CN110336011A - 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法 - Google Patents

一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法 Download PDF

Info

Publication number
CN110336011A
CN110336011A CN201910621197.3A CN201910621197A CN110336011A CN 110336011 A CN110336011 A CN 110336011A CN 201910621197 A CN201910621197 A CN 201910621197A CN 110336011 A CN110336011 A CN 110336011A
Authority
CN
China
Prior art keywords
sns
doped
lithium ion
ion battery
flower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910621197.3A
Other languages
English (en)
Other versions
CN110336011B (zh
Inventor
殷立雄
宋佳琪
韩浪
杨军
黄剑锋
蔺英
李书航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhichanhui Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910621197.3A priority Critical patent/CN110336011B/zh
Publication of CN110336011A publication Critical patent/CN110336011A/zh
Application granted granted Critical
Publication of CN110336011B publication Critical patent/CN110336011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种制备牡丹花状N‑doped C/SnS锂离子电池负极材料的方法,步骤1:将CH4N2S加入到乙二醇中溶解后再加入聚乙烯吡咯烷酮搅拌溶解得溶液B;步骤2:取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中搅拌溶解得溶液C;步骤3:将溶液C置入水热反应釜中下水热反应得浑浊液态前驱体;步骤4:取出浑浊液态前驱体离心洗涤后干燥得N‑doped C/SnS前驱体;步骤5:将N‑doped C/SnS前驱体置入反应炉中并在惰性气体气氛中保温,得牡丹花状N‑doped C/SnS锂离子电池负极材料。将其制备的电池负极材料应用于锂离子电池负极具有优异的循环稳定性和充放电倍率性能。

