CN111816853B - CuS-Cu7.2S4纳米复合材料、锂电池及制备方法 - Google Patents
CuS-Cu7.2S4纳米复合材料、锂电池及制备方法 Download PDFInfo
- Publication number
- CN111816853B CN111816853B CN202010626352.3A CN202010626352A CN111816853B CN 111816853 B CN111816853 B CN 111816853B CN 202010626352 A CN202010626352 A CN 202010626352A CN 111816853 B CN111816853 B CN 111816853B
- Authority
- CN
- China
- Prior art keywords
- cus
- composite material
- nano composite
- lithium battery
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000002114 nanocomposite Substances 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000002105 nanoparticle Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 7
- 239000010949 copper Substances 0.000 claims description 51
- 238000006243 chemical reaction Methods 0.000 claims description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 13
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000011889 copper foil Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000007773 negative electrode material Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 239000004201 L-cysteine Substances 0.000 claims description 5
- 235000013878 L-cysteine Nutrition 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 230000035484 reaction time Effects 0.000 claims description 5
- 238000001291 vacuum drying Methods 0.000 claims description 5
- 229910021592 Copper(II) chloride Inorganic materials 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000005580 one pot reaction Methods 0.000 abstract description 13
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000013543 active substance Substances 0.000 abstract description 2
- 238000010923 batch production Methods 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000009831 deintercalation Methods 0.000 abstract description 2
- 238000009830 intercalation Methods 0.000 abstract description 2
- 230000002687 intercalation Effects 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 14
- 229910001416 lithium ion Inorganic materials 0.000 description 14
- 230000008569 process Effects 0.000 description 7
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000002057 nanoflower Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种CuS‑Cu7.2S4纳米复合材料、锂电池及制备方法,其中,所述锂电池的采用CuS‑Cu7.2S4纳米复合材料,所述CuS‑Cu7.2S4纳米复合材料为为纳米颗粒,其直径尺寸为10‑150nm。本发明采用溶剂热一锅法制备CuS‑Cu7.2S4纳米复合材料,制备方法简单,大大降低了成本和制备环节,并适于批量生产。由于复合材料为纳米颗粒,缩短了锂离子的扩散距离,提高了颗粒内部活性物质的利用率,并减少了嵌锂和脱锂产生的体积膨胀,同时由于Cu7.2S4的辅助作用,由CuS‑Cu7.2S4纳米复合材料制备的锂电池负极在比容量、循环性能和倍率性能等方面显著提高。
Description
技术领域
本发明属于锂离子电池技术领域,尤其涉及一种CuS-Cu7.2S4纳米复合材料、锂电池及制备方法。
背景技术
随着手机、相机等便携电子设备,以及电动汽车和混动汽车的发展,可充电的锂离子二次电池被广泛关注和研究。锂离子电池是一种新型高效的化学电源,具有能量密度大、工作电压高、循环寿命长、无记忆效应、自放电小和工作温度范围宽等优点,具有广阔的应用空间和经济价值。传统的石墨碳材料因具有好的电化学稳定性,储量丰富,环境友好而被用于负极材料。然而相对低的比容量(理论372mAh g-1)限制了其进一步的应用。一系列过渡金属氧化物和过渡金属硫化物,因为其较高的理论容量而被广泛研究,并表现出较好的性质。
硫化铜因其储量丰富、无污染、长而平的放电电压、相对高的比容量 (理论560mAhg-1)、相对高的导电特性(10-3S cm-1)而备受关注和研究,是目前最具商业化前景的碳材料替代材料之一。纳米颗粒、纳米棒、纳米花、纳米管等多种纳米/微米结构的CuS材料被制备和研究,以解决充放电过程中的电极材料体积膨胀和硫化物溶解于电解液等问题。
不仅如此,Cu1.8S由于其晶向稳定、较好的导电性(窄带隙1.2eV)而被用于锂离子电池和钠离子电池研究中,并取得较好的进展和实验结果。有报道3D核壳结构Cu1.8S/C@MoS2纳米复合材料因为Cu1.8S的引入表现出高的可逆容量,较好的稳定性、和非常好的倍率性能。
由于传统工艺的限制,目前还没有一种简单的方法,同时制备出 CuS-Cu1.8S纳米复合材料,实现在电化学性能方面的提升。
发明内容
本发明提供了一种CuS-Cu7.2S4纳米复合材料、锂电池及制备方法,利用溶剂热一锅法,选择合适的反应温度,同时制备出CuS和Cu7.2S4(Cu1.8S)纳米复合颗粒,将其用于锂离子电池负极获得较高的初始容量,较好的循环稳定性和倍率性能。
为了实现上述目的,本发明采用了如下技术方案:
第一方面,本发明实施例提供了一种CuS-Cu7.2S4纳米复合材料,其中,所述CuS-Cu7.2S4纳米复合材料为纳米颗粒,其直径尺寸为10-150nm。
第二方面,本发明实施例提供了一种CuS-Cu7.2S4纳米复合材料的制备方法,采用溶剂热一锅法,所述方法包括:
S1:将一定量的CuCl2·2H2O和L-半胱氨酸依次加入盛有乙二醇的烧杯中;
S2:对上述混合物利用搅拌器进行搅拌,直至全部溶解;
S3:将上述已溶解溶液分别装入聚四氟乙烯反应釜中,加热恒温反应后,自然冷却至室温;
S4:将上述反应溶液利用去离子水和酒精交替离心清洗多次,直至去离子水和酒精清澈;
S5:将上述得到的黑色沉淀物放置在真空干燥箱中,进行干燥后,冷却至室温得到CuS-Cu7.2S4纳米复合材料颗粒。
作为上述技术方案的进一步描述:在步骤S1中,所述CuCl2·2H2O和L- 半胱氨酸的纯度为99.9%,乙二醇的纯度为分析纯(AR)。
作为上述技术方案的进一步描述:所述步骤S2中的搅拌器为磁力搅拌器,所述步骤2中的搅拌时间大于1h。
作为上述技术方案的进一步描述:所述步骤S3中的反应温度为 150-300℃,反应时间为20-30h。
作为上述技术方案的进一步描述:所述步骤S5中的干燥温度为50-90℃。
第三方面,本发明实施例提供了一种锂电池,所述锂电池的负极采用第一方面所述的CuS-Cu7.2S4纳米复合材料。
第四方面,本发明实施例提供了一种第三方面所述的锂电池的制备方法,包括:
A1:将炭黑、溶于去离子水的羧甲基纤维素钠和第一方面所述的 CuS-Cu7.2S4纳米复合材料,按照2:1:7的重量比例混合、研磨得到黑色泥浆状材料;
A2:将上述的黑色泥浆状材料均匀涂抹在铜箔上,之后放入真空干燥箱干燥、冷却至室温得到锂电池的负极材料。
作为上述技术方案的进一步描述:所述步骤A2中的干燥温度为50-90℃。
本发明具有如下有益效果:
本发明采用溶剂热一锅法制备了CuS-Cu7.2S4纳米复合材料,制备方法简单,大大降低了成本和制备环节,并适于批量生产。由于复合材料为纳米颗粒,缩短了锂离子的扩散距离,提高了颗粒内部活性物质的利用率,并减少了嵌锂和脱锂产生的体积膨胀,同时由于Cu7.2S4的辅助作用,由 CuS-Cu7.2S4纳米复合材料制备的锂电池负极在比容量、循环性能和倍率性能等方面显著提高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显然,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种CuS-Cu7.2S4纳米复合材料制备方法流程示意图;
图2为本发明实施例采用溶剂热一锅法制备的CuS-Cu7.2S4纳米复合材料作为锂离子电池负极(锂片为对比电极)的充放电循环性能曲线;
图3为本发明实施例采用溶剂热一锅法制备的CuS-Cu7.2S4纳米复合材料作为锂离子电池负极(锂片为对比电极)的倍率性能曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,为了提高锂离子电池中负极的循环稳定性,从负极材料的构造角度进行考虑。为解决硫化铜材料在充放电过程中的体积膨胀和硫化物溶解于电解液等问题,优先考虑将硫化铜制备成纳米材料,特别是纳米颗粒材料以缩短锂离子的扩散距离,提高内部活性材料的利用率。
基于上述考虑,本发明实施例提供了一种CuS-Cu7.2S4纳米复合材料,图1为本发明实施例制备CuS-Cu7.2S4纳米复合材料的实验方法流程图。利用该方法制备的CuS-Cu7.2S4纳米复合材料为纳米颗粒,其直径尺寸在 10-150nm之间,这样的颗粒尺寸显著增加了材料的比表面积,有效缩短了锂离子的扩散距离,增强了该电极材料的活性。
在上述CuS-Cu7.2S4纳米复合材料的基础上,本发明实施例还提供了一种锂电池,其负极材料采用上述的CuS-Cu7.2S4纳米复合材料。该锂电池的制备方法为:将CuS-Cu7.2S4纳米复合材料、炭黑、溶于去离子水的羧甲基纤维素钠,按照7:2:1的重量比例混合、研磨得到黑色泥浆状材料;然后将黑色泥浆状材料均匀涂抹在铜箔上,之后放入真空干燥箱进行干燥,干燥温度为 50-90℃,优选的,干燥温度为70℃,干燥时间为12小时,之后自然冷却至室温得到锂离子电池负极。该负极提高了锂电池的比容量、循环稳定性和倍率性能。
需要指出的是,本发明实施例仅对锂电池的负极材料进行改进,并不对锂电池的其它结构进行具体限定,在现有锂电池或将来可能出现的新型锂电池的基础上,但凡其负极材料采用上述CuS-Cu7.2S4纳米复合材料,均应当处于本发明的保护范围之内。
基于同一发明构思,本发明实施例还提供了一种CuS-Cu7.2S4纳米复合材料的制备方法。溶剂热法是水热法的发展,该反应过程相对简单而且易于控制,并且在密闭体系中可以有效的防止有毒物质的挥发,适于制备对空气敏感的前驱体。
以下对溶剂热一锅法制备CuS-Cu7.2S4纳米复合材料的过程进行说明,并结合实验数据对CuS-Cu7.2S4纳米复合材料的性能进行分析。在一种可能的实现方式中,利用溶剂热一锅法制备CuS-Cu7.2S4纳米复合材料,其主要包括以下步骤(如图1所示)。
步骤101:称量681.92mg(4mmol)CuCl2·2H2O和489.7mg(4mmol) L-半胱氨酸,并依次加入盛有70mL乙二醇的烧杯中。
其中,所述CuCl2·2H2O和L-半胱氨酸的纯度为99.9%,乙二醇的纯度为分析纯(AR)。
步骤102:对上述混合物利用磁力搅拌器搅拌1个小时以上,直至全部溶解。
步骤103:将上述已溶解溶液分别装入两个50mL的聚四氟乙烯反应釜中进行反应,反应后自然冷却至室温;其中,反应温度为150-300℃,优选的反应温度为200℃;其中,反应时间为20-30h,优选的反应时间为24小时。上述反应温度和反应时间是本发明提供的具体实施例,并不能用于现在本发明的保护范围,换句话说,本领域具有通常知识者应可依据实际需求或应用来进行相关设计。
步骤104:将上述反应溶液利用去离子水和酒精交替离心清洗多次 (10000rpm,10分钟),直至去离子水和酒精清澈;
步骤105:将上述得到的黑色沉淀物放置在真空干燥箱中干燥,干燥温度为50-90℃,优选的,干燥温度为70℃,干燥时间为12小时,并自然冷却至室温,得到CuS-Cu7.2S4纳米复合材料,CuS-Cu7.2S4纳米复合材料为纳米颗粒,直径尺寸在10-150nm之间。
下面以采用溶剂热一锅法制备的CuS-Cu7.2S4纳米复合材料为例,对CuS-Cu7.2S4纳米复合材料的性能进行测试。
具体测试如下,采用半电池的锂电池体系,测试电极的充放电循环:将高纯锂片作为负极,以CuS-Cu7.2S4纳米复合材料为基础制备的正极,1 mol/L的LiPF6+EC+DEC作为电解液(EC和DEC的体积比为1:1),Celgard 2500作为隔膜,电池装配在充氩气的手套箱中进行,电池充放电实验在蓝电电池测试系统上进行。
图2为本发明实施例采用溶剂热一锅法制备的CuS-Cu7.2S4纳米复合材料充放电循环性能曲线,具体为CuS-Cu7.2S4纳米复合材料在电压范围0.01 V-3.0V,电流密度为250mA/g时,循环次数和放电比容量的关系图。如图 2所示,该薄膜的首次放电比容量为1130mAhg-1,经过700个循环后472 mAh g-1,经过1000个循环后325mAh g-1,在1000个循环内平均放电容量为425mA h g-1,展现出了大容量和优异的循环性能。
图3为本发明实施例采用溶剂热一锅法制备的CuS-Cu7.2S4纳米复合材料倍率曲线。如图3所示,该材料从大电流密度逐渐返回小电流密度时容量随之返回,而且依旧很高,表明出该负极材料优异的倍率性能。
另外,采用溶剂热一锅法设备制备CuS-Cu7.2S4纳米复合材料具有效率高、速度快的特点,而且重复性好,适用于多种过渡金属硫族化合物(氧化物和硫化物)。因此本领域技术人员采用该制备方法,其均应当落入本发明的保护范围之内。
由上述技术方案可见,本发明实施例采用溶剂热一锅法制备的 CuS-Cu7.2S4纳米复合材料,将该纳米材料用于锂离子电池负极材料时可以表现出良好的电化学性质。同时,该方法操作简单,适用于多种渡金属硫族化合物(氧化物和硫化物)的制备,可用于高性能锂离子电池负极材料。
需要说明的是,在本文中,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.一种CuS-Cu7.2S4纳米复合材料的制备方法,其特征在于,所述CuS-Cu7.2S4纳米复合材料为纳米颗粒,其直径尺寸为10-150nm;所述方法包括:
S1:将一定量的CuCl2·2H2O和L-半胱氨酸依次加入盛有乙二醇的烧杯中;
S2:对上述混合物利用搅拌器进行搅拌,直至全部溶解;
S3:将上述已溶解溶液分别装入聚四氟乙烯反应釜中,加热恒温反应后,自然冷却至室温;
S4:将上述反应溶液利用去离子水和酒精交替离心清洗多次,直至去离子水和酒精清澈;
S5:将上述得到的黑色沉淀物放置在真空干燥箱中,进行干燥后,冷却至室温得到CuS-Cu7.2S4纳米复合材料颗粒。
2.根据权利要求1所述的CuS-Cu7.2S4纳米复合材料的制备方法,其特征在于,在步骤S1中,所述CuCl2·2H2O和L-半胱氨酸的纯度为99.9%,乙二醇的纯度为分析纯(AR)。
3.根据权利要求1所述的CuS-Cu7.2S4纳米复合材料的制备方法,其特征在于,所述步骤S2中的搅拌器为磁力搅拌器,所述步骤S2中的搅拌时间大于1h。
4.根据权利要求1所述的CuS-Cu7.2S4纳米复合材料的制备方法,其特征在于,所述步骤S3中的反应温度为150-300℃,反应时间为20-30h。
5.根据权利要求1所述的CuS-Cu7.2S4纳米复合材料的制备方法,其特征在于,所述步骤S5中的干燥温度为50-90℃。
6.一种锂电池,其特征在于,所述锂电池的负极采用权利要求1所述的CuS-Cu7.2S4纳米复合材料。
7.一种根据权利要求6所述的锂电池的制备方法,其特征在于,包括:
A1:将炭黑、溶于去离子水的羧甲基纤维素钠和权利要求1所述的CuS-Cu7.2S4纳米复合材料,按照2:1:7的重量比例混合、研磨得到黑色泥浆状材料;
A2:将上述的黑色泥浆状材料均匀涂抹在铜箔上,之后放入真空干燥箱干燥、冷却至室温得到锂电池的负极材料。
8.根据权利要求7所述的锂电池的制备方法,其特征在于,所述步骤A2中的干燥温度为50-90℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010626352.3A CN111816853B (zh) | 2020-07-01 | 2020-07-01 | CuS-Cu7.2S4纳米复合材料、锂电池及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010626352.3A CN111816853B (zh) | 2020-07-01 | 2020-07-01 | CuS-Cu7.2S4纳米复合材料、锂电池及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111816853A CN111816853A (zh) | 2020-10-23 |
CN111816853B true CN111816853B (zh) | 2021-08-31 |
Family
ID=73544431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010626352.3A Expired - Fee Related CN111816853B (zh) | 2020-07-01 | 2020-07-01 | CuS-Cu7.2S4纳米复合材料、锂电池及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111816853B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113725416A (zh) * | 2021-09-01 | 2021-11-30 | 广东省国研科技研究中心有限公司 | CuCo2S4/Cu7.4S4纳米复合材料及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103482678A (zh) * | 2013-09-10 | 2014-01-01 | 东华大学 | 一种高光热性能Cu7.2S4纳米晶的制备方法 |
CN106729733A (zh) * | 2017-01-12 | 2017-05-31 | 上海工程技术大学 | 一种半胱氨酸/四氧化三铁/硫化铜/牛血清白蛋白纳米复合粒子及其制备和应用 |
CN107399717A (zh) * | 2017-08-02 | 2017-11-28 | 东北大学 | 用于电池负极的Cu9S5@C纳米复合材料及制备方法 |
CN108063238A (zh) * | 2017-12-27 | 2018-05-22 | 肇庆市华师大光电产业研究院 | 一种硫化铜/硫化钼二元复合电池负极材料的制备方法 |
CN108831748A (zh) * | 2018-06-27 | 2018-11-16 | 安徽大学 | 一种掺氮石墨烯修饰下四硫化七铜/硫化铜复合材料及其制备方法和应用 |
CN110368979A (zh) * | 2019-08-08 | 2019-10-25 | 南京邮电大学 | 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用 |
CN110841680A (zh) * | 2019-11-04 | 2020-02-28 | 淮阴师范学院 | 一种氮、硫-掺杂石墨烯-CuS复合材料的制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102760877B (zh) * | 2012-07-23 | 2014-08-27 | 浙江大学 | 过渡金属硫化物/石墨烯复合材料及其制备方法和应用 |
CN105355919A (zh) * | 2015-11-12 | 2016-02-24 | 西南大学 | 一种铜钴硫超细粉的制备方法 |
CN106992293A (zh) * | 2017-05-22 | 2017-07-28 | 浙江大学 | 金属硫化物及碳的复合材料的制备方法及其在钠离子电池中的应用 |
CN107275615A (zh) * | 2017-06-29 | 2017-10-20 | 厦门大学 | 一种硫铜化合物碳基复合材料为正极的铝离子电池 |
US10843175B2 (en) * | 2018-05-29 | 2020-11-24 | Firouzeh Siadatnasab | Composition and method for treating dye wastewater |
-
2020
- 2020-07-01 CN CN202010626352.3A patent/CN111816853B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103482678A (zh) * | 2013-09-10 | 2014-01-01 | 东华大学 | 一种高光热性能Cu7.2S4纳米晶的制备方法 |
CN106729733A (zh) * | 2017-01-12 | 2017-05-31 | 上海工程技术大学 | 一种半胱氨酸/四氧化三铁/硫化铜/牛血清白蛋白纳米复合粒子及其制备和应用 |
CN107399717A (zh) * | 2017-08-02 | 2017-11-28 | 东北大学 | 用于电池负极的Cu9S5@C纳米复合材料及制备方法 |
CN108063238A (zh) * | 2017-12-27 | 2018-05-22 | 肇庆市华师大光电产业研究院 | 一种硫化铜/硫化钼二元复合电池负极材料的制备方法 |
CN108831748A (zh) * | 2018-06-27 | 2018-11-16 | 安徽大学 | 一种掺氮石墨烯修饰下四硫化七铜/硫化铜复合材料及其制备方法和应用 |
CN110368979A (zh) * | 2019-08-08 | 2019-10-25 | 南京邮电大学 | 一种管状g-C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用 |
CN110841680A (zh) * | 2019-11-04 | 2020-02-28 | 淮阴师范学院 | 一种氮、硫-掺杂石墨烯-CuS复合材料的制备方法 |
Non-Patent Citations (7)
Title |
---|
"Facile synthesis of core-shell CuS-Cu2S based nanocomposite for the high-performance glucose detection";Yanqiu Fu等;《MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS》;20191231;第158-163页 * |
A facile one-pot method for preparation of the rGO-CuS/Cu2S with enhanced photocatalytic activity under visible light irradiation;Zongxue Yu等;《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》;20160531;第5136-5144页 * |
Controllable synthesis and photoelectric properties of interconnected and self-assembled nanocomposite of porous hollow Cu7S4/CuS and nitrogen-doped graphene oxide;Kang Zhang等;《ELECTROCHIMICA ACTA》;20190601;第64-75页 * |
Facile synthesis of copper sulfides with different shapes for high-performance supercapacitors;Haihua Hu;《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》;20170731;第10720-10729页 * |
Improved SERS activity of non-stoichiometric copper sulfide nanostructures related to charge-transfer resonance;Menglei Chen等;《Physical Chemistry Chemical Physics》;20200307;第5145-5153页 * |
Menglei Chen等.Improved SERS activity of non-stoichiometric copper sulfide nanostructures related to charge-transfer resonance.《Physical Chemistry Chemical Physics》.2020, * |
One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials;Ke-Jing Huang等;《Journal of Alloys and Compounds》;20140927;第110120页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111816853A (zh) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107369825B (zh) | 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用 | |
CN110289416B (zh) | 一种钠离子电池负极材料铋钼双金属硫化物的制备方法 | |
CN104362296B (zh) | 一种新型硫基材料电极及其制备方法与应用 | |
CN110474044A (zh) | 一种高性能水系锌离子电池正极材料及其制备方法与应用 | |
CN109279647B (zh) | 一种钠离子电池负极材料立方状纳米硫化锌锡的制备方法 | |
CN108767263B (zh) | 一种改性金属锂负极铜箔集流体的制备方法及应用 | |
CN108598410B (zh) | 一种锂硫电池夹层材料的制备方法 | |
CN107902633B (zh) | 一种硒化黄铁矿材料及其制备的电池 | |
CN107069001A (zh) | 一种蜂窝状硫化锌/碳复合负极材料及其制备方法 | |
CN111600006B (zh) | 一种锂离子电池负极材料棒状锡锑合金的制备方法 | |
CN111261854A (zh) | 一种榆钱状二硒化钼@氮掺杂碳纳米纤维及其制备方法和应用 | |
CN108190954B (zh) | 一种八硫化五钒粉体的制备方法及其应用 | |
CN105047898B (zh) | 一种双生球形锂离子二次电池富锂正极材料及其制备方法 | |
CN115020676A (zh) | 一种稳定氧变价的钠离子电池正极材料及其制备方法 | |
CN109279663B (zh) | 一种硼酸盐类钠离子电池负极材料及其制备和应用 | |
CN106938852A (zh) | 一种锂离子电池负极材料用纳米CuO的制备方法 | |
CN109004233B (zh) | 一种负载层状双金属氢氧化物的金属锂负极复合铜箔集流体的制备方法及应用 | |
CN109713301A (zh) | 一种钼酸镍掺杂碳量子点锂离子电池负极材料的制备方法 | |
CN111816853B (zh) | CuS-Cu7.2S4纳米复合材料、锂电池及制备方法 | |
CN105671363B (zh) | 一种锑基合金材料及其应用 | |
CN115092962B (zh) | 一种二氧化钼/碳复合电极材料及其制备方法与应用 | |
CN111129480A (zh) | 一种钠离子电池用MoO2/N-C复合电极材料的制备方法 | |
CN110336011A (zh) | 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法 | |
CN115939369A (zh) | 一种多金属共调控的层状氧化物钠离子电池正极材料及其制备方法和应用 | |
CN113716609A (zh) | 一种纳米块快充电极材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210831 |
|
CF01 | Termination of patent right due to non-payment of annual fee |