源电极7靠近漏电极8一侧的边缘处,而第二凹槽A2位于漏电极8靠近源电极7一侧的边缘处。应当理解,对于欧姆接触,由于电流集边效应的存在,通常只有源漏欧姆接触靠近内侧的边缘来传输电子,而高Al势垒层会增大欧姆接触难度,因而本实施例将此部分刻蚀减薄以降低势垒宽度、优化接触电阻,其他区域则不刻蚀势垒层,进而保持该区域下方极化电荷浓度,保证沟道的高电导率。
进一步地,本发明实施例提供的氮化物器件还包括钝化层9和栅电极10,该钝化层9包括开孔B,开孔B在垂直于衬底1所在平面的方向上贯穿钝化层9,栅电极10位于钝化层9远离衬底1的一侧,至少部分栅电极10位于开孔B内。此种设计方式可形成T型栅,与不在钝化层9开孔的I型栅相比,可以降低栅电极电阻,提高器件小信号增益和频率特性。
可选地,沿垂直于衬底1所在平面的方向,势垒层6的厚度为6~15nm。本实施例中,势垒层6可以包括AlN、AlxGa1-xN或ScyAl1-yN,其中,x表示Al的原子比,y表示Sc的原子比,x>0.6,y>0.6。
示例性地,沿垂直于衬底1所在平面的方向,第一凹槽A1及第二凹槽A2的深度为h,其中,4nm≤h≤15nm。需要说明的是,本实施例中第一凹槽A1与第二凹槽A2的深度相等,一方面可通过一个光刻窗口实现,无需额外增加一步工艺,有利于简化制备过程;此外,若第一凹槽A1与第二凹槽A2的深度不等,则容易造成欧姆接触不均匀。
图2是本发明实施例提供的源电极的一种结构示意图,需要说明是,本实施例中漏电极的结构与源电极相同。可选地,如图2所示,沿衬底1指向势垒层6的方向,源电极7和漏电极8包括接触层12、催化层13、间隔层14和帽层15;
其中,接触层12包括In或InxAly,催化层13包括Al,间隔层14包括Ni、Mo、Cr或Ti,帽层15包括Au、TiN、TaN、W或Pt。
具体而言,沿衬底1指向势垒层6的方向,源电极7和漏电极8依次包括接触层12、催化层13、间隔层14和帽层15,接触层12可以包括In或InxAly,由于金属In具有功函数小的特点,因此源、漏电极8中的接触层12与高Al组分的势垒层6形成的接触势垒较低,特别是In易与氮化物形成InAlN或InAlGaN化合物,容易使金属下渗,以提高半导体提高载流子直接输运的几率,进而降低欧姆接触电阻。
另外,当接触层12采用InxAly合金时,还可以使In、Al金属与半导体接触更均匀,更容易发生金半合金化反应。
图3是本发明实施例提供的源电极的另一种结构示意图。本实施例中,漏电极的结构与源电极的结构相同,如图3所示,在上述低接触电阻高Al组分氮化物器件中,源电极7和漏电极8还包括预沉积层16;沿垂直于衬底1所在平面的方向,预沉积层16位于接触层12远离催化层13的一侧。可以理解的是,预沉积层16能够在热退火过程中扩散至势垒层6,从而对势垒层6进行热退火n型掺杂,降低了欧姆接触势垒宽度,有利于提高隧穿电流,降低接触电阻。
可选地,预沉积层16包括Si或Ge,其厚度为x,x≤4nm。例如,预沉积层16的厚度可以为2nm、3nm或3.5nm。
图4是本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的一种流程示意图,图5-12是本发明实施例提供的低接触电阻高Al组分氮化物器件的制备方法的一种过程示意图。请参见图1及图4-12,本发明还提供了一种低接触电阻高Al组分氮化物器件的制备方法,包括:
S1、提供异质结材料,异质结材料包括衬底1、以及依次生长于衬底1一侧的成核层2、缓冲层3、沟道层4、插入层5和势垒层6;
S2、采用感应耦合等离子体ICP设备,刻蚀异质结材料至缓冲层3;
S3、在势垒层6表面涂覆光刻胶后,光刻出预设区域,并利用ICP对势垒层6进行预刻蚀,形成第一凹槽A1和第二凹槽A2;
S4、在势垒层6上涂覆光刻胶后,光刻出源电极区域和漏电极区域,并制备InxAly合金靶材,采用磁控溅射机台溅射欧姆金属;
S5、对欧姆金属进行剥离和快速热退火,形成源电极7和漏电极8;
S6、利用等离子增强化学气相沉积PECVD在势垒层6上淀积SiN薄膜,形成钝化层9;
S7、光刻钝化层9形成开孔B,并利用ICP设备刻蚀源电极区域、漏电极区域和开孔B的SiN钝化层9;
S8、在钝化层9表面涂覆光刻胶,光刻出栅电极10区域后,采用磁控溅射工艺沉积栅金属,形成栅电极10;
S9、在栅电极10、源电极7和漏电极8表面涂覆光刻胶,光刻互联图形后,采用电子束蒸发工艺沉积互联金属层11,得到氮化物器件。
具体而言,在上述步骤S2之前,可以先对异质结材料的表面进行清洗,以去除材料储存中引入的有机、无机玷污以及表面氧化物。可选地,将异质结材料放置在丙酮中超声波清洗2分钟,然后在60℃水浴加热的正胶剥离液中煮10分钟,随后再将异质结材料依次放入丙酮和乙醇中各超声波清洗3分钟,而后在去离子水清洗掉残留的丙酮、乙醇后,用HF(HF:H2O=1:5)清洗异质结材料30s,最后用去离子水清洗干净并用超纯氮气吹干。
可选地,在上述步骤S2中,采用感应耦合等离子体ICP设备,刻蚀异质结材料至缓冲层3的步骤,包括:
S201、在势垒层6上光刻电隔离区域:
具体地,将异质结材料放在200℃的热板上烘烤5min;然后,对异质结材料甩光刻胶,转速可以为3500rpm,完成甩胶后在90的热板上烘烤1min;接着,将异质结材料放入光刻机中对预设的电隔离区域内的光刻胶进行曝光;最后,将完成曝光的异质结材料放入显影液中以移除预设的电隔离区域内的光刻胶,并对其进行超纯水冲洗和氮气吹干。
S202、在势垒层6上刻蚀电隔离区域:
采用ICP工艺干法刻蚀势垒层6,实现有源区的台面隔离,刻蚀采用的气体Cl2/BCl3,压力为5mTorr,上电极功率为100w,下电极功率为10w,刻蚀时间为40s。
S203、去除刻蚀后的掩膜:
将完成有源区隔离的异质结材料依次放入丙酮溶液、剥离液、丙酮溶液和乙醇溶液中进行清洗,以去除电隔离区域外的光刻胶,然后用去离子水清洗并用氮气吹干。
可选地,在上述步骤S3中,在势垒层6表面涂覆光刻胶后,光刻出预设区域,并利用ICP对势垒层6进行预刻蚀,形成第一凹槽A1和第二凹槽A2的步骤,包括:
S301、在势垒层6上光刻预设的欧姆边缘区域:
首先,将完成刻蚀的异质结材料放在200℃的热板上烘烤5min后,在该异质结材料上甩光刻胶,并将异质结材料在90℃热板上烘烤1min,其中,甩胶厚度可以为0.77μm;之后,将异质结材料放入光刻机中对预设区域的光刻胶进行曝光,曝光图形为六边形;最后,将完成曝光的异质结材料放入显影液中移除预设区域的光刻胶,并对其进行超纯水冲洗和氮气吹干。
S302、对欧姆边缘区域进行势垒层6预刻蚀:
采用ICP工艺干法刻蚀势垒层6,实现欧姆边缘区域凹槽的刻蚀,可选地,刻蚀采用的气体为Cl2/BCl3,BCl3流量为20sccm,Cl2流量为8sccm,压力为5mTorr,上电极功率为50w,下电极功率为15w,刻蚀时间为15s,刻蚀的深度为4~15nm。
S303、去除光刻胶:
将完成光刻以及刻蚀的异质结材料依次放入丙酮溶液、剥离液、丙酮溶液和乙醇溶液中进行清洗,以去除电隔离区域外的光刻胶,然后用去离子水清洗并用氮气吹干,形成第一凹槽A1和第二凹槽A2。
可选地,在上述步骤S4中,在势垒层6上涂覆光刻胶后,光刻出源电极区域和漏电极区域,并制备InxAly合金靶材,采用磁控溅射机台溅射欧姆金属的步骤,包括:
S401、在势垒层6上光刻源电极区域和漏电极区域:
首先,将完成刻蚀的异质结材料放在200℃的热板上烘烤5min;然后,在异质结材料上甩剥离胶,其甩胶厚度为0.35μm,并将异质结材料在温度为200℃的热板上烘5min;接着,在该异质结材料上甩光刻胶,其甩胶厚度为0.77μm,并将异质结材料在90℃热板上烘1min;之后,将异质结材料放入光刻机中对源电极区域和漏电极区域的光刻胶进行曝光;最后,将完成曝光的异质结材料放入显影液中移除源电极区域和漏电极区域的光刻胶和剥离胶,并对其进行超纯水冲洗和氮气吹干。
S402、打底膜:
将完成源电极区域和漏电极区域光刻的异质结材料采用等离子去胶机去除未显影干净的光刻胶薄层,其处理的时间为5min,如此可以大大提高了剥离的成品率。
S403、使用热等静压法制备TaxAly合金靶材:
首先,将铟粒和铝粉按照1:10原子比例放入V型混粉机中,在惰性气体保护下混合12h。随后将混合后的粉末装入橡胶套模具,封口后放入冷等静压机中,加压至200MPa并保压40min进行冷等静压处理,得到铟铝坯料。然后,将铟铝坯料装入不锈钢包套并封口,在真空度为6×10-3Pa下加热至400℃进行脱气处理,保温保压时间为8h,接着将脱气后的包套放入热等静压炉中,真空度到达6×10-3Pa后开始升温,升温到1100℃时,热压机压头的压力保持在140MPa,保温保压3h。最后将得到的铟铝合金粗品进行机加工,得到铟铝合金靶材,即InxAly合金靶材,并在磁控溅射台完成装配备用。
S404、溅射源漏电极8金属:
将完成等离子去胶的异质结材料放入磁控溅射台中,待磁控溅射台的反应腔室真空度达到2×10-6Torr之后,再在源电极区域和漏电极区域内的势垒层6上以及源电极区域和漏电极区域外的光刻胶上溅射源漏电极8金属,该源漏电极8金属可以是由下向上依次由Ge、InxAly、Al、Mo、Pt五层金属组成的金属堆栈结构。
可选地,在上述步骤S5中,对欧姆金属进行剥离和快速热退火,形成源电极7和漏电极8的步骤,包括:
S501、剥离源漏电极8金属:
首先,将完成源漏电极8金属溅射的异质结材料在丙酮中浸泡40分钟以上后,进行超声处理;然后,将异质结材料放入温度为60℃的剥离液中水浴加热5min;再将异质结材料依次放入丙酮溶液和乙醇溶液中超声波清洗3min;最后用超纯水冲洗异质结材料并用氮气吹干。
S502、异质结材料快速热退火形成欧姆接触:
将异质结材料放入快速退火炉中,向退火炉中通入10min氮气,再在氮气气氛中将退火炉温度设为810℃,进行60s的高温退火,以使源电极区域和漏电极区域上的源漏电极8金属下沉至缓冲层3,从而形成源漏电极8金属与异质结沟道之间的欧姆接触,形成源漏金半欧姆接触。
在上述步骤S6中,利用等离子增强化学气相沉积PECVD在势垒层6上淀积SiN薄膜,形成钝化层9的步骤,包括:
S601、对完成欧姆接触的异质结材料进行表面清洗:
首先,将异质结材料放入丙酮溶液中超声波清洗3mim,其超声强度可为3.0;然后,将异质结材料放入温度为60℃的剥离液中水浴加热5min;接着,将异质结材料依次放入丙酮溶液和乙醇溶液中超声波清洗3min,其超声强度为3.0;最后,用超纯水冲洗异质结材料并用氮气吹干。
S602、在势垒层6上生长钝化层9:
利用等离子体增强化学气相沉积PECVD工艺,在势垒层6上生长厚度为60~150nm的SiN钝化层9,生长的工艺条件为:采用NH3和SiH4作为Si源和N源,优化的流量比为SiH4:NH3=2:1,沉积温度为250℃,反应腔室压力为600mTorr,RF功率为22W。反应时间为23~50min,沉积厚度为60~150nm。
在上述步骤S7中,光刻钝化层9形成开孔B,并利用ICP设备刻蚀源电极区域、漏电极区域和开孔B的SiN钝化层9的步骤,包括:
S701、在SiN钝化层9上光刻欧姆开孔B和槽栅区域:
首先,将异质结材料放在200℃的热板上烘烤5min;然后,进行光刻胶的涂胶和甩胶,其甩胶转速为3500转/mim,并将异质结材料放在90℃的热板上烘烤1min;接着,将异质结材料放入光刻机中对源电极区域、漏电极区域和开孔B的光刻胶进行曝光;最后,将完成曝光后的异质结材料放入显影液中以移除源电极区域、漏电极区域和开孔B的光刻胶,并对其进行超纯水冲洗和氮气吹干;
S702、利用感应耦合等离子体ICP刻蚀工艺刻蚀SiN钝化层9:
示例性地,刻蚀的条件为:反应气体为CF4和O2,CF4流量25sccm,O2流量5sccm,反应腔室压力为5mTorr,上电极和下电极的射频功率分别为100W和10W,刻蚀的深度为60~150nm。
可选地,上述步骤S8中,在钝化层9表面涂覆光刻胶,光刻出栅电极10区域后,采用磁控溅射工艺沉积栅金属,形成栅电极10的步骤,包括:
S801、在钝化层9上光刻栅电极10区域:
首先,将异质结材料放在200℃的热板上烘烤5min,并在异质结材料上甩剥离胶,其甩胶厚度为0.35μm;然后将异质结材料在温度为200℃的热板上烘5min,再次在该异质结材料上甩光刻胶,其甩胶厚度为0.77μm,并将异质结材料在90℃热板上烘1min;之后,将异质结材料放入光刻机中对栅电极10区域的光刻胶进行曝光;最后,将完成曝光的异质结材料放入显影液中移除栅电极10区域的光刻胶和剥离胶,再对其进行超纯水冲洗和氮气吹干。
S802、打底膜:
将完成栅电极10光刻的异质结材料采用等离子去胶机去除图形区未显影干净的光刻胶薄层,其处理的时间为5min。
S803、溅射栅电极10金属:
将完成开孔B的异质结材料放入磁控溅射台中,待磁控溅射台的反应腔室真空度达到1×10-6Torr之后,再在栅电极10区域和栅电极10区域以外的光刻胶上溅射栅金属,该栅电极10金属是由下向上依次由40nm Ni和400nm Pt两层金属组成的金属堆栈结构;
S804、剥离金属:
将完成栅电极10溅射的异质结材料在丙酮中浸泡40分钟以上后进行超声波处理;然后,将异质结材料放入温度为60℃的剥离液中水浴加热5min;接着,将异质结材料依次放入丙酮溶液和乙醇溶液中超声清洗3min;最后,用超纯水冲洗并用氮气吹干。
在上述步骤S9中,在栅电极10、源电极7和漏电极8表面涂覆光刻胶,光刻互联图形后,采用电子束蒸发工艺沉积互联金属层11,得到氮化物器件的步骤,包括:
S901、在异质结材料上光刻互联区域:
首先,将异质结材料放在200℃的热板上烘烤5min;然后,在异质结材料上甩剥离胶,其甩胶厚度为0.35μm,并将异质结材料在温度为200℃的热板上烘5min;接着,在该异质结材料上甩光刻胶,其甩胶厚度为0.77μm,并将异质结材料在90℃热板上烘1min;之后,将异质结材料放入光刻机中对互联电极区域的光刻胶进行曝光;最后,将完成曝光的异质结材料放入显影液中移除栅电极10区域的光刻胶和剥离胶,并对其进行超纯水冲洗和氮气吹干。
S902、打底膜:
将完成栅电极10光刻的异质结材料采用等离子去胶机去除图形区未显影干净的光刻胶薄层,其处理的时间为5min。
S903、采用电子束蒸发工艺,在异质结材料上沉积互联金属Ti 20nm/Au200nm层,去除光刻胶,完成器件的制作。
S904、剥离金属:
将完成栅电极10溅射的异质结材料在丙酮中浸泡40分钟以上后进行超声处理;然后将异质结材料放入温度为60℃的剥离液中水浴加热5min;接着,将异质结材料依次放入丙酮溶液和乙醇溶液中超声清洗3min;最后,用超纯水冲洗异质结材料并用氮气吹干,得到图1所示的氮化物器件。
通过上述各实施例可知,本发明的有益效果在于:
本发明提供一种低接触电阻高Al组分氮化物器件及其制备方法,由于氮化物的制备过程中未使用源漏再生长和离子注入工艺,因而无需引入额外的工艺制程和再生长设备高昂的维护成本,也避免了高温激活造成势垒层解离及表面缺陷的风险。
此外,本发明利用In金属功函数小的特点,使之与高Al势垒层形成的接触势垒高度更低,特别是,In易与氮化物形成InAlN或InAlGaN化合物,容易使金属下渗,提高了载流子直接输运的几率,进而降氮化物器件的欧姆接触电阻。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

1.一种低接触电阻高Al组分氮化物器件,其特征在于,包括:衬底;
位于所述衬底一侧的成核层;
位于所述成核层远离所述衬底一侧的缓冲层;
位于所述缓冲层远离所述衬底一侧的沟道层;
位于所述沟道层远离所述衬底一侧的插入层;
位于所述插入层远离所述衬底一侧的势垒层;
位于所述势垒层远离所述衬底一侧的钝化层、源电极、漏电极和栅电极;其中,
所述势垒层包括远离所述插入层的第一表面,所述第一表面包括第一凹槽、第二凹槽、源电极和漏电极,所述源电极和所述漏电极相对设置于第一表面的两侧,且至少部分源电极位于所述第一凹槽内、至少部分漏电极位于所述第二凹槽内;所述第一凹槽位于源电极靠近漏电极一侧的边缘处,所述第二凹槽位于漏电极靠近源电极一侧的边缘处;
所述钝化层位于所述源电极与所述漏电极之间,所述钝化层包括开孔,所述开孔在垂直于衬底所在平面的方向上贯穿所述钝化层,所述栅电极位于所述钝化层远离衬底的一侧,至少部分所述栅电极位于所述开孔内;
所述势垒层包括AlN、AlxGa1-xN或ScyAl1-yN,其中,x表示Al的原子比,y表示Sc的原子比,x>0.6,y>0.6;沿垂直于衬底所在平面的方向,所述势垒层的厚度为6~15nm;沿衬底指向势垒层的方向,所述源电极和所述漏电极包括接触层、催化层、间隔层和帽层;其中,所述接触层包括In或InxAly,所述催化层包括Al,所述间隔层包括Ni、Mo、Cr或Ti,所述帽层包括Au、TiN、TaN、W或Pt。
2.根据权利要求1所述的低接触电阻高Al组分氮化物器件,其特征在于,沿垂直于衬底所在平面的方向,所述第一凹槽及所述第二凹槽的深度为h,其中,4nm≤h≤15nm。
3.根据权利要求1所述的低接触电阻高Al组分氮化物器件,其特征在于,所述源电极和所述漏电极还包括预沉积层;
沿垂直于衬底所在平面的方向,所述预沉积层位于所述接触层远离所述催化层的一侧。
4.根据权利要求3所述的低接触电阻高Al组分氮化物器件,其特征在于,所述预沉积层包括Si或Ge。
5.根据权利要求4所述的低接触电阻高Al组分氮化物器件,其特征在于,沿垂直于所述衬底所在平面的方向,所述预沉积层的厚度为x,其中,x≤4nm。
6.一种低接触电阻高Al组分氮化物器件的制备方法,其特征在于,包括:
提供异质结材料,所述异质结材料包括衬底、以及依次生长于所述衬底一侧的成核层、缓冲层、沟道层、插入层和势垒层;
采用感应耦合等离子体ICP设备,刻蚀所述异质结材料至缓冲层;
在所述势垒层表面涂覆光刻胶后,光刻出预设区域,并利用ICP对所述势垒层进行预刻蚀,形成第一凹槽和第二凹槽;
在势垒层上涂覆光刻胶后,光刻出源电极区域和漏电极区域,并制备InxAly合金靶材,采用磁控溅射机台溅射欧姆金属;
对所述欧姆金属进行剥离和快速热退火,形成源电极和漏电极;
利用等离子增强化学气相沉积PECVD在所述势垒层上淀积SiN薄膜,形成钝化层;
光刻所述钝化层形成开孔,并利用ICP设备刻蚀所述源电极区域、所述漏电极区域和所述开孔的SiN钝化层;
在所述钝化层表面涂覆光刻胶,光刻出栅电极区域后,采用磁控溅射工艺沉积栅金属,形成栅电极;
在所述栅电极、所述源电极和所述漏电极表面涂覆光刻胶,光刻互联图形后,采用电子束蒸发工艺沉积互联金属层,得到所述氮化物器件;其中,
所述第一凹槽位于源电极靠近漏电极一侧的边缘处,所述第二凹槽位于漏电极靠近源电极一侧的边缘处;
所述势垒层包括AlN、AlxGa1-xN或ScyAl1-yN,其中,x表示Al的原子比,y表示Sc的原子比,x>0.6,y>0.6;沿垂直于衬底所在平面的方向,所述势垒层的厚度为6~15nm;沿衬底指向势垒层的方向,所述源电极和所述漏电极包括接触层、催化层、间隔层和帽层;其中,所述接触层包括In或InxAly,所述催化层包括Al,所述间隔层包括Ni、Mo、Cr或Ti,所述帽层包括Au、TiN、TaN、W或Pt。
CN202110984088.5A 2021-08-25 2021-08-25 低接触电阻高Al组分氮化物器件及其制备方法 Active CN113809170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110984088.5A CN113809170B (zh) 2021-08-25 2021-08-25 低接触电阻高Al组分氮化物器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110984088.5A CN113809170B (zh) 2021-08-25 2021-08-25 低接触电阻高Al组分氮化物器件及其制备方法

Publications (2)

Publication Number Publication Date
CN113809170A CN113809170A (zh) 2021-12-17
CN113809170B true CN113809170B (zh) 2024-01-30

Family

ID=78894172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110984088.5A Active CN113809170B (zh) 2021-08-25 2021-08-25 低接触电阻高Al组分氮化物器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113809170B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659358A (zh) * 2018-11-20 2019-04-19 西安电子科技大学芜湖研究院 一种氮化镓hemt低欧姆接触电阻结构及其制作方法
CN113113477A (zh) * 2021-03-01 2021-07-13 西安电子科技大学 基于ScAlN双沟道异质结结构的GaN射频器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200194551A1 (en) * 2018-12-13 2020-06-18 Intel Corporation High conductivity source and drain structure for hemt devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659358A (zh) * 2018-11-20 2019-04-19 西安电子科技大学芜湖研究院 一种氮化镓hemt低欧姆接触电阻结构及其制作方法
CN113113477A (zh) * 2021-03-01 2021-07-13 西安电子科技大学 基于ScAlN双沟道异质结结构的GaN射频器件及其制备方法

Also Published As

Publication number Publication date
CN113809170A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
JP6265307B1 (ja) 半導体装置の製造方法および半導体装置
CN110600542A (zh) 一种具有П型栅的GaN基射频器件及其制备方法
US20230352558A1 (en) High electron mobility transistor, preparation method, and power amplifier/switch
JP2009026838A (ja) 半導体装置及びその製造方法
CN113809160A (zh) 一种无金场板GaN基射频器件及其制作方法
CN113809170B (zh) 低接触电阻高Al组分氮化物器件及其制备方法
CN113809154B (zh) 一种氮化物势垒应力调制器件及其制备方法
CN113808942A (zh) 一种高铝组分氮化物欧姆接触器件及其制备方法
CN115692184A (zh) 基于选择性湿法腐蚀工艺的P-AlGaN栅增强型晶体管及制备方法
CN112993029B (zh) 一种提高GaN HEMT界面质量的方法
CN211929494U (zh) 一种具有П型栅的GaN基射频器件
CN112420827A (zh) N面GaN HEMT器件及其制作方法
CN112466925A (zh) 一种低射频损耗的硅基氮化镓射频功率器件及其制备方法
CN112018177A (zh) 全垂直型Si基GaN UMOSFET功率器件及其制备方法
JP2005243719A (ja) 電界効果型トランジスタ及びその製造方法
CN115498034B (zh) 一种GaN HEMT器件及其制备方法
CN113540229B (zh) 半导体器件及其制作方法
CN114496934B (zh) GaN HEMTs与顶层氢终端金刚石MOSFETs集成结构及其制备方法
CN216311791U (zh) 一种GaN基HEMT器件结构
CN113257911B (zh) 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法
CN113809169A (zh) 基于栅源漏一体化沉积的氮化镓器件及其制作方法
CN116960181A (zh) 一种基于量子阱自对准栅的多沟道异质结器件及制作方法
CN116525438A (zh) 基于AlScN钝化的AlGaN-GaN HEMTs器件及制作方法
CN116110788A (zh) 基于混合刻蚀的金刚石薄膜GaN HEMT制备方法
CN116721970A (zh) 半导体器件的接触孔制备及金属填充方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant