CN107983398B - 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法 - Google Patents

一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法 Download PDF

Info

Publication number
CN107983398B
CN107983398B CN201711019936.9A CN201711019936A CN107983398B CN 107983398 B CN107983398 B CN 107983398B CN 201711019936 A CN201711019936 A CN 201711019936A CN 107983398 B CN107983398 B CN 107983398B
Authority
CN
China
Prior art keywords
nano
attapulgite
methylpyridine
composite catalyst
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711019936.9A
Other languages
English (en)
Other versions
CN107983398A (zh
Inventor
李晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Panshi Mining Co.,Ltd.
Original Assignee
Suzhou Gaide Fine Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Gaide Fine Materials Co ltd filed Critical Suzhou Gaide Fine Materials Co ltd
Priority to CN201711019936.9A priority Critical patent/CN107983398B/zh
Publication of CN107983398A publication Critical patent/CN107983398A/zh
Application granted granted Critical
Publication of CN107983398B publication Critical patent/CN107983398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种用于3‑甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,包括以下步骤:将纳米凹凸棒土原矿加入到盐酸水溶液中,分离洗涤,再用硝酸银溶液洗涤,再经蒸馏水加热煮沸,离心洗涤,得到酸改性的纳米凹凸棒土;再和沸石分子筛混合均匀,加入氢氧化铝水溶液,混合均匀,干燥研磨,高温煅烧,得到纳米凹凸棒土复合载体;将纳米凹凸棒土复合载体再加入二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3‑甲基吡啶制备的纳米凹凸棒土复合催化剂。本发明制备的催化剂以沸石分子筛和凹凸棒土作为复合载体,将氧化铝和二氧化硅吸附于多级载体孔隙中使催化剂强度高,成本低,分散性好,作为3‑甲基吡啶制备中具有很好的选择性和产品收率。

Description

一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产 方法
技术领域
本发明属于药物化学领域,具体涉及一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法。
背景技术
3-甲基吡啶,又名β-甲基吡啶、3-皮考啉,是一种重要的吡啶衍生物。经过一系列反应可以合成多种重要的精细有机合成中间体主要用于合成烟酸和烟酰胺,两者在饲料、医药和食品工业上需求较大。3-甲基吡啶最早是从煤焦油中分离得到的,但分离难度大,产品纯度低,现在广泛采用化学合成方法生产。目前3-甲基吡啶主要通过化学合成得到,方法有丙烯醛氨化法、乙醇-甲醛氨化法、乙醛-甲醛氨化法、2-甲基戊二胺法和三烯丙基胺法等,其中丙烯醛氨化法、乙醇-甲醛氨化法、乙醛-甲醛氨化法都需要选用沸石分子筛催化剂,在固定床反应器上连续进行,反应过程中醛与氨首先在催化剂酸中心上缩合生成亚胺,生成的亚胺进而在催化剂表面环合生成3-甲基吡啶。
中国专利CN 104492479B公开的一种3-甲基吡啶制吡啶催化剂及其制备方法,该催化剂由ZSM11沸石分子筛、稀土Y沸石分子筛和基质组分构成,其中基质组分为氧化铝溶胶、高岭土和含磷化合物构成,将这些组分混合均匀后,在高温下喷雾成型,干燥,水蒸汽处理,得到催化剂,该催化剂在制备3-甲基吡啶的应用中,具有转化率高和吡啶选择性高。中国专利CN 102249989B公开的一种利用丙烯醛制备3-甲基吡啶的方法,将丙烯醛和铵盐作为原料,以SO42--ZrO2-Fe-ZSM5载体作为固定酸复合催化剂,在回流状态下加热搅拌,得到3-甲基吡啶液体,该方法制备的收率高于40%,且产品中不会出现4-甲基吡啶等其他吡啶碱,降低了生产成本。由上述现有技术可知,目前制备3-甲基吡啶的催化剂载体多为ZSM沸石分子筛,凹凸棒土是一种多孔稀有非金属矿物原料,具有非常大的比表面积和离子交换性,常被用于催化剂载体,但是凹凸棒土在3-甲基吡啶制备催化剂方面的运用并不多见。
发明内容
本发明要解决的技术问题是提供一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,采用纳米凹凸棒土与沸石分子筛都作为载体,与氢氧化铝溶液混合后高温烧结,利用复合载体的多重吸附性能,将氧化铝吸附于多级载体孔隙中,再通过浸渍二氧化硅溶胶,得到复合催化剂。该方法制备的催化剂吸附性好,强度高,成本低,分散性好,还原性能优异,作为3-甲基吡啶制备中具有很好的选择性和产品收率。
为解决上述技术问题,本发明的技术方案是:
一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,包括以下步骤:
(1)将纳米凹凸棒土原矿加入到盐酸水溶液中,分离洗涤,再用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸,离心洗涤,得到酸改性的纳米凹凸棒土;
(2)将步骤(1)制备的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入氢氧化铝水溶液,混合均匀,干燥研磨,高温煅烧,得到纳米凹凸棒土复合载体;
(3)将步骤(2)制备的纳米凹凸棒土复合载体再加入二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂。
作为上述技术方案的优选,所述步骤(1)中,盐酸水溶液的浓度为1-1.5mol/L。
作为上述技术方案的优选,所述步骤(1)中,硝酸银溶液的浓度为0.1-0.2mol/L。
作为上述技术方案的优选,所述步骤(1)中,加热煮沸的时间为30-60min。
作为上述技术方案的优选,所述步骤(2)中,酸改性的纳米凹凸棒土和沸石分子筛的质量比为1:4-10。
作为上述技术方案的优选,所述步骤(2)中,氢氧化铝水溶液的含量为0.005-0.01g/mL。
作为上述技术方案的优选,所述步骤(2)中,高温煅烧的温度为950-1000℃,时间为1-2h。
作为上述技术方案的优选,所述步骤(3)中,用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂中二氧化硅溶胶的粒径为150-250nm。
作为上述技术方案的优选,所述步骤(3)中,用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂中二氧化硅溶胶的含量为0.1-1wt%。
作为上述技术方案的优选,所述步骤(3)中,用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂中氧化铝的含量为20-35wt%。
与现有技术相比,本发明具有以下有益效果:
本发明制备的用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂以纳米凹凸棒土和沸石分子筛作为载体,纳米凹凸棒土和沸石分子筛都为多孔结构,纳米凹凸棒土为多孔层状含水富镁铝硅酸盐类粘土矿物,骨架成三维立体状,晶体内部孔径大小一致,对细菌、生物碱、酸等都具有良好的选择吸附能力,将纳米凹凸棒土经酸和水煮沸处理后,孔洞通透性好,吸附性进一步提高,催化作用进一步提高,再与沸石分子筛混合后,烧结形成的复合载体具有多级孔洞结构,两者相结合,具有协同作用,吸附性能更佳,此外,纳米凹凸棒土和沸石分子筛混合的同时与氢氧化铝水溶液混合,高温烧结复合的同时经氢氧化铝加热分解形成氧化铝,使氧化铝的吸附于载体的牢度更强,更有利于之后的催化反应,最后将复合载体吸附二氧化硅溶胶,制备的复合催化剂中先后附着氧化铝和二氧化硅,使制备的复合催化剂吸附性好,强度高,成本低,分散性好,还原性能优异,作为3-甲基吡啶制备中具有很好的选择性和产品收率。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:
(1)将纳米凹凸棒土原矿加入到1mol/L盐酸水溶液中,分离洗涤,再0.1mol/L用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸30min,离心洗涤,得到酸改性的纳米凹凸棒土。
(2)将质量比为质量比为1:4的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入0.005g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在950℃下高温煅烧1h,得到纳米凹凸棒土复合载体。
(3)将纳米凹凸棒土复合载体再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂,其中,二氧化硅溶胶的含量为0.1wt%,氧化铝的含量为20wt%。
实施例2:
(1)将纳米凹凸棒土原矿加入到1.5mol/L盐酸水溶液中,分离洗涤,再0.2mol/L用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸60min,离心洗涤,得到酸改性的纳米凹凸棒土。
(2)将质量比为质量比为1:10的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入0.01g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在1000℃下高温煅烧2h,得到纳米凹凸棒土复合载体。
(3)将纳米凹凸棒土复合载体再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂,其中,二氧化硅溶胶的含量为1wt%,氧化铝的含量为35wt%。
实施例3:
(1)将纳米凹凸棒土原矿加入到1.2mol/L盐酸水溶液中,分离洗涤,再0.15mol/L用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸40min,离心洗涤,得到酸改性的纳米凹凸棒土。
(2)将质量比为质量比为1:5的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入0.007g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在970℃下高温煅烧1.5h,得到纳米凹凸棒土复合载体。
(3)将纳米凹凸棒土复合载体再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂,其中,二氧化硅溶胶的含量为0.5wt%,氧化铝的含量为25wt%。
实施例4:
(1)将纳米凹凸棒土原矿加入到1.4mol/L盐酸水溶液中,分离洗涤,再0.1mol/L用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸45min,离心洗涤,得到酸改性的纳米凹凸棒土。
(2)将质量比为质量比为1:6的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入0.008g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在990℃下高温煅烧2h,得到纳米凹凸棒土复合载体。
(3)将纳米凹凸棒土复合载体再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂,其中,二氧化硅溶胶的含量为0.7wt%,氧化铝的含量为30wt%。
实施例5:
(1)将纳米凹凸棒土原矿加入到1.5mol/L盐酸水溶液中,分离洗涤,再0.1mol/L用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸60min,离心洗涤,得到酸改性的纳米凹凸棒土。
(2)将质量比为质量比为1:4的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入0.01g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在950℃下高温煅烧2h,得到纳米凹凸棒土复合载体。
(3)将纳米凹凸棒土复合载体再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂,其中,二氧化硅溶胶的含量为0.1wt%,氧化铝的含量为35wt%。
实施例6:
(1)将纳米凹凸棒土原矿加入到1mol/L盐酸水溶液中,分离洗涤,再0.2mol/L用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸30min,离心洗涤,得到酸改性的纳米凹凸棒土。
(2)将质量比为质量比为1:10的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入0.005g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在1000℃下高温煅烧1h,得到纳米凹凸棒土复合载体。
(3)将纳米凹凸棒土复合载体再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂,其中,二氧化硅溶胶的含量为1wt%,氧化铝的含量为20wt%。
对比例:
(1)将沸石分子筛加入0.005g/mL氢氧化铝水溶液,混合均匀,干燥研磨,在950℃下高温煅烧1-2h,再加入粒径为150-250nm的二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的催化剂,其中,二氧化硅溶胶的含量为0.1wt%,氧化铝的含量为20wt%。
经检测,实施例1-6制备的用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂以及对比例制备的催化剂在3-甲基吡啶制备中的选择率和产品收率的结果如下所示:
Figure BDA0001447217380000061
由上表可见,本发明制备的用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的选择率和产品收率的显著提高,催化性能优异。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于,包括以下步骤:
(1)将纳米凹凸棒土原矿加入到盐酸水溶液中,分离洗涤,再用硝酸银溶液洗涤至无氯离子,再经蒸馏水加热煮沸,离心洗涤,得到酸改性的纳米凹凸棒土;
(2)将步骤(1)制备的酸改性的纳米凹凸棒土和沸石分子筛混合均匀,加入氢氧化铝水溶液,混合均匀,干燥研磨,高温煅烧,得到纳米凹凸棒土复合载体;酸改性的纳米凹凸棒土和沸石分子筛的质量比为1:4-10;
(3)将步骤(2)制备的纳米凹凸棒土复合载体再加入二氧化硅溶胶中,充分吸附,干燥研磨,得到用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂;其中,所述纳米凹凸棒土复合催化剂中二氧化硅溶胶的含量为0.1-1wt%,氧化铝的含量为20-35wt%。
2.根据权利要求1所述的一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于:所述步骤(1)中,盐酸水溶液的浓度为1-1.5mol/L。
3.根据权利要求1所述的一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于:所述步骤(1)中,硝酸银溶液的浓度为0.1-0.2mol/L。
4.根据权利要求1所述的一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于:所述步骤(1)中,加热煮沸的时间为30-60min。
5.根据权利要求1所述的一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于:所述步骤(2)中,氢氧化铝水溶液的含量为0.005-0.01g/mL。
6.根据权利要求1所述的一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于:所述步骤(2)中,高温煅烧的温度为950-1000℃,时间为1-2h。
7.根据权利要求1所述的一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法,其特征在于:所述步骤(3)中,用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂中二氧化硅溶胶的粒径为150-250nm。
CN201711019936.9A 2017-10-27 2017-10-27 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法 Active CN107983398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711019936.9A CN107983398B (zh) 2017-10-27 2017-10-27 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711019936.9A CN107983398B (zh) 2017-10-27 2017-10-27 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法

Publications (2)

Publication Number Publication Date
CN107983398A CN107983398A (zh) 2018-05-04
CN107983398B true CN107983398B (zh) 2020-07-17

Family

ID=62031116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711019936.9A Active CN107983398B (zh) 2017-10-27 2017-10-27 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法

Country Status (1)

Country Link
CN (1) CN107983398B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112844377B (zh) * 2021-02-01 2021-10-01 铂尊投资集团有限公司 3-甲基吡啶生产方法、复合催化剂及制备方法
CN115845910B (zh) * 2022-12-09 2023-07-04 武汉新硅科技潜江有限公司 一种四氯化硅合成三氯氢硅的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886195A (zh) * 2003-12-31 2006-12-27 科学与工业研究委员会 合成2-甲基吡啶和4-甲基吡啶的催化剂以及制备2-甲基吡啶和4-甲基吡啶及催化剂的方法
CN104736520A (zh) * 2012-10-25 2015-06-24 格雷斯公司 用于产生吡啶及其烷基衍生物的方法和催化剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456123B2 (en) * 2004-06-08 2008-11-25 Exxonmobil Research And Engineering Company FCC catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886195A (zh) * 2003-12-31 2006-12-27 科学与工业研究委员会 合成2-甲基吡啶和4-甲基吡啶的催化剂以及制备2-甲基吡啶和4-甲基吡啶及催化剂的方法
CN104736520A (zh) * 2012-10-25 2015-06-24 格雷斯公司 用于产生吡啶及其烷基衍生物的方法和催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
乙醇催化氨化合成2 -甲基吡啶和4 -甲基吡啶;冯成等;《石油化工》;20101231;第39卷(第7期);第775-781页 *

Also Published As

Publication number Publication date
CN107983398A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN101885493B (zh) ZSM-5/β核壳型分子筛的合成方法
CN108273564B (zh) 一种复合可见光光催化剂Ag2CO3/TiO2/UiO-66-(COOH)2的制备方法及其应用
CN101885662B (zh) 甲苯甲醇烷基化的方法
CN101884935A (zh) 催化剂材料及其制备方法
CN107983398B (zh) 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法
CN106669773A (zh) 一种y型分子筛的改性方法
WO2022206673A1 (zh) 低温羰基化分子筛催化剂及其用途
CN103896302A (zh) 一种硅分子筛及其制备方法
CN103359759A (zh) 一种多级孔道结构zsm-5分子筛的制备方法
CN104386706A (zh) 以锌胺络合物为模板剂合成cha型分子筛的方法
CN113457720A (zh) HMS@NiPt@Beta核壳结构催化材料及其制备方法和应用
CN116003262B (zh) 一种n,n-二甲基苯胺的合成方法
CN101239325A (zh) 蒙脱土/zsm-5分子筛复合材料及其制备方法
CN101475192A (zh) 一种层柱状介孔钛硅分子筛及其合成方法
CN105692651A (zh) 一种以钾长石为原料制备13x分子筛的方法及由该方法制得的13x分子筛
CN112844377B (zh) 3-甲基吡啶生产方法、复合催化剂及制备方法
CN113526523A (zh) 短孔深的介孔zsm-5分子筛及其在制备吡啶碱中的应用
CN107055566A (zh) 一种3a分子筛及其加工工艺
CN108503518A (zh) 一种复合海泡石基催化剂的制备及其应用
CN106008180A (zh) 一种利用异戊醇制备异戊醛的方法
CN107686119B (zh) 一种多级孔硅铝分子筛纳米簇及其制备方法
CN105688823A (zh) 复合型二氧化碳吸附剂的制备方法
CN101885664B (zh) 三甲苯催化转化的方法
CN115888800B (zh) 一种对二乙苯的择形催化剂及其制备方法和应用
CN110586168B (zh) 制备一乙醇胺和二乙醇胺的催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201201

Address after: 241000 No.32 Chunjiang Road, Qingshui street, Jiujiang District, Wuhu City, Anhui Province

Patentee after: Huang Zijie

Address before: No. 2 Taishan Road, Jiangsu science and Technology Park, 215000 Canton City of Suzhou province high tech Zone pilot base in C district two floor

Patentee before: SUZHOU GAIDE FINE MATERIALS Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211208

Address after: 1 / F, building 28, 6055 Jinhai highway, Fengxian District, Shanghai, 201403

Patentee after: Shanghai Panshi Mining Co.,Ltd.

Address before: 241000 No.32 Chunjiang Road, Qingshui street, Jiujiang District, Wuhu City, Anhui Province

Patentee before: Huang Zijie