Description

一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的 方法
技术领域
本发明属于锂离子电池负极材料制备方法技术领域,涉及一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法。
背景技术
根据国家发布的《汽车产业中长期发展规划》,到2025年,锂离子动力电池能量密度需达到350Wh kg-1以上。目前市场上以石墨作为负极材料的动力锂离子电池的能量密度普遍在240Wh kg-1以下,并且石墨电极的容量已非常接近理论容量,提升空间有限。因此,开发新型高容量负极材料非常重要。SnS基材料由于具有高容量、低毒性、易制备等优点引起了科学家们的广泛关注。
SnS电极材料的研究较少,具有较低的嵌锂电位以及较高的理论容量(782mAh/g)。SnS是一种重要的IV-VI族化合物半导体材料,通过控制锡元素的浓度,既能展示出n-型半导体的性质,又能展示出p-型半导体的性质。单胞跨越两层,沿晶体的C轴堆叠,属正交晶系,晶胞系数a=433pm、b=1118pm、c=398pm,晶体具有畸变NaCl型结构,在每一层中Sn原子和S原子是由较强的共价键结合的,而层与层之间的原子是由比较弱的范德华力结合的。SnS由于其独特的结构以及较高的理论容量而成为有潜力的锂离子电池负极材料。
SnS电极材料在充放电过程主要发生的电化学反应是转换反应和合金化反应,SnS电极材料的可逆容量主要来源于合金化反应,其中,SnS电极材料和锂金属发生嵌脱反应、转换反应等,根据化学反应的充放电电压平台的不同,以下是其电化学反应过程的反应表达式:
SnS+2Li++2e-→Sn+Li2S (1) 根据电化学反应充放电电压平台的不同,在1.0~1.5V之间,SnS首先与锂发生一个不可逆的置换反应,生成金属Sn和非晶态的Li2S,如反应(1)所示,以及SEI膜的形成。而且,首次充放电过程中形成的SEI膜会产生较大的不可逆容量使得首次库伦效率较低。部分研究发现,在1.5V处,首先发生的是锂离子嵌入SnS层状结构发生反应但没有物相的转变(SnS+xLi++xe-→LiXSnS),在1.0V左右,LixSnS与锂离子进行转换反应生成Sn单质和Li2S(LiXSnS+(2-x)Li++(2-x)e-→Sn+Li2S)。而0.8V以下Sn单质和锂离子发生合金化反应。该反应是可逆的,Sn单质最多可结合4.4个锂离子,如反应(2)所示。SnS电极材料的可逆容量主要来源于这一步。另外,SEI膜的形成对电池的性能有较大的影响,稳定的SEI膜会使电化学性能很稳定,不稳定的SEI膜会导致性能衰减很快。
然而和大多数负极材料一样,将SnS作为锂离子电池负极材料存在两个较为严重的问题:一是电极在充放电过程中存在较大的体积膨胀,会使得电极粉化甚至从集流体上脱落,导致其较差的循环稳定性以及结构稳定性;而是其较差的导电性,从而影响电子的传递速率,导致其较缓慢的动力学反应导致其具有较差的倍率性能。
发明内容
本发明解决的技术问题在于提供一种制备成本低、操作方法简单和制备周期短的制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,将其制备的电池负极材料应用于锂离子电池负极具有优异的循环稳定性和充放电倍率性能。
本发明是通过以下技术方案来实现:
一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,包括以下步骤:
步骤1:将0.6~1.5g的CH4N2S加入到40~60ml乙二醇中溶解后再加入0.5~1g的聚乙烯吡咯烷酮搅拌溶解得溶液B;
步骤2:按元素摩尔比Sn:S=(0.5~2.0):(0.9~3.0)取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中搅拌溶解得溶液C;
步骤3:将溶液C置入水热反应釜中在160~200℃下水热反应,得浑浊液态前驱体;
步骤4:取出浑浊液态前驱体离心洗涤后干燥得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入反应炉中并在惰性气体气氛中600~800℃下保温,得牡丹花状N-doped C/SnS锂离子电池负极材料。
进一步的,步骤1中搅拌为磁力搅拌20~40min。
进一步的,步骤2中搅拌为磁力搅拌20~40min。
进一步的,步骤3中水热反应为在均相水热反应仪中水热反应18~24h。
进一步的,步骤3中水热反应釜填充比为40~60%。
进一步的,步骤4中离心洗涤为采用去离子水和无水乙醇洗涤。
进一步的,步骤4中干燥为60~80℃下真空干燥8~12h。
进一步的,步骤5中反应炉为管式炉且保温时间为3~5h。
进一步的,步骤5中惰性气体为氩气。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,制备的N-doped C/SnS实现了SnS纳米化,使N-doped C/SnS其具有较大的比表面积,增加了与电解液接触的机会和反应活性位点,有利于锂离子的迁移,以及缓解充放电过程中的体积变化,有利于提高材料的电化学性能同时还缩短了锂离子扩散路径,从而达到快充的目的;另外,通过水热反应温度的控制对N-doped C/SnS进行形貌调控,可以缓解其体积膨胀,稳定其结构;在制备的过程中SnS与碳材料进行负载或包覆,从而为其提供良好的电子传输通道,可以缓解其体积膨胀;SnS与活性组分进行复合,复合活性组分与锂离子反应提供了较高的理论比容量,在未参与反应时作为缓冲基体,缓冲体积膨胀,阻止团聚;从而达到提高其电化学性能的目的。。
附图说明
图1为实施例3制备的牡丹花状N-doped C/SnS锂离子电池负极材料的XRD图;
图2为实施例3制备的牡丹花状N-doped C/SnS锂离子电池负极材料的SEM图;
图3为实施例3制备的牡丹花状N-doped C/SnS锂离子电池负极材料的倍率性能图。
具体实施方式
下面给出具体的实施例。
实施例1
一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,包括以下步骤:
步骤1:将0.6g的CH4N2S加入到60ml乙二醇中溶解后再加入1g的聚乙烯吡咯烷酮磁力搅拌30min聚乙烯吡咯烷酮完全溶解得溶液B;
步骤2:按元素摩尔比Sn:S=0.5:0.9取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中磁力搅拌30min,SnCl2·2H2O完全溶解得溶液C;
步骤3:将溶液C置入水热反应釜中并置于均相水热反应仪中在200℃下水热反应18h,得浑浊液态前驱体;其中水热反应釜填充比为60%;
步骤4:取出浑浊液态前驱体采用去离子水和无水乙醇洗涤离心洗涤三次后,再在60℃下真空干燥12h得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入管式炉中并在氩气气氛中800℃下保温5h,得牡丹花状N-doped C/SnS锂离子电池负极材料。
实施例2
一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,包括以下步骤:
步骤1:将0.98g的CH4N2S加入到50ml乙二醇中溶解后再加入0.8g的聚乙烯吡咯烷酮磁力搅拌30min聚乙烯吡咯烷酮完全溶解得溶液B;
步骤2:按元素摩尔比Sn:S=1:0.6取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中磁力搅拌30min,SnCl2·2H2O完全溶解得溶液C;
步骤3:将溶液C置入水热反应釜中并置于均相水热反应仪中在180℃下水热反应20h,得浑浊液态前驱体;其中水热反应釜填充比为50%;
步骤4:取出浑浊液态前驱体采用去离子水和无水乙醇洗涤离心洗涤三次后,再在60℃下真空干燥12h得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入管式炉中并在氩气气氛中700℃下保温4h,得牡丹花状N-doped C/SnS锂离子电池负极材料。
实施例3
一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,包括以下步骤:
步骤1:将0.87g的CH4N2S加入到60ml乙二醇中溶解后再加入0.5g的聚乙烯吡咯烷酮磁力搅拌30min聚乙烯吡咯烷酮完全溶解得溶液B;
步骤2:按元素摩尔比Sn:S=2:3取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中磁力搅拌30min,SnCl2·2H2O完全溶解得溶液C;
步骤3:将溶液C置入水热反应釜中并置于均相水热反应仪中在160℃下水热反应24h,得浑浊液态前驱体;其中水热反应釜填充比为60%;
步骤4:取出浑浊液态前驱体采用去离子水和无水乙醇洗涤离心洗涤三次后,再在60℃下真空干燥12h得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入管式炉中并在氩气气氛中600℃下保温3h,得牡丹花状N-doped C/SnS锂离子电池负极材料。
取牡丹花状N-doped C/SnS锂离子电池负极材料样品,如图1所示,该样品与标准卡片JCPDF65-3812的SnS能很好地对应,另外,可以看出该材料的较好结晶性以及纯的物相;如图2所示,可以看出所制备负极材料为牡丹花状,其直径为250nm~500nm;如图3所示,该样品在50mA·g-1电流密度下,首次放电容量1433.5mAh·g-1,循环10圈,容量可达到841.5mAh·g-1,在800mA·g-1和1000mA·g-1大电流密度下还能分别保持416mAh·g-1和379.1mAh·g-1的比容量,可以看出牡丹花状N-doped C/SnS具有较高的倍率性能。
实施例4
一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,包括以下步骤:
步骤1:将1.5g的CH4N2S加入到40ml乙二醇中溶解后再加入0.7g的聚乙烯吡咯烷酮磁力搅拌20min聚乙烯吡咯烷酮完全溶解得溶液B;
步骤2:按元素摩尔比Sn:S=0.5:3取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中磁力搅拌20min,SnCl2·2H2O完全溶解得溶液C;
步骤3:将溶液C置入水热反应釜中并置于均相水热反应仪中在180℃下水热反应20h,得浑浊液态前驱体;其中水热反应釜填充比为40%;
步骤4:取出浑浊液态前驱体采用去离子水和无水乙醇洗涤离心洗涤三次后,再在70℃下真空干燥10h得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入管式炉中并在氩气气氛中650℃下保温3.5h,得牡丹花状N-doped C/SnS锂离子电池负极材料。
实施例5
一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,包括以下步骤:
步骤1:将1.2g的CH4N2S加入到50ml乙二醇中溶解后再加入0.6g的聚乙烯吡咯烷酮磁力搅拌40min聚乙烯吡咯烷酮完全溶解得溶液B;
步骤2:按元素摩尔比Sn:S=2:0.9取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中磁力搅拌40min,SnCl2·2H2O完全溶解得溶液C;
步骤3:将溶液C置入水热反应釜中并置于均相水热反应仪中在200℃下水热反应18h,得浑浊液态前驱体;其中水热反应釜填充比为50%;
步骤4:取出浑浊液态前驱体采用去离子水和无水乙醇洗涤离心洗涤三次后,再在80℃下真空干燥8h得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入管式炉中并在氩气气氛中750℃下保温4.5h,得牡丹花状N-doped C/SnS锂离子电池负极材料。
以上给出的实施例是实现本发明较优的例子,本发明不限于上述实施例。本领域的技术人员根据本发明技术方案的技术特征所做出的任何非本质的添加、替换,均属于本发明的保护范围。

Claims (9)

1.一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,包括以下步骤:
步骤1:将0.6~1.5g的CH4N2S加入到40~60ml乙二醇中溶解后再加入0.5~1g的聚乙烯吡咯烷酮搅拌溶解得溶液B;
步骤2:按元素摩尔比Sn:S=(0.5~2.0):(0.9~3.0)取SnCl2·2H2O和溶液B并将SnCl2·2H2O加入到溶液B中搅拌溶解得溶液C;
步骤3:将溶液C置入水热反应釜中在160~200℃下水热反应,得浑浊液态前驱体;
步骤4:取出浑浊液态前驱体离心洗涤后干燥得N-doped C/SnS前驱体;
步骤5:将N-doped C/SnS前驱体置入反应炉中并在惰性气体气氛中600~800℃下保温,得牡丹花状N-doped C/SnS锂离子电池负极材料。
2.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤1中搅拌为磁力搅拌20~40min。
3.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤2中搅拌为磁力搅拌20~40min。
4.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤3中水热反应为在均相水热反应仪中水热反应18~24h。
5.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤3中水热反应釜填充比为40~60%。
6.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤4中离心洗涤为采用去离子水和无水乙醇洗涤。
7.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤4中干燥为60~80℃下真空干燥8~12h。
8.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤5中反应炉为管式炉且保温时间为3~5h。
9.根据权利要求1所述的一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法,其特征在于,所述步骤5中惰性气体为氩气。
CN201910621197.3A 2019-07-10 2019-07-10 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法 Active CN110336011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910621197.3A CN110336011B (zh) 2019-07-10 2019-07-10 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910621197.3A CN110336011B (zh) 2019-07-10 2019-07-10 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法

Publications (2)

Publication Number Publication Date
CN110336011A true CN110336011A (zh) 2019-10-15
CN110336011B CN110336011B (zh) 2021-02-09

Family

ID=68146229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910621197.3A Active CN110336011B (zh) 2019-07-10 2019-07-10 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法

Country Status (1)

Country Link
CN (1) CN110336011B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584845A (zh) * 2020-05-20 2020-08-25 信阳师范学院 N,s共掺杂的碳/二硫化锡复合物材料的制备方法和应用
CN112490430A (zh) * 2020-12-07 2021-03-12 江苏师范大学 一种用于锂/钠离子电池的高性能负极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105800674A (zh) * 2016-03-23 2016-07-27 昆明理工大学 一种硫化锡材料的制备方法及应用
CN108539136A (zh) * 2018-02-27 2018-09-14 岭南师范学院 一种硫化亚锡/氮掺杂碳复合花球的制备方法及在锂离子电池负极中的应用
CN109437286A (zh) * 2018-11-28 2019-03-08 大连理工大学 一种硫化亚锡纳米花的溶剂热制备方法
CN109499517A (zh) * 2018-12-19 2019-03-22 西北农林科技大学 一种类牡丹花状SnS纳米材料的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105800674A (zh) * 2016-03-23 2016-07-27 昆明理工大学 一种硫化锡材料的制备方法及应用
CN108539136A (zh) * 2018-02-27 2018-09-14 岭南师范学院 一种硫化亚锡/氮掺杂碳复合花球的制备方法及在锂离子电池负极中的应用
CN109437286A (zh) * 2018-11-28 2019-03-08 大连理工大学 一种硫化亚锡纳米花的溶剂热制备方法
CN109499517A (zh) * 2018-12-19 2019-03-22 西北农林科技大学 一种类牡丹花状SnS纳米材料的制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584845A (zh) * 2020-05-20 2020-08-25 信阳师范学院 N,s共掺杂的碳/二硫化锡复合物材料的制备方法和应用
CN111584845B (zh) * 2020-05-20 2022-04-29 信阳师范学院 N,s共掺杂的碳/二硫化锡复合物材料的制备方法和应用
CN112490430A (zh) * 2020-12-07 2021-03-12 江苏师范大学 一种用于锂/钠离子电池的高性能负极材料的制备方法

Also Published As

Publication number Publication date
CN110336011B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN111943225B (zh) 一种普鲁士蓝类钠离子电池正极材料及其制备方法
WO2021004150A1 (zh) 一种锂离子电池负极材料SnS/ND-CN的制备方法
CN112002886A (zh) 钾离子电池负极材料金属合金及其制备方法
CN111785917A (zh) 铌钨氧化物电极材料及其制备和应用
CN111384446A (zh) 一种宽温电解液、二次电池及其用途
CN112010291B (zh) 一种镍掺杂二硫化钼/石墨烯三维复合材料的制备方法及应用
CN110336011A (zh) 一种制备牡丹花状N-doped C/SnS锂离子电池负极材料的方法
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
CN105845920B (zh) 一种高循环稳定性纳米棒自组装三氧化钼材料及其制备方法
CN113036113B (zh) 一种掺杂BaSO4的钠离子电池负极材料及其制备方法
CN110034342A (zh) 一种水系锌-碲二次电池
Sun et al. Review on Layered Manganese‐Based Metal Oxides Cathode Materials for Potassium‐Ion Batteries: From Preparation to Modification
CN115092962B (zh) 一种二氧化钼/碳复合电极材料及其制备方法与应用
CN111816853B (zh) CuS-Cu7.2S4纳米复合材料、锂电池及制备方法
CN105529450A (zh) 一种循环稳定的锂离子电池负极材料氟掺杂钒酸锂的制备方法
CN114843459A (zh) 一种五硫化二锑基材料及其制备方法和应用
CN113113609A (zh) 一种钠离子电池三维复合负极材料及其制备方法和应用
CN112670478A (zh) 一种碳球封装无定型钒-氧团簇复合材料及其制备方法和储钠应用
CN112670477A (zh) 一种氮化钒量子点原位植入碳球复合材料及其制备方法和储钠应用
CN101640265B (zh) 一种纳米银颗粒分散LiFePO4薄膜锂离子电池正极制备方法
CN113497229A (zh) 水系铝离子电池与用电装置
CN106784712B (zh) 正极材料及其制备方法、正极片及锂硫电池
CN116936939B (zh) 基于转化型正极的无穿梭效应锌-硅电池及其制备方法
CN115676852B (zh) 锰铁基普鲁士蓝钾离子电池正极材料及其制备方法和应用
CN115536066B (zh) 一种铵根离子部分预先移除的钒酸铵纳米材料的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240821

Address after: 810, 8th Floor, Building 10, Courtyard 1, Tianxing Street, Fangshan District, Beijing, 102400

Patentee after: Beijing Zhichanhui Technology Co.,Ltd.

Country or region after: China

Address before: 710021 Shaanxi city of Xi'an province Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China