CN113429337A - 用于产生吡啶及其烷基衍生物的方法和催化剂 - Google Patents

用于产生吡啶及其烷基衍生物的方法和催化剂 Download PDF

Info

Publication number
CN113429337A
CN113429337A CN202110554756.0A CN202110554756A CN113429337A CN 113429337 A CN113429337 A CN 113429337A CN 202110554756 A CN202110554756 A CN 202110554756A CN 113429337 A CN113429337 A CN 113429337A
Authority
CN
China
Prior art keywords
catalyst
zeolite
pyridine
zinc
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110554756.0A
Other languages
English (en)
Inventor
D·拉姆帕拉萨德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRACE
WR Grace and Co Conn
WR Grace and Co
Original Assignee
GRACE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50545257&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN113429337(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GRACE filed Critical GRACE
Publication of CN113429337A publication Critical patent/CN113429337A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • C07D213/10Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles from acetaldehyde or cyclic polymers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请涉及用于产生吡啶及其烷基衍生物的方法和催化剂。本发明公开了一种用于提高在碱合成反应过程中的吡啶或其烷基吡啶衍生物的整体收率的方法。所述方法包括在气相中并在存在有效量的包含沸石、锌、粘结剂和粘土以及任选地基质的粒状催化剂的情况下使C2至C5醛、C3至C5酮或其组合与氨并任选地与甲醛反应,其中所述催化剂的L/B比率为约1.5至约4.0。优选地,所述沸石为ZSM‑5。本发明还公开了一种用于提高含锌和沸石的催化剂的催化活性以提高在碱合成反应过程中的吡啶和/或其衍生物的整体收率的方法。

Description

用于产生吡啶及其烷基衍生物的方法和催化剂
本申请是申请号为201380055222.7母案的分案申请。该母案的申请日为2013年10月24日;发明名称为“用于产生吡啶及其烷基衍生物的方法和催化剂”。
相关申请的交叉引用
本申请要求于2012年10月25日提交的名称为“PROCESS AND CATALYST FOR THEPRODUCTION OF PYRIDINE AND ALKYL DERIVATIVES THEREOF”(用于制备吡啶及其烷基衍生物的方法和催化剂)的美国临时专利申请No.61/718,385的提交目的权益,该临时专利申请的公开内容据此以引用方式并入。
技术领域
本发明涉及一种用于吡啶碱合成的改进方法,并涉及用于所述方法的特定的基于含锌沸石的催化剂。
背景技术
含氮化合物由于其高生物活性而用作药物和农用化学品的结构性组分。在这些化合物之中,吡啶碱迄今以最大的量生产并用于多种应用,诸如除草剂、杀虫剂、药物和粘合剂。
吡啶及其衍生物的碱合成是熟知的。该方法通常涉及使用非均相催化剂在固定床或流化床反应器中在约400℃至约450℃范围内的温度下使醛和/或酮与氨在气相中反应。该反应产生焦炭并且催化剂必需用空气再生。使用流化床提供了有用的连续再生系统。
在吡啶碱合成反应中所用的催化剂已从单独的或作为载体的氧化铝变化到无定形二氧化硅-氧化铝(参见例如美国专利No.3,272,825、3,946,020和4,089,863)和/或金属取代的二氧化硅-氧化铝(参见例如R.A.Sheldon and H.van Bekkum,Fine Chemicalsthrough Heterogeneous Catalysis,Ed:,Wiley p 277(R.A.Sheldon和H.van Bekkum,《通过非均相催化得到的精细化学品》,Wiley编辑,第277页))。然而,近年来,焦点已转移到使用基于所谓的“形状选择性”沸石(例如具有确定的晶体结构和孔径及特性的铝硅酸盐)的催化剂体系。在此领域中的主要突破来自使用ZSM-5沸石,也称为“MFI”,其因该沸石的尺寸和二维孔隙通道所提供的形状选择性而在吡啶β反应中显示出提高的吡啶收率(参见例如美国专利No.4,220,783和4,675,410)。已在二氧化硅/氧化铝比率为150-400之间的ZSM-5沸石中发现了提高的吡啶收率(参见例如R.A.Sheldon,H.van Bekkum,Fine Chemicalsthrough Heterogeneous Catalysis,Ed:Wiley p 277(R.A.Sheldon、H.van Bekkum,《通过非均相催化得到的精细化学品》,Wiley编辑,第277页))。在金属取代的ZSM-5沸石的发展中看见了进一步的改进。例如,与铊、铅或钴进行了离子交换的沸石显示出吡啶碱的收率提高(参见例如美国专利No.4,810,794)。在吡啶催化剂中所用的其他金属取代的沸石已包括以锌、锡或钨中的一种或多种金属离子改性的ZSM-5沸石。(参见例如美国专利No.5,218,122)。
因为其使用成本便宜且为可以广泛获取的原料,所以吡啶的碱合成继续为满足吡啶及其烷基衍生物日益增长的需求提供了良好的前景。然而,仍然需要可用于提高在碱合成反应过程中的吡啶和烷基吡啶衍生物的产物收率的改进方法和催化剂。
发明内容
本发明的本质在于在以下两者之间存在一定关系的发现:路易斯(L)酸(Lewisacid)/布朗斯台德(B)酸(Bronsted acid)比率(L/B比率),与基于锌改性沸石的催化剂提高碱合成反应过程中吡啶整体收率的催化活性。出人意料的是,据发现,与使用不含锌的基于沸石的催化剂可获得的收率进行比较,L/B比率在约1.5至约4.0范围内的基于锌改性沸石的催化剂在吡啶收率上表现出显著的提高。当与L/B比率小于约1.5或大于约4.0的类似基于锌改性沸石的催化剂的活性进行比较时,根据本发明的基于锌改性沸石的催化剂也表现出对提高吡啶整体收率的活性。
因此,本发明的优点是提供一种提高在碱合成反应过程中的吡啶或其烷基吡啶衍生物的整体收率的方法。根据本发明的方法,使烷基醛和/或酮在气相中在存在有效量的L/B比率在约1.5至约4.0范围内的基于锌改性沸石的催化剂的情况下与氨并任选地与甲醛反应。
本发明的另一个优点是提供具有改善的催化能力以提高在碱合成方法过程中的吡啶及其衍生物的整体收率的催化剂组合物。本发明的催化剂通常包含ZSM-5和/或ZSM-11沸石、锌、粘结剂、粘土以及任选地基质材料。在本发明的一个优选实施例中,沸石为ZSM-5。本发明的催化剂组合物具有在约1.5至约4.0范围内的L/B比率。有利的是,与使用不含锌的基于沸石的催化剂或L/B比率小于约1.5或大于约4.0的基于锌改性沸石的催化剂可获得的收率相比,在碱合成反应过程中使用本发明的催化剂可实现更高的吡啶及其烷基吡啶衍生物的整体收率。
本发明的再一个优点是提供一种增强基于含锌沸石的催化剂的催化活性以提高在碱合成反应过程中的吡啶及其烷基吡啶衍生物的整体收率的方法。该方法涉及调整催化剂组分以在催化剂组合物中提供指定的L/B比率,如通过漫反射红外光谱所测量,所述比率出人意料地与碱合成反应过程中的吡啶碱的整体收率的提高相关。
本发明的详细方面的这些和其他相关优点及变型将由以下进一步详细描述的具体实施方式而变得显而易见。
具体实施方式
本发明涉及改进的方法和用于其中的催化剂组合物,其提高在碱合成反应过程中的吡啶及其烷基衍生物的整体收率。根据所述方法,吡啶及其烷基衍生物的碱合成在存在有效量的具有指定L/B比率的粒状的基于含锌沸石的催化剂的情况下进行。可用于本发明的催化剂组合物通常包含ZSM-5和/或ZSM-11沸石、锌、粘结剂、粘土以及任选地基质材料,其量足以提供指定的L/B比率。
对于本发明而言,术语“碱合成”在本文中用来指定一种方法,借助该方法,使用非均相催化剂在气相中通过使醛和/或酮与氨反应而制备吡啶或烷基吡啶的碱。碱合成反应(及其在适当情况下的常见名称)的一些例子包括:从乙醛和甲醛合成吡啶和β-甲基吡啶(“吡啶-β反应”);从乙醛合成α-和γ-甲基吡啶(“α-γ反应”);从丙酮和甲醛合成2,6-二甲基吡啶(“2,6-卢剔啶”);从丙酮单独地或与乙醛一起合成2,4,6-三甲基吡啶(“对称可力丁”);从丙烯醛单独地或与乙醛一起合成吡啶和β-甲基吡啶;从丙醛和甲醛合成3,5-二甲基吡啶;以及从乙醛、甲醛和丙醛合成β-甲基吡啶。许多其他反应是已知的并在本领域中进行了报道或实践,且在本说明书和本发明的范围内予以等同的考虑。
可用于制备根据本发明的催化剂的沸石通常包括ZSM-5和/或ZSM-11沸石。在本发明的一个优选实施例中,沸石为ZSM-5。
在本发明的一个实施例中,可用于制备本发明的催化剂的沸石具有约100或更小的二氧化硅与氧化铝比率。在一个优选的实施例中,沸石具有约20至约80的二氧化硅与氧化铝比率。在本发明的一个甚至更优选的实施例中,沸石具有约28至约55的二氧化硅与氧化铝比率。
粘结剂主要执行将催化剂组合物的组分保持在一起的所有重要功能。然而,在本发明范围内的是,粘结剂也可提供一定的催化活性。设想用于本发明的催化剂组合物的合适的粘结剂通常包括但不限于二氧化硅、氧化铝、二氧化硅-氧化铝及其组合。在一个优选的实施例中,粘结剂为氧化铝。优选地,氧化铝粘结剂为γ氧化铝,其衍生自铝溶胶、胶体氧化铝、胶溶化氧化铝、水合氯化铝和/或其他铝前体。
可用于本发明的催化剂还包含粘土。虽然高岭土是优选的粘土组分,但另据设想,在可用于本发明的催化剂组合物中可包含其他粘土,诸如柱撑(pillard)粘土和/或改性高岭土(例如,偏高岭土)。
还在本发明的范围内的是,除了粘土之外,基质材料也可任选地存在于可用于本发明的催化剂组合物中。当存在时,合适的基质材料包括金属氧化物,例如氧化铝、二氧化硅、二氧化硅-氧化铝、过渡金属氧化物及其组合。优选地,基质材料包括氧化铝、二氧化硅、二氧化硅-氧化铝及其组合。
可用于本发明的催化剂组合物的L/B比率为约1.5至约4.0。在本发明的一个优选实施例中,催化剂组合物的L/B比率在约2.0至约3.6的范围内。L/B比率可通过在催化剂配制过程中调整任何或全部催化剂组分的浓度以提供所需的L/B比率而获得。L/B/比率可使用漫反射红外光谱测定1450cm-1峰L=(路易斯酸位置)与1550cm-1峰B=(布朗斯台德酸位置)的高度比而测量。
本发明的粒状催化剂组合物可用于通常在固定床或流化床反应器例如FCC催化裂解单元中操作的碱合成方法以实现吡啶和烷基吡啶收率的整体提高。该催化剂组合物通常为球形颗粒的形式并具有足以影响在固定床或流化床反应器内的流化性质的粒度和磨损性质。当用于流化床反应器时,本发明的催化剂组合物的平均粒度通常将为约40μm至约200μm。在本发明的一个优选实施例中,催化剂组合物的平均粒度在约60μm至约120μm的范围内。
用于本发明的催化剂组合物将具有足以维持组合物在固定床或流化床反应器中的结构完整性的耐磨性,如通过戴维森指数(Davison Index,DI)所度量。通常,小于20的DI值将足够。在本发明的一个优选实施例中,DI值小于10。
在催化剂组合物中的每种组分的量将根据诸如所需的L/B比率、粒度、耐磨性、待使用的反应器等因素而变化。一般来讲,分别对于每种组分而言,以组合物的总重量计,存在于用于本发明的催化剂组合物中的沸石、锌、粘结剂、粘土和任选的基质组分的量将在宽范围内变化,例如约1重量%-99重量%,然而,前提条件是每种组分以足以为最终催化剂组合物在固定床或优选流化床反应器中的使用提供所需的L/B比率、粒度和耐磨性的量使用。在本发明的一个优选实施例中,沸石的量在催化剂组合物的约35重量%至约50重量%的范围内。粘结剂的量在催化剂组合物的约10重量%至约30重量%的范围内。粘土组分将优选地占总催化剂组合物的约30重量%至约50重量%。当使用时,基质材料通常将占据催化剂的其余部分。上文列举的所有所述重量百分比均以最终催化剂组合物的总重量计。
锌可通过在将沸石与粘结剂、粘土以及任选地基质组分配制以制备最终催化剂组合物之前或之后在沸石上处理而并入催化剂组合物中。或者,锌可在催化剂配制过程中作为催化剂的组分而并入。另外,锌可在催化剂配制之后交换到预先形成的催化剂上。
如果沸石在催化剂配制之前用锌处理,则沸石可通过用锌的金属离子或化合物处理而改性。合适的锌化合物包括但不限于可溶性盐,诸如硝酸盐、卤化物或醋酸盐。沸石的处理可以本领域已知的多种方式进行(比如美国专利5,218,122,所述专利全文以引用方式并入本文),并可根据需要进行多次以确保大量的金属吸收在沸石上。
在一个实施例中,将沸石加入化学计量过量的所需量的锌化合物的水溶液中以得到混合物。任选地,将混合物伴随着搅拌在预定的温度和时间下加热。将混合物过滤、冲洗、干燥,然后在高温例如约100℃至约600℃下锻烧,以得到改性的沸石。
在本发明的另一个实施例中,沸石与所需的锌盐的物理混合物以干法,或在存在足以获得糊状物或类似稠度的水量的情况下通过共混、混合或其他合适的物理方法得到。这些及其他类似的程序在催化领域内是熟知的并且完全在本发明的范围内。
最终催化剂组合物可通过在催化领域中已知的任何常规方法制备。在本发明的一个优选实施例中,根据本发明的催化剂组合物从含水浆液形成,该含水浆液包含一定量(按重量计)的沸石、任选锌、粘结剂、粘土和任选基质材料。调整浆液中的催化剂组分(即,沸石、任选锌、粘结剂、粘土和任选基质材料)的量,以提供足以在最终催化剂组合物中获得所需的L/B比率、粒度和耐磨性的每种组分的量。
锌可在并入如上文所述的含水浆液中之前作为在沸石上预交换的锌离子而存在于浆液中。或者,锌可以锌的盐溶液形式(例如如上文所述的硝酸锌、卤化锌和/或醋酸锌)存在于含水浆液中作为其组分。
使含水浆液接受使用常规喷雾干燥技术的喷雾步骤。在喷雾干燥步骤过程中,浆液转化成粒状固体组合物。喷雾干燥后的催化剂颗粒的平均粒度通常为约40至约200μm。在喷雾干燥后,将催化剂颗粒在约150℃至约600℃范围内的温度下锻烧一段约4小时至约10分钟的时间。
如果锌之前未并入催化剂中,则可将预先形成的催化剂颗粒以在最终催化剂组合物中所需的量与锌进行离子交换。或者,可将催化剂颗粒例如经由初湿含浸法用锌盐水溶液浸渍,以让锌离子浸到经锻烧的催化剂颗粒上。之后,可将催化剂颗粒优选地用水洗涤,并将洗涤后的催化剂颗粒通过常规的技术(例如过滤)与浆液分离,并干燥以降低颗粒的含水量。
本发明的方法提高在碱合成反应过程中所产生的吡啶或其烷基吡啶衍生物的整体收率。当与使用不含锌的基于沸石的非均相催化剂所获得的收率进行比较时,实现了整体吡啶收率的显著提高,即,超过2%。相比L/B比率小于约1.5或大于约4.0的类似的基于含锌沸石的催化剂,也实现了整体吡啶收率的提高,即,超过70%。
根据本发明的方法,使烷基醛和/或酮在气相中在存在有效量的如上文所述的粒状催化剂组合物的情况下在固定床或流化床反应器中与氨以及任选地甲醛反应,以实现吡啶及其烷基衍生物的收率出人意料的整体提高。流化床反应器的设备设置和操作根据与所考虑的特定反应相关联的许多因素而变化。它们可容易地由本领域的普通技术人员构造出,并且完全在本发明的范围内。诸如温度、进料摩尔比率、进料速度和接触时间等反应参数在同样熟知的并在本发明范围内的宽泛范围操作条件下变化。
如先前所讨论,许多碱合成方法是已知并且也设想在本发明的范围内。除了下列具体实例和上文以引用方式并入的公开案外,对吡啶-β合成而言,通常优选的是,使用摩尔比为至少约1∶1的甲醛与乙醛进料。以甲醛组分的约5%至70%的程度添加甲醇也是优选的,如最初在美国专利No.2,807,618中所述。至少一部分甲醛还可以被多聚甲醛或对称三噁烷替换,并可根据需要存在水以提供稳定的、可储存的溶液。氨以与进料中的总有机组分至少约0.6∶1的比率提供,从试验到目前为止以约0.7至1.5的范围更优选并且约0.8至1.2最优选。继而选择进料速率以提供良好的床流化,通常在约0.3至4.0英尺/秒之间的表观流速的范围内。反应温度优选地在约350℃与550℃之间,更优选地在约400℃与500℃之间,最优选地在约450℃。反应产物(吡啶和β-甲基吡啶)通过本领域熟知的干燥和蒸馏技术而冷凝并分离成纯化合物。作为第二示例,α-γ反应优选地除了从进料混合物中省去甲醛和甲醇外以大多相同的方式进行。
为了进一步说明本发明及其优点,给出以下具体实例。提供这些实例作为受权利要求书保护的本发明的具体说明。然而,应当理解,本发明不限于实例中所阐述的具体细节。
除非另外指明,否则提及固体组成或浓度的例子以及说明书的其余部分中的所有份数和百分比都以重量计。然而,除非另外指明,否则提及气体组成的实例以及说明书的其余部分中的所有份数和百分比都以摩尔或体积计。
另外,说明书或权利要求书中所述的任何数值范围诸如表示性质、度量单位、条件、物理状态或百分比的具体集合的数值范围旨在通过引用或其他方式在本文中明确按字面意义包括落在这类范围的任何数值,包括在所述任何范围内的任何数值的子集。
实例
实例1
使用二氧化硅/氧化铝比率为28或55的ZSM-5制备催化剂A、B、C、D和E。将氯化锌加入沸石、氧化铝粘结剂和粘土的含水浆液,并将该浆液用标准喷雾干燥程序进行喷雾干燥。将喷雾干燥后的颗粒在593.3℃(1100°F)的温度下锻烧以获得最终催化剂。催化剂在喷雾干燥和锻烧后的组成如下表1中所示。
表1
催化剂 ZSM-5 氧化铝 粘土 ZnO
A 39.4* 11.8 47.3 1.42
B 39.0* 11.7 46.8 2.32
C 39.4** 11.8 48.3 0.53
D 39.4** 11.8 47.8 1.12
E 39.4** 11.8 47.3 1.69
*二氧化硅/氧化铝=28 **二氧化硅/氧化铝=55
实例2
使用漫反射红外光谱分析在上述实例1中获得的催化剂样品和对照催化剂样品(无锌)。程序如下:将大约一克样品置于陶瓷坩埚中,坩埚则置于特别设计的石英槽中。在500℃下锻烧样品一小时,然后,在真空下一小时。使样品返回室温并暴露到饱含吡啶的氦气流中30分钟。然后,通过在真空下将样品加热到200℃维持二小时而除去物理吸附的吡啶。峰高通过将光标放在峰最大值并调整基线而测量。L/B(路易斯/布朗斯台德)比率通过比较1450cm-1峰L=(路易斯酸位置)与1550cm-1峰B=(布朗斯台德酸位置)的高度而测量。结果记录在下表2中。
表2
<u>催化剂</u> <u>L/B比率</u>
无锌 0.57
A 3.3
B 6.0
C 1.1
D 2.1
E 3.1
实例3
评估了催化剂的性能并将其与L/B比率相关联。在流化床反应器中测试催化剂的程序如美国专利No.4,675,410中所述,其公开内容全文以引用方式并入本文。将如在以上实例1中所述的催化剂制剂和对照催化剂装入流化床反应器中。将催化剂在每小时约60升的氮气流下加热到约450℃的温度。使乙醛和甲醛的混合物通过蒸发而进入反应器。进入反应器的氮气流以速率为约111克/小时的氨气流替换。吡啶收率按照收率%=产物中的总C原子×100/进料中的总C原子进行计算。结果记录在下表3中。
表3
催化剂 L/B 收率提高
对照-无锌 0.57 ------
A 3.3 2-4%
B 6.0 0-1%
C 1.1 1-2%
D 2.1 2-4%
E 3.1 2-4%
数据表明L/B比率在约1.5至约4.0之间的催化剂实现了与不含锌的对照相比2%或更大的整体收率提高。虽然含有锌但L/B比率在本发明的范围之外(即,约小于1.5和大于约4.0)的催化剂显示出与对照相比的收率提高,但与使用本发明的方法和催化剂所获得的收率进行比较时,它们显示出较差的吡啶碱整体收率。

Claims (10)

1.一种以高收率制备吡啶或其烷基吡啶衍生物的碱合成方法,包括在气相中并在存在有效量的包含选自ZSM-5、ZSM-11及其组合的沸石、锌、粘结剂和粘土的粒状催化剂的情况下使C2至C5醛、C3至C5酮或其组合与氨以及任选地甲醛反应,其中所述催化剂的L/B比率为2.1、3.1或3.3,
其中以所述催化剂组合物的总重量计,所述沸石以约35重量%至约50重量%范围内的量存在,所述粘结剂以约10重量%至约30重量%范围内的量存在,所述粘土组分以约30重量%至约50重量%范围内的量存在,
其中所述方法在流化床反应器中进行,其中所述粒状催化剂的粒度在约40µm至约200µm的范围内。
2.根据权利要求1所述的方法,其中所述催化剂还任选地包含基质材料。
3.根据权利要求1所述的方法,其中所述沸石为ZSM-5。
4.根据权利要求1所述的方法,其中有机反应物为乙醛和甲醛,并包括回收吡啶和β-甲基吡啶作为所述方法的产物的额外步骤。
5.根据权利要求1所述的方法,其中所述沸石已在并入催化剂组合物之前经锌化合物处理。
6.根据权利要求1所述的方法,其中锌化合物在所述催化剂组合物的配制过程中作为所述催化剂的组分而并入。
7.根据权利要求1所述的方法,其中锌化合物在预先形成的催化剂颗粒上离子交换。
8.根据权利要求5所述的方法,其中所述锌化合物选自硝酸盐、卤化物、醋酸盐及其组合。
9.根据权利要求6所述的方法,其中所述锌化合物选自硝酸盐、卤化物、醋酸盐及其组合。
10.根据权利要求7所述的方法,其中所述锌化合物选自硝酸盐、卤化物、醋酸盐及其组合。
CN202110554756.0A 2012-10-25 2013-10-24 用于产生吡啶及其烷基衍生物的方法和催化剂 Pending CN113429337A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261718385P 2012-10-25 2012-10-25
US61/718385 2012-10-25
CN201380055222.7A CN104736520A (zh) 2012-10-25 2013-10-24 用于产生吡啶及其烷基衍生物的方法和催化剂

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380055222.7A Division CN104736520A (zh) 2012-10-25 2013-10-24 用于产生吡啶及其烷基衍生物的方法和催化剂

Publications (1)

Publication Number Publication Date
CN113429337A true CN113429337A (zh) 2021-09-24

Family

ID=50545257

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110554756.0A Pending CN113429337A (zh) 2012-10-25 2013-10-24 用于产生吡啶及其烷基衍生物的方法和催化剂
CN201380055222.7A Pending CN104736520A (zh) 2012-10-25 2013-10-24 用于产生吡啶及其烷基衍生物的方法和催化剂

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201380055222.7A Pending CN104736520A (zh) 2012-10-25 2013-10-24 用于产生吡啶及其烷基衍生物的方法和催化剂

Country Status (10)

Country Link
US (3) US9598366B2 (zh)
EP (1) EP2912018B1 (zh)
JP (1) JP6322198B2 (zh)
CN (2) CN113429337A (zh)
CA (1) CA2889511C (zh)
IN (1) IN2015DN02427A (zh)
RU (1) RU2671215C2 (zh)
SA (1) SA515360260B1 (zh)
TW (1) TWI598335B (zh)
WO (1) WO2014066626A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX343193B (es) 2009-06-18 2016-10-26 Allergan Inc Administracion segura de desmopresina.
TWI598335B (zh) * 2012-10-25 2017-09-11 W R 康格雷氏公司 用於製造吡啶及其烷基衍生物之改良方法、觸媒
CN105712924A (zh) * 2016-03-24 2016-06-29 广西新天德能源有限公司 以改性分子筛催化生产吡啶及甲基吡啶的方法
CN107983398B (zh) * 2017-10-27 2020-07-17 苏州盖德精细材料有限公司 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法
EP4051274A4 (en) * 2019-10-29 2023-11-22 W. R. Grace & Co.-Conn MODIFIED ZEOLITE CATALYST COMPOSITIONS AND METHODS OF USE
CN115888801B (zh) * 2022-09-28 2024-03-29 山东明化新材料有限公司 用于提高3,5-二甲基吡啶收率的改性催化剂及提高3,5-二甲基吡啶收率的生产方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156689A (en) * 1997-10-23 2000-12-05 Phillips Petroleum Company Catalyst composition comprising zinc compound or boron compound and hydrocarbon conversion process

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272825A (en) 1962-12-13 1966-09-13 Koei Chemical Co Method of producing pyridine
US3946020A (en) 1970-12-28 1976-03-23 Koei Chemical Co., Ltd. Process for producing pyridine bases
GB1490927A (en) 1975-08-22 1977-11-02 Ici Ltd Process for the manufacture of pyridine and/or methyl pyridines
US4220783A (en) 1979-05-09 1980-09-02 Mobil Oil Corporation Synthesis of pyridine and alkylpyridines
US4675410A (en) 1983-07-11 1987-06-23 Nepera Inc. Process for the production of pyridine or alkyl substituted pyridines
US4810794A (en) 1986-02-06 1989-03-07 Koei Chemical Co., Ltd. Process for producing pyridine bases
US4985384A (en) * 1986-08-25 1991-01-15 W. R. Grace & Co-Conn. Cracking catalysts having aromatic selectivity
US4861894A (en) * 1987-06-11 1989-08-29 Mobil Oil Corp. Pyridine and alkylpyridine synthesis using a crystalline silicate catalyst having the ZSM-5 structure
US4873211A (en) 1987-07-02 1989-10-10 Phillips Petroleum Company Cracking catalyst and process
US4765884A (en) 1987-07-02 1988-08-23 Phillips Petroleum Company Cracking catalyst and process
US5218122A (en) * 1988-09-30 1993-06-08 Reilly Industries, Inc. Pyridine base synthesis process and catalyst for same
CA1333793C (en) * 1988-09-30 1995-01-03 Gerald L. Goe Pyridine base synthesis process and catalyst for same
JP2862257B2 (ja) * 1989-02-08 1999-03-03 広栄化学工業株式会社 ピリジン塩基類を製造する方法
US5237068A (en) * 1989-02-08 1993-08-17 Koei Chemical Company, Limited Process for producing pyridine bases
US5013843A (en) 1990-06-07 1991-05-07 Nepera, Inc. High yield of pyridine and/or alkylpyridine(s) in condensation reaction of ternary aldehydes and/or ketones with ammonia
US5126298A (en) 1991-03-12 1992-06-30 Mobil Oil Corp. Cracking catalysts comprising clays with different particle sizes, and method of preparing and using the same
US5110776A (en) 1991-03-12 1992-05-05 Mobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same
RU2177468C2 (ru) * 1994-11-23 2001-12-27 Эксон Кемикэл Пейтентс Инк. Способ конверсии углеводородов с использованием связанного цеолитом цеолитного катализатора
CN1152862C (zh) * 1995-06-23 2004-06-09 莱利工业公司 吡啶碱的合成
US5969143A (en) * 1997-12-31 1999-10-19 Mobil Oil Corporation Pyridine/picoline production process
US20020049133A1 (en) * 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
RU2243217C2 (ru) * 2000-06-26 2004-12-27 Коеи Кемикал Компани, Лимитед Способ получения пиридиновых оснований
US6495695B2 (en) * 2001-03-30 2002-12-17 Council Of Scientific And Industrial Research Process for the preparation of a collidine and 2,3,5,6-tetramethyl pyridine
DE10124998A1 (de) 2001-05-22 2003-01-02 Sued Chemie Ag Katalysator für säurekatalysierte Kohlenwasserstoff-Umwandlungen
US7026267B2 (en) * 2002-12-20 2006-04-11 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its production and use in conversion processes
FR2868418B1 (fr) 2004-04-05 2008-08-29 Inst Francais Du Petrole Procede de production de phenylalcanes utilisant un catalyseur zeolithique a base de silice-alumine
ITMI20041289A1 (it) * 2004-06-25 2004-09-25 Enitecnologie Spa Catalizzatore e processo per la preparazione di idrocarburi aromatici alchilati
EP2049250A2 (en) * 2006-07-06 2009-04-22 W.R. Grace & CO. - CONN. Aluminum sulfate bound catalysts
JP5335697B2 (ja) * 2007-02-21 2013-11-06 ダブリュー・アール・グレース・アンド・カンパニー−コーン 流動接触分解プロセスのためのガソリンイオウ分減少触媒
CN101347744B (zh) * 2008-09-05 2010-12-08 江苏扬农化工股份有限公司 以微球型高硅zsm-5分子筛为载体的吡啶合成催化剂及其制备方法
US20110108462A1 (en) 2009-11-10 2011-05-12 Yun-Feng Chang High solids catalyst formulation and spry drying
CN101856622B (zh) * 2009-12-16 2012-06-13 中国科学院大连化学物理研究所 一种合成吡啶碱的共结晶沸石催化剂及其制备方法
TWI598335B (zh) * 2012-10-25 2017-09-11 W R 康格雷氏公司 用於製造吡啶及其烷基衍生物之改良方法、觸媒

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156689A (en) * 1997-10-23 2000-12-05 Phillips Petroleum Company Catalyst composition comprising zinc compound or boron compound and hydrocarbon conversion process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNING LI ET AL.,: "Promoted metal utilization capacity of alkali-treated zeolite:Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization", 《APPLIED CATALYSIS A:GENERAL》, vol. 360, pages 8 - 16, XP026044915, DOI: 10.1016/j.apcata.2009.02.039 *
沈群: "吡啶衍生物的合成及其催化剂的研究", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅰ辑(季刊)》, no. 3, pages 53 - 56 *

Also Published As

Publication number Publication date
EP2912018B1 (en) 2021-08-25
US20190091667A1 (en) 2019-03-28
RU2671215C2 (ru) 2018-10-30
JP2015535254A (ja) 2015-12-10
US9598366B2 (en) 2017-03-21
US10137439B2 (en) 2018-11-27
CN104736520A (zh) 2015-06-24
SA515360260B1 (ar) 2017-07-31
JP6322198B2 (ja) 2018-05-09
US20170157599A1 (en) 2017-06-08
CA2889511A1 (en) 2014-05-01
TW201431840A (zh) 2014-08-16
US20150239841A1 (en) 2015-08-27
US10618039B2 (en) 2020-04-14
RU2015119458A (ru) 2016-12-20
EP2912018A4 (en) 2016-08-10
IN2015DN02427A (zh) 2015-09-04
CA2889511C (en) 2022-11-22
EP2912018A1 (en) 2015-09-02
WO2014066626A1 (en) 2014-05-01
TWI598335B (zh) 2017-09-11

Similar Documents

Publication Publication Date Title
US10618039B2 (en) Process and catalyst for the production of pyridine and alkyl derivatives thereof
EP0232182B1 (en) Process for producing bases
US5079367A (en) Preparation of 3-hydrocarbyl substituted pyridines
US5969143A (en) Pyridine/picoline production process
WO2014154429A1 (de) Passivierung eines zeolith-katalysators in einer wirbelschicht
KR960016524B1 (ko) 피리딘 및 알킬피리딘의 합성방법
JP3055913B2 (ja) ピリジン塩基合成方法及びそのための触媒
JP2862257B2 (ja) ピリジン塩基類を製造する方法
US20240165600A1 (en) Modified zeolite catalyst compositions and methods of use
EP1648869B1 (en) Process for the production of pyridine and picolines
JP4427116B2 (ja) ピリジン塩基類の製造法
US11752495B2 (en) Zeolite catalyst
US7365204B2 (en) Process for the production of pyridine and picolines
JPH0692369B2 (ja) ピリジン塩基類の製造方法
US20050131235A1 (en) Catalytic process for production of pyridine and picolines
JP2024144841A (ja) レニウム含有ゼオライト及びそれを含むオレフィンメタセシス触媒
JP2007527846A (ja) ジルコニウム又は錫を含有する触媒による、ピリジン及びピコリンの製造方法
JPH07107049B2 (ja) ピリジン塩基類の合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination