CN113555419B - 氧化镓系半导体及其制造方法 - Google Patents

氧化镓系半导体及其制造方法 Download PDF

Info

Publication number
CN113555419B
CN113555419B CN202110428555.6A CN202110428555A CN113555419B CN 113555419 B CN113555419 B CN 113555419B CN 202110428555 A CN202110428555 A CN 202110428555A CN 113555419 B CN113555419 B CN 113555419B
Authority
CN
China
Prior art keywords
gallium oxide
oxide semiconductor
ltoreq
equal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110428555.6A
Other languages
English (en)
Other versions
CN113555419A (zh
Inventor
山野飒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN113555419A publication Critical patent/CN113555419A/zh
Application granted granted Critical
Publication of CN113555419B publication Critical patent/CN113555419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

提供带隙被充分缩小的氧化镓系半导体及其制造方法。提供一种氧化镓系半导体,具有组成由(Ga(1‑x)Fex)2yO3(其中,0.10≤x≤0.40且0.8≤y≤1.2)表示的混晶,并且所述混晶具有β‑gallia构造。另外,提供一种氧化镓系半导体的制造方法,包括采用脉冲激光沉积法来在基板表面形成组成由(Ga(1‑x)Fex)2yO3(其中,0.10≤x≤0.40且0.8≤y≤1.2)表示的混晶的膜,在将所述基板的温度设为T℃时,所述x和所述T满足由500x+800≤T<1000表示的关系。

Description

氧化镓系半导体及其制造方法
技术领域
本公开涉及氧化镓系半导体及其制造方法。本公开尤其涉及带隙被缩小的氧化镓系半导体及其制造方法。
背景技术
半导体功率器件被搭载于家电、汽车、铁路车辆(电车)和产业用设备等各种各样的电气设备,作为控制电压和/或电流的器件来使用。在控制电压和/或电流时,电在半导体功率器件中流动。此时,若半导体功率器件的电阻大,则会产生电能损失。例如,在电动汽车的情况下,若在半导体功率器件的电力转换中产生电能损失,则通过一次充电能够行驶的距离变短。因此,在半导体功率器件中,使电阻下降而使电能损失下降是重要的。
作为如上所述的半导体功率器件用的材料,迄今为止,碳化硅和/或氮化镓被开发及实用化。作为与这些材料相比损失更低的半导体功率器件用材料,近年来,氧化镓受到关注。
氧化镓存在具有α、β、γ、δ和ε这5种类型的晶体构造的相。其中最稳定相是具有β型晶体构造的相,即β-Ga2O3相。β-Ga2O3相具有特有的单斜晶系β-gallia构造(以下,有时简称作“β-gallia构造”)。
作为具有β-gallia构造的氧化镓系半导体,例如非专利文献1中公开了组成为(Ga(1-x)Fex)2O3的氧化镓系半导体。另外,非专利文献1中公开了上述氧化镓系半导体使用脉冲激光沉积法形成于750℃的基板上。
现有技术文献
非专利文献1:Yuanqi Huang等,“High-insulatingβ-Ga2O3thin films by dopingwith a valence controllable Fe element”,应用物理学(Applied Physics), A (2018)124:611.
发明内容
半导体功率器件用材料基本上要求具有宽的带隙。氧化镓系半导体具有宽的带隙,但根据半导体功率器件的种类,有时带隙过宽而难以应用。因此,有时想要缩小氧化镓系半导体的带隙。
已知要缩小氧化镓系半导体的带隙,将氧化镓中的部分镓用铁置换是有效的。但是,若铁的置换比例变高,则难以维持β-gallia构造。若氧化镓系半导体中的β-gallia构造受损,则使用了氧化镓系半导体的器件的导电率、耐电压、稳定性及制造成品率受损。因此,如非专利文献1记载的氧化镓系半导体那样,仅做到了向氧化镓添加微量铁作为掺杂剂,尚不能充分缩小带隙。
因此,本发明人发现了期望带隙被充分缩小的氧化镓系半导体及其制造方法这一课题。
本公开是为了解决上述课题而完成的。即,本公开的目的在于提供带隙被充分缩小的氧化镓系半导体及其制造方法。
本发明人为了达成上述目的而反复锐意研究,完成了本公开的氧化镓系半导体及其制造方法。本公开的氧化镓系半导体及其制造方法包括以下方案。
<1>一种氧化镓系半导体,
具有组成由(Ga(1-x)Fex)2yO3(其中,0.10≤x≤0.40且0.8≤y≤1.2)表示的混晶,并且,
所述混晶具有β-gallia构造。
<2>根据<1>项所述的氧化镓系半导体,来源于所述β-gallia构造的X射线衍射峰的半高宽为1度以下。
<3>根据<1>或<2>项所述的氧化镓系半导体,所述x为0.10≤x≤0.30。
<4>根据<1>~<3>项中任一项所述的氧化镓系半导体,所述y为1.0。
<5>一种氧化镓系半导体的制造方法,是制造<1>项所述的氧化镓系半导体的方法,
包括采用脉冲激光沉积法在基板表面形成组成由(Ga(1-x)Fex)2yO3(其中,0.10≤x≤0.40且0.8≤y≤1.2)表示的混晶的膜,
在将所述基板的温度设为T℃时,所述x和所述T满足由500x+800≤T<1000表示的关系。
<6>根据<5>项所述的氧化镓系半导体的制造方法,所述x和所述T满足由500x+800≤T≤950表示的关系。
<7>根据<5>或<6>项所述的氧化镓系半导体的制造方法,所述脉冲激光沉积法中使用的激光是紫外线脉冲激光。
<8>根据<5>~<7>项中任一项所述的氧化镓系半导体的制造方法,所述x为0.10≤x≤0.30。
<9>根据<5>~<8>项中任一项所述的氧化镓系半导体的制造方法,所述y为1.0。
根据本公开,通过采用脉冲激光沉积法在预定的基板温度下成膜,即使用比较多的铁置换镓,也可维持β-gallia构造,能够提供带隙被充分缩小的氧化镓系半导体及其制造方法。
附图说明
图1是示意性地表示本公开的氧化镓系半导体的制造方法中使用的脉冲激光沉积法的说明图。
图2是示出氧化镓系半导体中的混晶的组成、基板温度及结晶性的关系的坐标图。
图3是表示比较例1的试料的X射线衍射图案的图。
图4是表示比较例2的试料的X射线衍射图案的图。
图5是表示实施例1的试料的X射线衍射图案的图。
图6是表示实施例2的试料的X射线衍射图案的图。
图7是表示实施例3的试料的X射线衍射图案的图。
图8是表示比较例3的试料的X射线衍射图案的图。
图9是表示氧化镓系半导体中的混晶的组成与带隙的关系的坐标图。
附图标记说明
12 氛围气体导入装置
14 真空排气装置
20 靶
30 基板
40 激光导入口
50 氧化镓系半导体
100 脉冲激光沉积装置100
具体实施方式
以下,详细说明本公开的氧化镓系半导体及其制造方法的实施方式。再者,以下所示实施方式并不限定本公开的氧化镓系半导体及其制造方法。
以往,脉冲激光沉积法中,认为优选使基板温度成为500~750℃而进行对象物的成膜。即使在上述基板温度的范围内,若基板温度成为600℃以上,则沉积于基板的原子的脱离会被促进,因此成膜速度急剧下降。因而,认为使基板温度成为500~600℃的低温范围进行对象物的成膜更优选。
但是,在氧化镓(Ga2O3)的成膜的情况下,若在500~600℃的低温范围成膜,则难以抑制具有刚玉构造的准稳定相(α-Ga2O3)的生成,其结果,难以得到具有β-gallia构造的最稳定相(β-Ga2O3)。因而,在进行具有β-gallia构造的氧化镓(β-Ga2O3)的成膜的情况下,在650~750℃的高温范围成膜。
另一方面,与氧化镓(Ga2O3)相比,氧化铁(Fe2O3)的带隙窄。因此,通过将镓(Ga2O3)和氧化铁(Fe2O3)混晶化,即,将氧化镓中的部分镓用铁置换而混晶化,能够缩小氧化镓系半导体的带隙。
在进行将氧化镓中的部分镓用铁置换而成的混晶的成膜的情况下,作为靶,使用氧化镓(Ga2O3)和氧化铁(Fe2O3)。氧化镓(Ga2O3)的最稳定相具有单斜晶系β-gallia构造,氧化铁(Fe2O3)的最稳定相具有三方晶系刚玉构造。因而,关于氧化镓(Ga2O3),即使为了得到β-gallia构造而在650~750℃的高温范围成膜,也存在因氧化铁(Fe2O3)而使混晶得不到β-gallia构造这种担心。另外,还存在铁在混晶中偏析的担心。
但是,本发明人发现:实际上,若铁的置换比例(靶的氧化铁(Fe2O3)的配合比例)为预定范围,则通过在超过650~750℃的高温范围与铁的置换比例增加成比例地使基板温度上升,能够进行具有β-gallia构造的相的成膜。
接着,基于这些见解,对本公开的氧化镓系半导体及其制造方法的构成要件进行说明。
《氧化镓系半导体》
首先,对本公开的氧化镓系半导体的构成要件进行说明。
<混晶的组成>
本公开的氧化镓系半导体具有由(Ga(1-x)Fex)2yO3表示的混晶。在该混晶中,氧化镓(Ga2O3)的部分镓被铁置换,铁固溶于氧化镓(Ga2O3)。
铁的置换比例由x表示,满足0.1≤x≤0.4。若x为0.1以上,则相对于氧化镓(Ga2O3),能够将带隙缩小期望量。从该观点来看,x优选为0.15以上,更优选为0.20以上。期望的缩小量是1~2eV。
另一方面,若x为0.40以下,则能够得到具有β-gallia构造的相。从该观点来看,x优选为0.35以下,更优选为0.30以下。
本公开的氧化镓系半导体典型地具有组成由(Ga(1-x)Fex)2yO3(y=1.0)即(Ga(1-x)Fex)2O3表示的混晶,也可以是在0.8≤y≤1.2的范围由y=1.0以外表示的组成的混晶。本公开的氧化镓半导体理想的是所有混晶具有由(Ga(1-x)Fex)2O3表示的组成。但是,因晶格缺陷等,也可以局部地包含不是(Ga(1-x)Fex)2O3的混晶。从该观点来看,y可以为0.85以上、0.90以上或0.95以上,也可以为1.15以下、1.10以下或1.05以下。
本公开的氧化镓系半导体可以在上述混晶之外还含有微量元素等。作为微量元素,典型地可举出掺杂剂。
作为n型掺杂剂,可举出锡(Sn)、钛(Ti)、锆(Zr)、铪(Hf)、钒(V)、铌(Nb)、钽(Ta)、钼(Mo)、钨(W)、钌(Ru)、铑(Rh)、铱(Ir)、碳(C)、硅(Si)、锗(Ge)、锰(Mn)、砷(As)、锑(Sb)、铋(Bi)、氟(F)、氯(Cl)、溴(Br)和碘(I)等。也可以将它们组合使用。
作为p型掺杂剂,可举出镁(Mg)、氢(H)、锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)、铍(Be)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、钯(Pd)、铜(Cu)、银(Ag)、金(Au)、锌(Zn)、镉(Cd)、汞(Hg)、铊(Tl)、氮(N)和磷(P)等。也可以将它们组合使用。
也可以在如上所述的微量元素之外还含有不可避免的杂质。不可避免的杂质是指本公开的氧化镓系半导体的原材料所含的杂质或在制造工序中混入的杂质等无法避免其含有或者为了避免会导致显著的制造成本上升的杂质。在制造工序中混入的杂质等包括因制造上的情况而在实质上不对本公开的氧化镓系半导体的特性造成影响的范围内含有的物质。
本公开的氧化镓系半导体的组成的分析方法没有限制。尤其是本公开的氧化镓系半导体中的混晶组成例如能够使用电子探针微量分析器(EPMA)来分析。由此,能够高精度地分析混晶的成分,尤其是铁的置换比例x。
<混晶的晶体构造>
本公开的氧化镓系半导体中的混晶具有β-gallia构造。由此,导电率和耐电压以及它们的稳定性提高。本公开的氧化镓系半导体的β-gallia构造与氧化镓的最稳定相(β-Ga2O3)具有的晶体构造同等。
β-gallia构造能够通过对本公开的氧化镓系半导体例如进行X射线衍射分析而确认。本公开的氧化镓系半导体的来源于β-gallia构造的X射线衍射峰的半高宽优选为1度以下。由此,本公开的氧化镓系半导体中的β-gallia构造的晶格缺陷少,导电率和耐电压以及它们的稳定性进一步提高。从该观点来看,X射线衍射峰的半高宽优选为0.8度以下、0.6度以下、0.4度以下或0.2度以下。另一方面,X射线衍射的峰的半高宽越小,β-gallia构造的晶格缺陷就越少,但即使晶格缺陷不是全消失,在实用上也没有问题。从该观点来看,X射线衍射峰的半高宽可以为0.1度以上。
《制造方法》
接着,对本公开的氧化镓系半导体的制造方法进行说明。本公开的氧化镓系半导体的制造方法包括成膜工序。以下,对成膜工序进行说明。
<成膜工序>
采用脉冲激光沉积法在基板表面来形成组成由(Ga(1-x)Fex)2yO3(其中,0.10≤x≤0.40且0.8≤y≤1.2)表示的混晶的膜,得到本公开的氧化镓半导体。使用附图对此进行说明。
图1是示意性地表示本公开的氧化镓系半导体的制造方法中使用的脉冲激光沉积法的说明图。
本公开的氧化镓系半导体的制造方法例如使用图1所示的脉冲激光沉积装置100。脉冲激光沉积装置100具备真空腔。在真空腔连结有氛围气体导入装置12和真空排气装置14。
在真空腔的内部设置有靶20、基板30和激光导入口40。靶20和基板30对向。在基板30的未与靶20对向一侧的面设置有基板加热装置32。从脉冲激光振荡器(未图示)发射出的脉冲激光42穿过激光导入口40向真空腔的内部导入。
本公开的氧化镓系半导体的制造方法中,向靶20照射从激光导入口40导入的脉冲激光42,使靶20的一部分蒸发或升华(消融)。另外,利用基板加热装置32加热基板30。于是,蒸发或升华(消融)后的物质沉积在基板30的表面。该沉积物是氧化镓系半导体50。
只要可得到具有组成由(Ga(1-x)Fex)2yO3(其中,0.10≤x≤0.40且0.8≤y≤1.2)表示的混晶的氧化镓系半导体,靶20就没有特别制限。典型地,使用氧化镓(Ga2O3)的粉末与氧化铁(Fe2O3)的粉末的混合粉末的压粉烧结体。以在氧化镓系半导体中的混晶中铁的置换比例x成为期望值的方式,将氧化镓(Ga2O3)的粉末和氧化铁(Fe2O3)的粉末配合。
脉冲激光42的种类没有特别限制。从得到高输出这一观点来看,优选是紫外线脉冲激光。作为激光振荡器,能够使用惰性气体激元激光振荡器和卤素气体激光振荡器等。典型地,能够使用氩气激元激光振荡器和氩氟激元激光振荡器等。
若向靶20照射脉冲激光42,则从靶20中的氧化镓(Ga2O3)和氧化铁(Fe2O3)向真空腔的内部放出镓原子、铁原子和氧原子。此时,优选从氛围气体导入装置12向真空腔的内部供给氧气,以使得镓原子和铁原子被切实地氧化而沉积。
作为基板30,可以使用能够进行具有β-gallia构造的氧化镓(β-Ga2O3)的成膜的基板。作为这样的基板,例如可举出β-Ga2O3、(0001)面α-Al2O3和c面蓝宝石等。从基板的晶体构造与膜的晶体构造的匹配性的观点来看,优选β-Ga2O3基板。从在成膜后调查膜的组成及晶体构造时区分来自基板的信息和来自膜的信息的观点来看,优选(0001)面α-Al2O3基板。
如上所述,成膜中,基板30被加热。若基板温度T为600℃以上,则能够进行晶质的氧化镓系半导体的成膜。另一方面,若基板温度T为1000℃以下,则能够抑制很多构成元素从已成膜的氧化镓系半导体脱离,因此能够抑制成膜速度显著下降。并且,若铁的置换比例x与基板温度T的关系满足0.10≤x≤0.40和500x+800≤T<1000,则成膜后的氧化镓系半导体中的混晶具有β-gallia构造。而且,若铁的置换比例x与基板温度T的关系满足0.10≤x≤0.30和500x+800≤T≤950,则在对成膜后的氧化镓系半导体进行了X射线衍射分析时,来源于β-gallia构造的峰的半高值成为1度以下。即,能够得到晶格缺陷少的β-gallia构造。从该观点来看,在上式中,T可以满足(500x+800)以上且为930以下、900以下、870以下或850以下。
<变形>
即使在到此为止说明的内容以外,本公开的氧化镓系半导体及其制造方法也能够在权利要求书所记载的内容的范围内施加各种变形。如上所述,本公开的氧化镓系半导体在基板上成膜。本公开的氧化镓半导体可以带着基板使用,也可以除去基板而使用。在除去基板而使用的情况下,对本公开的氧化镓系半导体的制造方法追加基板除去工序。基板除去的方法能够应用周知的方法,例如研磨和抛光等。
【实施例】
以下,通过实施例和比较例来进一步具体说明本公开的氧化镓系半导体及其制造方法。再者,本公开的氧化镓系半导体及其制造方法不限定于在以下实施例中使用的条件。
《试料的准备》
使用图1所示脉冲激光沉积装置100,通过以下步骤准备了实施例1~6和比较例1~7的试料。
<实施例1的试料的准备>
在真空腔的内部设置靶20和基板30,使用真空排气装置14对真空腔的内部抽真空。从氛围气体导入装置12向真空腔的内部供给了氧气。氧气的流量是0.6sccm,真空腔的内部压力是0.8Pa。
使用基板加热装置32将基板30加热到850℃(基板温度T是850℃)。向靶20照射脉冲激光42,在加热中的基板30进行了氧化镓系半导体50的成膜。
作为基板30,使用α-Al2O3,沉积面是(0001)。作为脉冲激光42,使用了紫外线脉冲激光。作为脉冲激光振荡器,使用了氩氟激元激光振荡器。作为靶20,使用了氧化镓(Ga2O3)的粉末与氧化铁(Fe2O3)的粉末的混合粉末的压粉烧结体。以铁的置换比例x成为0.10的方式,配合氧化镓(Ga2O3)的粉末和氧化铁(Fe2O3)。
<实施例2的试料的准备>
基板温度T是900℃,并且铁的置换x是0.20,除此以外与实施例1同样地准备了实施例2的试料。
<实施例3的试料的准备>
基板温度T是950℃,并且铁的置换比例x是0.30,除此以外与实施例1同样地准备了实施例3的试料。
<实施例4的试料的准备>
基板温度T是900℃,除此以外与实施例1同样地准备了实施例4的试料。
<实施例5的试料的准备>
基板温度T是950℃,除此以外与实施例1同样地准备了实施例5的试料。
<实施例6的试料的准备>
基板温度T是950℃,除此以外与实施例2同样地准备了实施例6的试料。
<比较例1的试料的准备>
基板温度T是750℃,除此以外与实施例2同样地准备了比较例1的试料。
<比较例2的试料的准备>
基板温度T是850℃,除此以外与实施例2同样地准备了比较例2的试料。
<比较例3的试料的准备>
基板温度T是950℃,并且铁的置换比例x是0.40,除此以外与实施例1同样地准备了比较例3的试料。
<比较例4的试料的准备>
基板温度T是800℃,除此以外与实施例1同样地准备了比较例4的试料。
<比较例5的试料的准备>
基板温度T是650℃,除此以外与实施例2同样地准备了比较例5的试料。
<比较例6的试料的准备>
基板温度T是800℃,除此以外与实施例2同样地准备了比较例6的试料。
<比较例7的试料的准备>
基板温度T是900℃,除此以外与比较例3同样地准备了比较例7的试料。
《评价》
对于各试料,进行了X射线衍射分析。另外,对于实施例1~3和比较例3的试料,评价(测定)了带隙。带隙通过测定光的透射率而评价。具体而言,向试料照射能量不同的光,测定了其透射率。由于仅能量比带隙小的光通过(透过)试料,所以根据该透射率的能量依存性而求出了带隙。
将结果在图2中示出。在图2中,进行X射线衍射分析的结果,关于显示β-gallia构造的峰且该峰的半高值为1度以下的试料,作为结晶性良好的实施例而以圆标记示出,关于未显示β-gallia构造的峰的试料,作为结晶性不良好的比较例而以叉标记示出。另外,关于非专利文献1所示结果,作为以往例以四边标记示出。
另外,图3是表示比较例1的试料的X射线衍射图案的图。图4是表示比较例2的试料的X射线衍射图案的图。图5是表示实施例1的试料的X射线衍射图案的图。图6是表示实施例2的试料的X射线衍射图案的图。图7是表示实施例3的试料的X射线衍射图案的图。图8是表示比较例3的试料的X射线衍射图案的图。图9是表示氧化镓系半导体中的混晶的组成与带隙的关系的坐标图。
从图3~图9可知,能够确认到:满足500x+800≤T<1000的实施例1~6的试料的氧化镓系半导体具有期望的β-gallia构造。另外,从图3和图9能够确认到:在具有β-gallia构造的氧化镓系半导体中,若铁的置换比例x为0.1~0.4,则带隙充分缩小。
从上述结果能够确认到本公开的氧化镓系半导体及其制造方法的效果。

Claims (14)

1.一种氧化镓系半导体,
具有组成由(Ga(1-x)Fex)2yO3表示的混晶,并且,
所述混晶具有β-gallia构造,
其中,0.10≤x≤0.40且0.8≤y≤1.2。
2.根据权利要求1所述的氧化镓系半导体,
来源于所述β-gallia构造的X射线衍射峰的半高宽为1度以下。
3.根据权利要求1或2所述的氧化镓系半导体,
所述x为0.10≤x≤0.30。
4.根据权利要求1或2所述的氧化镓系半导体,
所述y为1.0。
5.根据权利要求3所述的氧化镓系半导体,
所述y为1.0。
6.一种氧化镓系半导体的制造方法,是制造权利要求1所述的氧化镓系半导体的方法,
包括采用脉冲激光沉积法在基板表面形成组成由(Ga(1-x)Fex)2yO3表示的混晶的膜,其中,0.10≤x≤0.40且0.8≤y≤1.2,
在将所述基板的温度设为T℃时,所述x和所述T满足由500x+800≤T<1000表示的关系。
7.根据权利要求6所述的氧化镓系半导体的制造方法,
所述x和所述T满足由500x+800≤T≤950表示的关系。
8.根据权利要求6或7所述的氧化镓系半导体的制造方法,
所述脉冲激光沉积法中使用的激光是紫外线脉冲激光。
9.根据权利要求6或7所述的氧化镓系半导体的制造方法,
所述x为0.10≤x≤0.30。
10.根据权利要求8所述的氧化镓系半导体的制造方法,
所述x为0.10≤x≤0.30。
11.根据权利要求6或7所述的氧化镓系半导体的制造方法,
所述y为1.0。
12.根据权利要求8所述的氧化镓系半导体的制造方法,
所述y为1.0。
13.根据权利要求9所述的氧化镓系半导体的制造方法,
所述y为1.0。
14.根据权利要求10所述的氧化镓系半导体的制造方法,
所述y为1.0。
CN202110428555.6A 2020-04-24 2021-04-21 氧化镓系半导体及其制造方法 Active CN113555419B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077639 2020-04-24
JP2020077639A JP7247945B2 (ja) 2020-04-24 2020-04-24 酸化ガリウム系半導体及びその製造方法

Publications (2)

Publication Number Publication Date
CN113555419A CN113555419A (zh) 2021-10-26
CN113555419B true CN113555419B (zh) 2023-10-24

Family

ID=78130140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110428555.6A Active CN113555419B (zh) 2020-04-24 2021-04-21 氧化镓系半导体及其制造方法

Country Status (4)

Country Link
US (1) US11929252B2 (zh)
JP (1) JP7247945B2 (zh)
CN (1) CN113555419B (zh)
DE (1) DE102021109368A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597269B (zh) * 2022-03-07 2022-11-22 湖北大学 一种氧化镓基深紫外透明导电薄膜及其制备方法和应用
CN114804924B (zh) * 2022-04-29 2023-04-14 四川大学 一种锰掺杂氧化镓基磁性陶瓷薄膜材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032279A (ko) * 2015-03-06 2015-03-25 이화여자대학교 산학협력단 금속-도핑된 갈륨 철 산화물 박막의 제조 방법 및 그에 의한 금속-도핑된 갈륨 철 산화물 박막
CN105845824A (zh) * 2016-04-13 2016-08-10 浙江理工大学 一种具有室温铁磁性和高紫外光透过的Ga2O3/(Ga1-xFex)2O3薄膜及其制备方法
CN108878552A (zh) * 2018-07-03 2018-11-23 北京镓族科技有限公司 一种带隙纵向梯度分布Al和Fe共掺杂Ga2O3薄膜的制法
CN109411328A (zh) * 2018-09-19 2019-03-01 北京镓族科技有限公司 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822150B2 (ja) * 2002-08-12 2006-09-13 独立行政法人科学技術振興機構 酸化ガリウム鉄混晶の結晶製造方法
JP2005235961A (ja) 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
JP2007191365A (ja) 2006-01-20 2007-08-02 Japan Science & Technology Agency 単結晶製造装置及びそれを用いた高圧単結晶製造方法
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
JP5536920B1 (ja) 2013-03-04 2014-07-02 株式会社タムラ製作所 Ga2O3系単結晶基板、及びその製造方法
JP6152514B2 (ja) 2013-10-17 2017-06-28 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP6994183B2 (ja) * 2016-06-30 2022-01-14 株式会社Flosfia 酸化物半導体膜及びその製造方法
CN109643660B (zh) * 2016-08-31 2024-03-05 株式会社Flosfia p-型氧化物半导体及其制造方法
JP2019151922A (ja) * 2018-02-28 2019-09-12 株式会社Flosfia 積層体および半導体装置
JP7404594B2 (ja) * 2018-07-12 2023-12-26 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032279A (ko) * 2015-03-06 2015-03-25 이화여자대학교 산학협력단 금속-도핑된 갈륨 철 산화물 박막의 제조 방법 및 그에 의한 금속-도핑된 갈륨 철 산화물 박막
CN105845824A (zh) * 2016-04-13 2016-08-10 浙江理工大学 一种具有室温铁磁性和高紫外光透过的Ga2O3/(Ga1-xFex)2O3薄膜及其制备方法
CN108878552A (zh) * 2018-07-03 2018-11-23 北京镓族科技有限公司 一种带隙纵向梯度分布Al和Fe共掺杂Ga2O3薄膜的制法
CN109411328A (zh) * 2018-09-19 2019-03-01 北京镓族科技有限公司 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法

Also Published As

Publication number Publication date
US20210335608A1 (en) 2021-10-28
JP7247945B2 (ja) 2023-03-29
CN113555419A (zh) 2021-10-26
US11929252B2 (en) 2024-03-12
DE102021109368A1 (de) 2021-10-28
JP2021172559A (ja) 2021-11-01

Similar Documents

Publication Publication Date Title
CN113555419B (zh) 氧化镓系半导体及其制造方法
TWI713607B (zh) 光子裝置、用於沈積層於光子裝置中的氣相沈積製程以及光活性材料
TWI600618B (zh) C12A7 thin film of electronic salt and C12A7 electronic salt film
JP2014024712A (ja) 窒化物エレクトライド及びその製法
Sayers et al. Correlation between crystal purity and the charge density wave in 1 T− VSe 2
KR101464699B1 (ko) 디칼코게나이드 열전재료
JP5641402B2 (ja) 酸化物膜及びその製造方法、並びにターゲット及び酸化物焼結体の製造方法
CN109476549B (zh) 氧化物烧结体及其制造方法、溅射靶、以及半导体器件的制造方法
JP2008161854A (ja) 半導体粒子及びその製造方法
WO2018211977A1 (ja) 酸化物焼結体およびその製造方法、スパッタターゲット、酸化物半導体膜、ならびに半導体デバイスの製造方法
US20180305219A1 (en) Oxide semiconductor
JP2014019584A (ja) 六ホウ化ランタン焼結体、その製造方法、六ホウ化ランタン膜及び有機半導体デバイス
Han et al. A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties
CN111587299A (zh) 氧透过元件和溅射靶材料
JP2012510952A (ja) p型透明導電膜の製造のための粉末の製造方法
JP2007158192A (ja) 熱電変換材料およびこの材料を用いた熱電変換素子
JP2011199108A (ja) 導電性酸化物とその製造方法
Liu et al. Achieve p-type conduction in N-doped and (Al, N)-codoped ZnO thin films by oxidative annealing zinc nitride precursors
Breniaux et al. Spontaneous moisture-driven formation of Cs2Pb1-xMxCl2I2 single crystals with M= Bi, In, Ga and Cr
JPH1197751A (ja) 熱電変換材料及びその製造方法
JP5857775B2 (ja) 導電性酸化物およびその製造方法
JP4493960B2 (ja) クラスレート化合物、発光素子、クラスレート化合物の製造方法
Seidu et al. Doping Induced Band-gap widening in Transition-metal doped ZnO Nanocrystals
WO2021261089A1 (ja) n型SnS薄膜、光電変換素子、太陽光電池、n型SnS薄膜の製造方法、およびn型SnS薄膜の製造装置
Ramasamy et al. Recent study of nanomaterials prepared by inert gas condensation using ultra high vacuum chamber

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant