CN111921558B - 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用 - Google Patents

一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN111921558B
CN111921558B CN202010819768.7A CN202010819768A CN111921558B CN 111921558 B CN111921558 B CN 111921558B CN 202010819768 A CN202010819768 A CN 202010819768A CN 111921558 B CN111921558 B CN 111921558B
Authority
CN
China
Prior art keywords
solution
mil
catalyst
biobr
composite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010819768.7A
Other languages
English (en)
Other versions
CN111921558A (zh
Inventor
陆光
李政
顾贵洲
王菲
王辉
邹君峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Shihua University
Original Assignee
Liaoning Shihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Shihua University filed Critical Liaoning Shihua University
Priority to CN202010819768.7A priority Critical patent/CN111921558B/zh
Publication of CN111921558A publication Critical patent/CN111921558A/zh
Application granted granted Critical
Publication of CN111921558B publication Critical patent/CN111921558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种可见光响应的MIL‑125/BiOBr复合催化剂及其制备方法。该复合催化剂是由平均粒径为15‑25nm的纳米粒子组成的微观形貌;禁带宽度为2.81eV,吸收边带为441nm,具有可见光响应。MIL‑125/BiOBr复合催化剂的制备方法为:将Bi(NO3)3·5H2O分散加入至EG溶液中,搅拌至溶解;将CTAB分散至水溶液中,搅拌至溶解;上述溶液混合后,调节pH值,超声处理,得到BiOBr前驱体;将Ti(O‑iPr)4、H2BDC、CH3OH和DMF混合搅拌溶解,得到MIL‑125前驱体;将BiOBr前驱体滴入MIL‑125前驱体中,超声处理后,转入水热反应釜中,在130~180℃反应30~60h;冷却室温后,离心、洗涤、干燥,得到MIL‑125/BiOBr复合催化剂。此催化剂在可见光照射下,实现目标污染物Cr6+的高效还原。该方法合成路线简单易控,形貌重现性好,适用于工业大批量生产的需求。

Description

一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法 与应用
技术领域
本发明涉及可见光响应的MIL-125/BiOBr复合催化剂,属于环境化工光催化水处理技术领域,特别涉及可见光处理Cr6+废水。
背景技术
世界卫生组织将镉列入对人体毒性最强的重金属之一,镉元素大量存在于自然界中。镉容易进入人体的肾脏,与蛋白酶发生螯合作用,螯合物在肾脏中反应,发生镉的二次释放,破坏肾脏系统。此外,镉离子与钙离子的原子半径相近,当人补充钙离子时,镉离子能够进入钙通道,抑制G-ATP酶活性,影响钙离子的转运,导致钙离子浓度急剧升高,产生癌基因。因此,面对镉离子等有毒有害性较强的污染物,相应的去除方法研究日益成为热点。光催化技术是一种环保的、高效的、无二次污染的高级氧化技术,在能源开发和环境污染治理领域都显示出广阔的应用前景,吸引了国内外学者广泛关注及研究。
金属-有机骨架(metal-organic frameworks,MOFs),也被称为多孔配位聚合物(porous coordination polymers,PCPs),具有超高的孔隙率(>90%的自由体积)、较高的比表面积、可调的孔径和内表面特性,使其在气体的储存和分离、传感、催化、质子传导和药物运输等方面均有着广泛的应用。但MOFs材料对水敏感,限制了其在许多领域中的应用。
发明内容
针对上述问题,本发明旨在提供一种具有可见光响应的、对Cr6+具有高效还原能力、稳定性好的MIL-125/BiOBr复合纳米催化剂的制备工艺。
本发明技术方案如下:
一方面,本发明提供了一种MIL-125/BiOBr复合催化剂的制备方法,所述制备方法为原位超声水热法,所述原位超声水热法包括以下步骤:
步骤1、将Bi的金属盐分散加入至EG(乙二醇)溶液中,室温搅拌至溶解,得混合溶液A;
步骤2、将CTAB(十六烷基三甲基溴化铵)分散至水中,搅拌至溶解,得溶液B;
步骤3、将所述溶液B滴入混合溶液A中,加入碳酸钠溶液至pH=3~6,室温超声处理,得溶液C;
步骤4、将Ti(O-iPr)4、H2BDC、CH3OH和DMF(二甲基甲酰胺)混合,搅拌,形成溶液D;
步骤5、将溶液D滴入溶液C中,形成混合溶液,室温超声处理,得混合溶液E;
步骤6、将溶液E在130~180℃反应30~60h,冷却至室温后,洗涤、干燥得到所述MIL-125/BiOBr复合催化剂。
基于上述方案,优选地,所述Bi的金属盐为Bi(NO3)3·5H2O;所述溶液A中Bi3+的浓度为0.1~0.5g/L;所述CTAB与Bi3+的摩尔比为1:1;所述溶液B中Br-的浓度为0.1~0.5g/L;所述混合溶液B的滴加速度为1~5mL/min,所述混合溶液B采用微量注射泵滴加;所述碳酸钠溶液的浓度为0.1M;所述步骤3中超声处理时间为20~120min。
基于上述方案,优选地,所述溶液D中Ti(O-iPr)4、H2BDC、CH3OH和DMF的质量比为1:2:4:35;所述步骤4中搅拌时间为1h;所述溶液D的滴加速度为1~5mL/min;所述溶液D采用微量注射泵滴加;所述步骤5中超声处理时间为20~120min;所述混合溶液E中Ti与Bi的摩尔比为10:1~5:1。
基于上述方案,优选地,所述溶液E于水热反应釜中进行反应;所述洗涤步骤为:用去离子水和无水乙醇各洗涤三次;所述干燥步骤为:于真空烘箱中在50~100℃下干燥12~24h。
另一方面,本发明提供了一种MIL-125/BiOBr复合催化剂,所述复合催化剂采用上述的方法制备。
基于上述方案,优选地,所述催化剂由纳米粒子组成;所述纳米粒子的平均粒径为15-25nm。
基于上述方案,优选地,所述催化剂的禁带宽度为2.81eV,吸收边带为441nm;所述催化剂具有可见光响应。
再一方面,本发明将上述催化剂应用于光催化还原Cr6+的反应。
基于上述方案,优选地,所述MIL-125/BiOBr催化剂与Cr6+底物的质量比为7:1~2:1;所述Cr6+底物溶液的浓度为50mg/L;所述反应采用氙灯为光源。
有益效果
1、本发明提供的原位超声水热法具有操作简单、合成步骤少、能耗低等优点,更适于工业生产。
2、本发明的方法制备的催化剂与现有的方法制备的催化剂,在形貌上具有纳米粒子小且均匀的特点,在复合形式上MIL-125与BiOBr接触充分的特点,有效的抑制光生电子的复合,提高光催化还原Cr6+能力。
附图说明
图1为实施例1中的MIL-125/BiOBr复合催化剂的扫描电镜图。
图2为实施例1中的MIL-125/BiOBr复合催化剂与纯BiOBr和MIL-125光催化降解Cr6+效果对比图。
图3为实施例1中的MIL-125/BiOBr复合催化剂与两步水热法制得的MIL-125/BiOBr复合催化剂光催化降解Cr6+效果对比图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
MIL-125/BiOBr-1复合催化剂的制备方法具体如下:
步骤1、将Bi(NO3)3·5H2O分散加入至EG溶液中,室温磁力搅拌至溶解,得混合溶液A,溶液A中Bi3+的浓度为0.1g/L;
步骤2、将与Bi(NO3)3·5H2O的摩尔比为1:1的CTAB分散至水溶液中,磁力搅拌至溶解,得混合溶液B,溶液B中Br-的浓度为0.1g/L;
步骤3、采用微量注射泵将混合溶液B以1mL/min的速度滴入混合溶液A中,加入0.1M碳酸钠溶液至pH=3,室温超声处理20min,得溶液C;
步骤4、将质量比为的1:2:4:35的Ti(O-iPr)4、H2BDC、CH3OH和DMF混合搅拌1h,形成溶液D;
步骤5、采用微量注射泵将溶液D以1mL/min的速度滴入溶液C中形成混合溶液,室温超声处理20min,得混合溶液E,混合溶液E中Ti与Bi的摩尔比为10:1。
步骤6、将溶液E转入水热反应釜中,在130℃反应60h;冷却至室温后,用去离子水和无水乙醇各洗涤三次,在真空烘箱中在50℃下干燥24h,得到MIL-125/BiOBr-1复合催化剂。MIL-125/BiOBr-1复合催化剂的扫描电镜图如图1所示,复合催化剂的的形貌为20nm左右的纳米粒子,粒径均匀。
实施例2
MIL-125/BiOBr-2复合催化剂的制备方法具体如下:
步骤1、将Bi(NO3)3·5H2O分散加入至EG溶液中,室温磁力搅拌至溶解,得混合溶液A,溶液A中Bi3+的浓度为0.5g/L;
步骤2、将与Bi(NO3)3·5H2O的摩尔比为1:1的CTAB分散至水溶液中,磁力搅拌至溶解,得混合溶液B,溶液B中Br-的浓度为0.5g/L;
步骤3、采用微量注射泵将混合溶液B以5mL/min的速度滴入混合溶液A中,加入0.1M碳酸钠溶液至pH=6,室温超声处理120min,得溶液C;
步骤4、将质量比为的1:2:4:35的Ti(O-iPr)4、H2BDC、CH3OH和DMF混合搅拌1h,形成溶液D;
步骤5、采用微量注射泵将溶液D以5mL/min的速度滴入溶液C中形成混合溶液,室温超声处理120min,得混合溶液E,混合溶液E中Ti与Bi的摩尔比为5:1。
步骤6、将溶液E转入水热反应釜中,在180℃反应30h;冷却至室温后,用去离子水和无水乙醇各洗涤三次,在真空烘箱中在100℃下干燥12h,得到MIL-125/BiOBr-2复合催化剂。
实施例3
MIL-125/BiOBr-3复合催化剂的制备方法具体如下:
步骤1、将Bi(NO3)3·5H2O分散加入至EG溶液中,室温磁力搅拌至溶解,得混合溶液A,溶液A中Bi3+的浓度为0.25g/L;
步骤2、将与Bi(NO3)3·5H2O的摩尔比为1:1的CTAB分散至水溶液中,磁力搅拌至溶解,得混合溶液B,溶液B中Br-的浓度为0.25g/L;
步骤3、采用微量注射泵将混合溶液B以2mL/min的速度滴入混合溶液A中,加入0.1M碳酸钠溶液至pH=4,室温超声处理60min,得溶液C;
步骤4、将质量比为的1:2:4:35的Ti(O-iPr)4、H2BDC、CH3OH和DMF混合搅拌1h,形成溶液D;
步骤5、采用微量注射泵将溶液D以2mL/min的速度滴入溶液C中形成混合溶液,室温超声处理60min,得混合溶液E,混合溶液E中Ti与Bi的摩尔比为8:1。
步骤6、将溶液E转入水热反应釜中,在150℃反应45h;冷却至室温后,用去离子水和无水乙醇各洗涤三次,在真空烘箱中在80℃下干燥18h,得到MIL-125/BiOBr-3复合催化剂。
应用例1
首先,将实施例1中的0.05g的MIL-125/BiOBr复合纳米材料分散于200mL重铬酸钾溶液中(0.05g/L);
再次,暗光下,上述溶液磁力搅拌1h,让MIL-125/BiOBr复合催化剂吸附饱和;
最后,以氙灯为光源,进行光催化降解Cr6+实验,并通过吸光光度法计算的Cr6+去除率,实验结果见图2所示。
实施例2和实施例3制备的催化剂同样的条件下应用于以上光催化降解Cr6+实验,Cr6+去除率分别为83.2%和82.7%。
对比例1-2
作为对比,同样反应条件下,将自制的MIL-125(采用实施例1中步骤4、6制备)和BiOBr(采用实施例1中步骤1、2、3、6制备)分别用于光催化还原Cr6+中的反应。
实验结果见图2所示,经过5h降解,MIL-125/BiOBr复合纳米材料可见光降解Cr6+的效率是MIL-125的2倍、BiOBr的4倍。
对比例3
采用两步水热法合成的MIL-125/BiOBr,两步水热合成MIL-125/BiOBr复合催化剂过程中各物料的用量与实施例1相同,具体步骤如下:
①MIL-125
步骤1、将质量比为的1:2:4:35的Ti(O-iPr)4、H2BDC、CH3OH和DMF混合搅拌1h,形成溶液A;
步骤2、将溶液A转入水热反应釜中,在130℃反应60h;冷却至室温后,用去离子水和无水乙醇各洗涤三次,在真空烘箱中在50℃下干燥24h,得到MIL-125催化剂。
②MIL-125/BiOBr复合催化剂
步骤1、将Bi(NO3)3·5H2O分散加入至EG溶液中,室温磁力搅拌至溶解,得混合溶液A,溶液A中Bi3+的浓度为0.1g/L;
步骤2、将与Bi(NO3)3·5H2O的摩尔比为1:1的CTAB分散至水溶液中,磁力搅拌至溶解,得混合溶液B,溶液B中Br-的浓度为0.1g/L;
步骤3、采用微量注射泵将混合溶液B以1mL/min的速度滴入混合溶液A中,加入0.1M碳酸钠溶液至pH=3,室温超声处理20min,得溶液C;
步骤4、将①中制得的MIL-125催化剂加入至溶液C中,超声处理30min,得溶液D;
步骤5、将溶液D转入水热反应釜中,在130℃反应60h;冷却至室温后,用去离子水和无水乙醇各洗涤三次,在真空烘箱中在50℃下干燥24h,得到MIL-125/BiOBr-1复合催化剂。
将上述方法制备的催化剂用于光催化还原Cr6+中的反应,反应条件同应用例1。
与实施例1的对比实验结果见图3所示,经过5h降解,原位超声水热法制得的复合纳米材料可见光降解Cr6+的效率是两步水热法制得的复合催化剂的1.5倍。

Claims (9)

1.一种MIL-125/BiOBr复合催化剂的制备方法,其特征在于,所述制备方法为原位超声水热法,所述原位超声水热法包括以下步骤:
步骤1、将Bi3+的金属盐分加入至EG溶液中,室温搅拌至溶解,得混合溶液A;
步骤2、将CTAB分散至水中,搅拌至溶解,得溶液B;
步骤3、将所述溶液B滴入混合溶液A中,加入碳酸钠溶液至pH=3~6,室温超声处理,得溶液C;
步骤4、将Ti(O-iPr)4、H2BDC、CH3OH和DMF混合,搅拌,形成溶液D;
步骤5、将溶液D滴入溶液C中,形成混合溶液,室温超声处理,得混合溶液E;
步骤6、将溶液E在130~180℃反应30~60h,冷却至室温后,洗涤、干燥得到所述MIL-125/BiOBr复合催化剂。
2.根据权利要求1所述的催化剂的制备方法,其特征在于,
所述Bi的金属盐为Bi(NO3)3·5H2O;所述溶液A中Bi3+的浓度为0.1~0.5g/L;
所述CTAB与Bi3+的摩尔比为1:1;所述溶液B中Br-的浓度为0.1~0.5g/L;
所述混合溶液B的滴加速度为1~5mL/min,所述混合溶液B采用微量注射泵滴加;所述碳酸钠溶液的浓度为0.1M;所述步骤3中超声处理时间为20~120min。
3.根据权利要求1所述的催化剂的制备方法,其特征在于,
所述溶液D中Ti(O-iPr)4、H2BDC、CH3OH和DMF的质量比为1:2:4:35;所述步骤4中搅拌时间为1h;
所述溶液D的滴加速度为1~5mL/min;所述溶液D采用微量注射泵滴加;所述步骤5中超声处理时间为20~120min;所述混合溶液E中Ti与Bi的摩尔比为10:1~5:1。
4.根据权利要求1所述的催化剂的制备方法,其特征在于,
所述溶液E于水热反应釜中进行反应;所述洗涤步骤为:用去离子水和无水乙醇各洗涤三次;所述干燥步骤为:于真空烘箱中在50~100℃下干燥12~24h。
5.一种MIL-125/BiOBr复合催化剂,其特征在于:所述复合催化剂采用权利要求1-4任一项所述方法制备。
6.根据权利要求5所述的催化剂,其特征在于,所述催化剂由纳米粒子组成;所述纳米粒子的平均粒径为15-25nm。
7.根据权利要求5所述的催化剂,其特征在于,所述催化剂的禁带宽度为2.81eV,吸收边带为441nm;所述催化剂具有可见光响应。
8.一种权利要求5所述的催化剂在光催化还原Cr6+中的应用。
9.根据权利要求8所述的应用,其特征在于,所述MIL-125/BiOBr催化剂与Cr6+底物的质量比为7:1~2:1;所述Cr6+底物溶液的浓度为50mg/L;所述反应采用氙灯为光源。
CN202010819768.7A 2020-08-14 2020-08-14 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用 Active CN111921558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010819768.7A CN111921558B (zh) 2020-08-14 2020-08-14 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010819768.7A CN111921558B (zh) 2020-08-14 2020-08-14 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111921558A CN111921558A (zh) 2020-11-13
CN111921558B true CN111921558B (zh) 2022-11-18

Family

ID=73310370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010819768.7A Active CN111921558B (zh) 2020-08-14 2020-08-14 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111921558B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178299A (zh) * 2022-07-08 2022-10-14 南昌航空大学 一种可治理铬离子和四环素混合废水的纳米复合光催化材料的制备方法
CN115532320A (zh) * 2022-10-21 2022-12-30 常州大学 一种富铋型溴氧化铋/金属有机骨架复合光催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170186A (zh) * 2015-09-09 2015-12-23 济南大学 一种核壳结构BiOX@MIL(Fe)光催化剂的制备方法
CN106268880A (zh) * 2016-08-16 2017-01-04 辽宁石油化工大学 一种球状Bi3O4Cl/BiOCl可见光催化剂及制备方法
CN108889294A (zh) * 2018-08-23 2018-11-27 辽宁石油化工大学 一种可见光响应的CeVO4/BiVO4异质结的制备及其应用
CN109261213A (zh) * 2018-09-28 2019-01-25 湖北民族学院 一种碘氧化铋/钛基金属有机骨架复合材料的制备方法及应用
CN109482204A (zh) * 2019-01-13 2019-03-19 西南石油大学 一种三元异质结可见光光催化剂及其制备方法和应用
AU2019100895A4 (en) * 2018-12-29 2019-09-12 Shaanxi Normal University Preparation method of bi/bioi nanosheet photocatalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170186A (zh) * 2015-09-09 2015-12-23 济南大学 一种核壳结构BiOX@MIL(Fe)光催化剂的制备方法
CN106268880A (zh) * 2016-08-16 2017-01-04 辽宁石油化工大学 一种球状Bi3O4Cl/BiOCl可见光催化剂及制备方法
CN108889294A (zh) * 2018-08-23 2018-11-27 辽宁石油化工大学 一种可见光响应的CeVO4/BiVO4异质结的制备及其应用
CN109261213A (zh) * 2018-09-28 2019-01-25 湖北民族学院 一种碘氧化铋/钛基金属有机骨架复合材料的制备方法及应用
AU2019100895A4 (en) * 2018-12-29 2019-09-12 Shaanxi Normal University Preparation method of bi/bioi nanosheet photocatalyst
CN109482204A (zh) * 2019-01-13 2019-03-19 西南石油大学 一种三元异质结可见光光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BiOBr/TiO2/MIL-125(Ti)光催化还原硝酸盐的研究;祁昕 等;《伊犁师范学院学报(自然科学版)》;20190331;第13卷(第1期);33-39 *
Hydrothermal synthesis of m-BiVO4 and m-BiVO4/BiOBr with various facets and morphologies and their photocatalytic performance under visible light;Lu Guang 等;《Journal of Alloys and Compounds》;20161119;第697卷;417-426 *

Also Published As

Publication number Publication date
CN111921558A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN107617447B (zh) 一种Ag@MOFs/TiO2光催化剂的制备方法与应用
CN111921558B (zh) 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
CN104549281A (zh) 一种活性石墨烯-金属氧化物复合光催化剂、其制备方法及其应用
CN109876815B (zh) 石墨烯/ZnFe2O4复合可见光催化剂及其制备方法
CN113457745B (zh) 一种选择性还原硝酸盐为n2的光催化剂制备方法及应用
CN111203234A (zh) 一种CdIn2S4纳米块/SnIn4S8片状堆集结构双功能复合光催化剂的制备方法
CN112569950B (zh) 具有八面体结构的磁性四氧化三铁-氧化锌复合光催化剂的制备及其产品和应用
CN105148918B (zh) 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用
CN112657515B (zh) 3D花状Z型异质结光电催化剂Zn3In2S6@α-Fe2O3及其制备方法和应用
CN111468100A (zh) 一种原位生长的多酸铌/石墨光催化剂的制备方法及其在降解四环素中的应用
CN114345347B (zh) 一种铁酸钴助催化剂及其制备方法和应用
CN114534760B (zh) 一种N-CDs/FeNbO4复合光催化剂及其制备方法和应用
CN112264013B (zh) 一种纤维素基钴氧复合磷酸银光催化异质结的制备方法
CN112675891B (zh) 一种高分散的具有磁性的纳米光催化剂及制备方法
CN110961121B (zh) 一种z型光催化剂及制备方法和应用
CN109701518B (zh) 一种复合光催化剂及其制备方法和该催化剂在降解有机染料中的应用
CN112871183A (zh) 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法
CN115254084B (zh) 黑色材料负载金属纳米颗粒的复合催化剂的制备方法及应用
CN114177911B (zh) 碳载多金属氧化物催化剂及其制备方法和应用
CN114377704B (zh) 一种可见光响应的锡酸锌/碘氧铋复合光催化材料及其制备方法
CN113634261B (zh) 一种废水净化材料
CN116903880B (zh) 一种片状多孔Bi2O3/ZnO-ZIF-8异质结材料的制备方法及应用
LU505258B1 (en) Combined protection smelting furnace and smelting method for antimony
CN114405548B (zh) 复合光催化剂金属酞菁/钛酸镧及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant