CN113257911B - 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法 - Google Patents

含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法 Download PDF

Info

Publication number
CN113257911B
CN113257911B CN202110511021.XA CN202110511021A CN113257911B CN 113257911 B CN113257911 B CN 113257911B CN 202110511021 A CN202110511021 A CN 202110511021A CN 113257911 B CN113257911 B CN 113257911B
Authority
CN
China
Prior art keywords
layer
gan
algan
air bridge
scaln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110511021.XA
Other languages
English (en)
Other versions
CN113257911A (zh
Inventor
孙慧卿
王鹏霖
黄志辉
丁霄
李渊
谭秀洋
马建铖
夏晓宇
夏凡
张淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Third Generation Semiconductor Research Institute Co Ltd
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202110511021.XA priority Critical patent/CN113257911B/zh
Publication of CN113257911A publication Critical patent/CN113257911A/zh
Application granted granted Critical
Publication of CN113257911B publication Critical patent/CN113257911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法,该器件中在AlN层中掺杂Sc(钪),将ScAlN引入AlGaN/GaN势垒中,AlGaN层、ScAlN层和GaN过渡层共同构成一个特殊结构的异质结,增加了器件的自发和压电(应变相关)电荷极化,使得其二维电子气(2‑DEG)薄层电荷的载流子密度提高数倍,与此同时,应变驰豫问题也得到了很好的控制,这一特殊的异质结结构增强了器件射频性能和可靠性。另一方面,该器件中的源空气桥结构,能够相对其他介质桥结构降低寄生电容,在上述异质结的基础上进一步增强器件的射频性能。

Description

含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法
技术领域
本发明涉及半导体器件和制作工艺领域,具体涉及一种含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法。
背景技术
单纯的采用添加场板等手段难以满足GaN基HEMT器件日益增长的高频性能和稳定性需求,如何进一步优化器件结构、提升器件性能是本发明亟待解决的技术问题之一。
发明内容
本发明的首要目的是提供含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法。该器件中在AlN层中掺杂Sc(钪),将ScAlN引入AlGaN/GaN势垒中,AlGaN层、ScAlN层和GaN过渡层共同构成一个特殊结构的异质结,增加了器件的自发和压电(应变相关)电荷极化,使得其二维电子气(2-DEG)薄层电荷的载流子密度提高数倍,与此同时,应变驰豫问题也得到了很好的控制,这一特殊的异质结结构增强了器件射频性能和可靠性。另一方面,该器件中的源空气桥结构,能够相对其他介质桥结构降低寄生电容,在上述异质结的基础上进一步增强器件的射频性能。
另外本发明采用低压脉冲式外延生长工艺获得的ScAlN膜层质量高,在AlGaN/ScAlN/GaN异质结结构的基础进一步优化了器件的射频性能和可靠性。
本发明至少提供如下方案:
含Sc掺杂的源空气桥结构GaN射频HEMT,包括:
衬底;GaN通道层,位于所述衬底上;依次层叠的AlGaN势垒层、GaN过渡层、ScAlN层、AlGaN层和p-GaN帽层区域构成的叠层,位于所述GaN通道层上;栅极,位于所述p-GaN帽层上;源极和漏极,设置于所述叠层两侧,位于所述GaN通道层表面;源空气桥结构,以一端位于所述源极表面起始,横跨所述栅极,另一端位于栅漏区域的所述叠层上的对称结构;
其中,所述ScAlN层中,Sc的掺杂比例为10~15%。
所述AlGaN层、ScAlN层和GaN过渡层构成异质结,所述ScAlN层的厚度为5~10nm;所述AlGaN层的厚度为5~10nm。
GaN通道层和AlGaN势垒层构成AlGaN/GaN异质结,GaN通道层的厚度为300~500nm,AlGaN势垒层中的Al组分优选25%~30%,其厚度为200~300nm。
所述ScAlN层选用低压、脉冲外延生长工艺。
所述p-GaN帽层与源极和漏极之间设置钝化层,所述钝化层位于AlGaN层表面。
所述源空气桥结构与所述栅极和钝化层之间设置空气介质。
所述衬底优选半绝缘4H-SiC衬底或6H-SiC衬底,可选地,其厚度可减薄至50~100μm。
所述p-GaN帽层区域的厚度为50~100nm,掺杂浓度可为1~2×1018cm-3
本发明还提供一种含Sc掺杂的源空气桥结构GaN射频HEMT的制备方法,包含以下步骤:
在衬底上依次外延生长GaN通道层、AlGaN势垒层、GaN过渡层、ScAlN层和AlGaN层;
在所述AlGaN层上沉积钝化层,形成p-GaN帽层生长窗口;
外延生长p-GaN帽层;
形成源极和漏极窗口,沉积源极和漏极金属层;
在p-GaN帽层上形成栅极;
形成横跨栅极的源空气桥结构,其一端位于源极表面,另一端位于栅漏区域的钝化层表面。
所述ScAlN层的外延生长中,选用三环戊二烯基钪(Cp3Sc)为钪的前体,设置生长温度为1000℃至1200℃,利用脉冲生长方法,Cp3Sc以5s的周期循环通入、TM-Al以2s的周期循环通入生长ScAlN层,其中Sc的掺杂比例为10~15%。
附图说明
图1是本发明一实施例的含Sc掺杂的源空气桥结构GaN射频HEMT的剖面结构示意图。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从公开商业途径获得。下面来对本发明做进一步详细的说明。
本说明书中使用例如“之下”、“下方”、“下”、“之上”、“上方”、“上”等空间相对性术语,以解释一个元件相对于第二元件的定位。除了与图中所示那些不同的取向以外,这些术语意在涵盖器件的不同取向。
另外,使用诸如“第一”、“第二”等术语描述各个元件、层、区域、区段等,并非意在进行限制。使用的“具有”、“含有”、“包含”、“包括”等是开放式术语,表示存在所陈述的元件或特征,但不排除额外的元件或特征。除非上下文明确做出不同表述。
本发明一实施例提供一种含Sc掺杂的源空气桥结构GaN射频HEMT,如图1所示,该器件包括衬底11,衬底11优选SiC衬底,特别优选半绝缘4H-SiC型或6H-SiC型衬底。SiC衬底可背面减薄至50~100μm。
GaN通道层21位于衬底11上,其厚度为300~500nm。依次层叠的AlGaN势垒层22、GaN过渡层31、ScAlN层32、AlGaN层33和p-GaN帽层区域51构成的叠层位于GaN通道层21上。源极41和漏极43设置于该叠层两侧,位于GaN通道层21的表面。
其中,AlGaN势垒层22中的Al组分优选25~30%,其厚度为200~300m。GaN通道层21和AlGaN势垒层22构成AlGaN/GaN异质结。GaN过渡层31的厚度为20~35nm。ScAlN层32的厚度为5~10nm,其中Sc的掺杂比例为10~15%。即,ScAlN层32中Sc与Al的摩尔比为10~15%。
AlGaN层33的厚度为5~10nm,其Al组分为25~30%。AlGaN层33、ScAlN层32和GaN过渡层31共同构成一个特殊结构的异质结,该异质结中掺杂Sc(钪)的AlN层引入AlGaN/GaN势垒中,增加了自发和压电(应变相关)电荷极化,从而使得其二维电子气(2-DEG)薄层电荷的载流子密度最高提升至5倍,与此同时,应变驰豫问题也可以得到很好的控制,这一特殊结构的异质结增强了器件射频性能和可靠性。进一步的,采用低压脉冲式外延生长工艺获得形貌和晶体质量优异的ScAlN层进一步提升了器件的射频性能和可靠性。
钝化层52位于源极41、漏极43和p-GaN帽层区域51之间。钝化层优选SiN。优选地,钝化层52的厚度等于p-GaN帽层区域51的厚度,为50~100nm。p-GaN帽层区域51的掺杂浓度为1~2×1018cm-3
栅极42位于p-GaN帽层区域51上,栅极金属优选Ni/Au复合金属层。源空气桥结构61横跨栅极42,其一端位于源极41的表面,另一端位于栅漏区域的钝化层52上,其以栅极42为对称轴,左右对称。源极空气桥结构61与栅极42以及钝化层52之间存在空气介质。该源空气桥结构的设置,相对其他介质桥结构,降低了寄生电容,能够在上述异质结性能的基础上,进一步增强器件的射频性能。
基于上述含Sc掺杂的源空气桥结构GaN射频HEMT,接下来详细介绍该GaN射频HEMT器件的制备方法。包括以下步骤:
首先,选用半绝缘型4H-SiC衬底,进行衬底的清洗,设置腔室温度为1000℃左右的高温清洗,通入氢气,去除表面污染物、形成台阶。
接着,选用金属有机物化学气相淀积(MOCVD)工艺,在半绝缘4H-SiC衬底上,外延生长厚度为300~500nm的GaN通道层。通入NH3、H2、镓源,腔室压力设置为5300~5500Pa,设定反应温度为1000~1100℃,镓源流量为220sccm,H2流量为500sccm,NH3流量为5000sccm,采用非故意掺杂。之后保持在氨气气氛降温,控制GaN通道层的稳定。
继续在GaN通道层上外延Al组分为25~30%的AlGaN势垒层,采用非故意掺杂,通入NH3、H2、镓源、铝源,生长温度设置为900~920℃,厚度范围为200~300nm。
在AlGaN势垒层上外延生长厚度为20~35nm的GaN过渡层,采用非故意掺杂,通入H2、NH3和镓源,生长温度设置为900~920℃,压力为5300~5500Pa,镓源流量为220sccm,H2流量为500sccm,NH3的流量为5000sccm。
接着在40~100mbar的低压环境下,继续外延生长ScAlN层,其中Sc的掺杂比例为10~15%。以氢气作为载气,NH3为氮源,采用三环戊二烯基钪(Cp3Sc)为钪的前体,三甲基铝(TM-Al)为铝源,生长温度为1000℃至1200℃,利用脉冲方法生长ScAlN层。其中,Cp3Sc以5s的循环周期通入、TM-Al(三甲基铝源)以2s的循环周期通入,从而对表面形貌和生长结构做进一步完善。
继续外延生长厚度为5~10nm的AlGaN层,Al组分为25~30%。通入NH3、H2、铝源、镓源,生长温度范围为900~920℃。该AlGaN层与ScAlN层、GaN过渡层共同构成一个特殊结构的异质结。
在AlGaN层上,选用等离子增强化学气相沉积(PECVD)工艺沉积SiN钝化层,钝化层厚度设置为50~100nm,温度为250℃左右。采用SiH4作硅源,N2O为氮源,其中SiH4流量设为150sccm,N2O流量设为800sccm,功率设为20~30W。钝化层生长后,可以利用椭偏仪等器材对其进行参数测试,以保证其漏电等各项参数符合规定要求。
接着采用湿法刻蚀方法,在SiN钝化层上刻蚀出p-GaN帽层的生长窗口。优选地,该窗口厚度与SiN钝化层相同,为50~100nm。
继续在p-GaN帽层窗口外延生长p-GaN层,其厚度与SiN钝化层相同,p型的掺杂浓度范围为1~2×1018cm-3。其生长温度范围为1000~1100℃,压力范围为5300~5500Pa。
接着,旋涂光刻胶层,光刻形成源极和漏极窗口。选用电子束蒸发工艺,淀积金属Ti/Al/Ni/Au,真空度小于2.0×10-6Pa,蒸发速率为2~3埃/秒,功率范围在150~200W。之后,将外延片置于丙酮溶液中浸泡,浸泡时长为10~20min,将源极、漏极以外的金属剥离。随后在800~900℃下退火,时长30~40s,保护气体选用氩气或氮气。优选地,将外延片于850℃的氨气中进行30s的欧姆接触退火,从而形成源漏接触电极。
继续旋涂光刻胶层,在p-GaN帽层上方形成栅极窗口,淀积金属金属层形成接触栅极。选用电子束蒸发工艺淀积Ni/Au两层金属,再采用丙酮溶液浸泡进行金属剥离,用超纯水冲洗2min并用氨气吹干,形成栅极。
接着,形成横跨栅极的源空气桥结构,其一端位于源极表面,另一端位于栅漏区域的钝化层表面。首先形成光刻胶预定图案,进行温度为80~90℃的软烘,初步形成源空气桥的牺牲层。
随后采用O2等离子体打底膜,并用电子束蒸发工艺沉积起镀层。先以0.1nm/s的速率沉积一层易腐蚀的Ti(薄层)和Au,之后使用光刻板进行曝光、显影操作,形成空气桥的电镀加厚层。之后采用电镀Au的无氰化物电镀液以1~5nm/min的速率进行加厚电镀,形成空气桥的桥面。电镀温度范围为35~45℃。
在形成空气桥桥面后,去除掩膜层的光刻胶。采用曝光显影腐蚀法,先进行泛曝光处理,之后使用显影液去胶,去除电镀所用的掩膜层。
接着旋涂光刻胶并进行软烘操作,其中软烘时间范围为10~15min,采用光刻版精确曝光光刻。
随后腐蚀起镀层。采用KI溶液,以1~2nm/s速率对Au进行腐蚀。采用浓度为5~10%的HF溶液,以速率0.1~0.2nm/s对Ti进行腐蚀。去除光刻胶层。形成源空气桥最终形态。
从半绝缘型衬底的背面减薄衬底,最终完成如图1所示的器件制造。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.含Sc掺杂的源空气桥结构GaN射频HEMT,其特征在于,包括:
衬底;
GaN通道层,位于所述衬底上;
依次层叠的AlGaN势垒层、GaN过渡层、ScAlN层、AlGaN层和p-GaN帽层区域构成的叠层,位于所述GaN通道层上;
栅极,位于所述p-GaN帽层上;
源极和漏极,设置于所述叠层两侧,位于所述GaN通道层表面;
源空气桥结构,以一端位于所述源极表面起始,横跨所述栅极,另一端位于栅漏区域的所述叠层上的对称结构;
其中,所述ScAlN层中,Sc的掺杂比例为10~15%。
2.根据权利要求1的所述GaN射频HEMT,其特征在于,所述AlGaN层、ScAlN层和GaN过渡层构成异质结,所述ScAlN层的厚度为5~10nm;所述AlGaN层的厚度为5~10nm。
3.根据权利要求1或2的所述GaN射频HEMT,其特征在于,GaN通道层和AlGaN势垒层构成AlGaN/GaN异质结,GaN通道层的厚度为300~500nm,AlGaN势垒层中的Al组分选用25%~30%,其厚度为200~300nm。
4.根据权利要求3的所述GaN射频HEMT,其特征在于,所述ScAlN层选用低压脉冲外延生长工艺。
5.根据权利要求3的所述GaN射频HEMT,其特征在于,所述p-GaN帽层与源极和漏极之间设置钝化层,所述钝化层位于AlGaN层表面。
6.根据权利要求1或2的所述GaN射频HEMT,其特征在于,所述源空气桥结构与所述栅极和钝化层之间设置空气介质。
7.根据权利要求1或2的所述GaN射频HEMT,其特征在于,所述衬底选用半绝缘4H-SiC衬底或6H-SiC衬底,其厚度减薄至50~100μm。
8.根据权利要求1或2的所述GaN射频HEMT,其特征在于,所述p-GaN帽层区域的厚度为50~100nm,掺杂浓度为1~2×1018cm-3
9.含Sc掺杂的源空气桥结构GaN射频HEMT的制备方法,其特征在于,包含以下步骤:
在衬底上依次外延生长GaN通道层、AlGaN势垒层、GaN过渡层、ScAlN层和AlGaN层;
在所述AlGaN层上沉积钝化层,形成p-GaN帽层生长窗口;
外延生长p-GaN帽层;
形成源极和漏极窗口,沉积源极和漏极金属层;
在p-GaN帽层上形成栅极;
形成横跨栅极的源空气桥结构,其一端位于源极表面,另一端位于栅漏区域的钝化层表面。
10.根据权利要求9的所述制备方法,其特征在于,所述ScAlN层的外延生长中,选用三环戊二烯基钪(Cp3Sc)为钪的前体,设置生长温度为1000℃至1200℃,利用脉冲生长方法,三环戊二烯基钪以5s的周期循环通入、三甲基铝以2s的周期循环通入生长ScAlN层,其中Sc的掺杂比例为10~15%。
CN202110511021.XA 2021-05-11 2021-05-11 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法 Active CN113257911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110511021.XA CN113257911B (zh) 2021-05-11 2021-05-11 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110511021.XA CN113257911B (zh) 2021-05-11 2021-05-11 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法

Publications (2)

Publication Number Publication Date
CN113257911A CN113257911A (zh) 2021-08-13
CN113257911B true CN113257911B (zh) 2022-05-10

Family

ID=77222667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110511021.XA Active CN113257911B (zh) 2021-05-11 2021-05-11 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法

Country Status (1)

Country Link
CN (1) CN113257911B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461543A (zh) * 2018-05-29 2018-08-28 苏州闻颂智能科技有限公司 一种GaN HEMT器件及其制备方法
CN112542508A (zh) * 2020-12-10 2021-03-23 西安电子科技大学 ScAlN/GaN高电子迁移率晶体管及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461656A (zh) * 2018-10-31 2019-03-12 苏州汉骅半导体有限公司 半导体器件制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461543A (zh) * 2018-05-29 2018-08-28 苏州闻颂智能科技有限公司 一种GaN HEMT器件及其制备方法
CN112542508A (zh) * 2020-12-10 2021-03-23 西安电子科技大学 ScAlN/GaN高电子迁移率晶体管及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ScAlN/GaN High-Electron-Mobility Transistors With 2.4-A/mm Current Density and 0.67-S/mm Transconductance";Green, AJ et al.;《IEEE ELECTRON DEVICE LETTERS》;20190716;全文 *

Also Published As

Publication number Publication date
CN113257911A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP7178121B2 (ja) 半導体デバイスの製造方法、及びその使用
CN109728087B (zh) 基于纳米球掩模的低欧姆接触GaN基HEMT制备方法
CN112635544A (zh) 具有偶极子层的增强型AlGaN-GaN垂直型超结HEMT及其制备方法
CN112993019A (zh) 带有空气桥场板结构的GaN HEMT射频器件及其制备方法
WO2022165884A1 (zh) 一种新型增强型GaN HEMT器件结构
CN112993030A (zh) 一种提高槽栅GaN MIS FET器件可靠性的方法
JP2019096774A (ja) 窒化物半導体素子の製造方法
CN113257911B (zh) 含Sc掺杂的源空气桥结构GaN射频HEMT及其制备方法
CN112466925B (zh) 一种低射频损耗的硅基氮化镓射频功率器件及其制备方法
CN112713188B (zh) 一种GaN基增强型MIS-HEMT器件及其制备方法
CN112993029B (zh) 一种提高GaN HEMT界面质量的方法
CN113257901A (zh) 栅极空气腔结构射频hemt器件及其制备方法
CN109346519A (zh) 非极性InAlN/GaN高电子迁移率晶体管及制备方法
CN114725214A (zh) 一种多层钝化凹槽栅mis-hemt器件及其制备方法
JP2019067887A (ja) 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
CN113809154A (zh) 一种氮化物势垒应力调制器件及其制备方法
CN113270494B (zh) 双渐变沟道氮化镓基垂直结构射频器件及其制备方法
JP2021111698A (ja) 半導体装置及び半導体装置の製造方法
US11557682B1 (en) Low turn-on voltage GaN diodes having anode metal with consistent crystal orientation and preparation method thereof
CN111613670B (zh) 一种三明治弧形栅极结构的hemt器件及其制备方法
CN113257910B (zh) 梳型栅结构hemt射频器件及其制备方法
CN115602540B (zh) 一种增强型GaN功率器件的制造方法
CN113540208B (zh) 基于原位生长MIS结构的垂直GaN肖特基二极管及其制备方法
CN111640671B (zh) 氮化镓基高电子迁移率晶体管及其制备方法
CN113257896A (zh) 多场板射频hemt器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221114

Address after: 215124 room 214, building 23, North Central District, Suzhou nano City, No. 99, Jinjihu Avenue, Suzhou Industrial Park, Jiangsu Province

Patentee after: Jiangsu third generation semiconductor Research Institute Co.,Ltd.

Address before: Institute of semiconductor science and technology, 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510630

Patentee before: SOUTH CHINA NORMAL University