CN111471261A - 一种生物基紫外光固化3d打印树脂及其制备方法 - Google Patents

一种生物基紫外光固化3d打印树脂及其制备方法 Download PDF

Info

Publication number
CN111471261A
CN111471261A CN202010346877.1A CN202010346877A CN111471261A CN 111471261 A CN111471261 A CN 111471261A CN 202010346877 A CN202010346877 A CN 202010346877A CN 111471261 A CN111471261 A CN 111471261A
Authority
CN
China
Prior art keywords
bio
resin
based ultraviolet
printing resin
photoinitiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010346877.1A
Other languages
English (en)
Inventor
洪英盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Intelligent Technology Co ltd
Original Assignee
Shenzhen Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Intelligent Technology Co ltd filed Critical Shenzhen Intelligent Technology Co ltd
Priority to CN202010346877.1A priority Critical patent/CN111471261A/zh
Priority to US16/892,434 priority patent/US11618812B2/en
Publication of CN111471261A publication Critical patent/CN111471261A/zh
Priority to PCT/CN2020/110123 priority patent/WO2021217962A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Polymerisation Methods In General (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开了一种生物基紫外光固化3D打印树脂及其制备方法,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%、羟乙基淀粉2‑8%,将上述组分按比例混合,在50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。本发明采用可再生资源,减少环境污染及能源消耗,具有生物安全性。羟乙基淀粉具有链淀粉的葡萄糖环经羟乙基化形成的高分子复合物增加聚合速度,提高树脂成型的转化率,降低光引发剂及单体化学物质的比例。3D打印树脂性能优异,皮肤刺激值小。

Description

一种生物基紫外光固化3D打印树脂及其制备方法
技术领域
本发明涉及3D打印材料领域,尤其涉及的是一种生物基紫外光固化3D打印树脂及其制备方法。
背景技术
3D打印技术得到蓬勃发展,打印材料中的紫外光固化树脂大多数为不可回收材料,很容易造成环境污染,不具备生物安全性,且大多数具有性能较差、容易刺激皮肤等缺点。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明所要解决的技术问题是:提供一种可生物降解、减少环境污染、性能好、皮肤刺激值小的生物基紫外光固化3D打印树脂及其制备方法。
本发明的技术方案如下:一种生物基紫外光固化3D打印树脂,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%。
采用上述技术方案,所述的生物基紫外光固化3D打印树脂中,所述生物可降解淀粉树脂聚合物由质量比为320g的生物可降解淀粉树脂、189g的聚乙二醇、0.2g的氢氧化钙、180g苯酐以及65g马来酸混合反应生成。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述自由基引发剂为光引发剂1173、光引发剂184、光引发剂907、光引发剂TPO、光引发剂651、光引发剂819、光引发剂369、光引发剂DETX中的任意一种或几种组合。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述助剂包括平流剂和消泡剂。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述平流剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、有机硅改性聚硅氧烷中的任意一种。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述平流剂为BYK-UV333、MOK-2120、B-0520中的任意一种或几种组合。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述活性稀释剂为丙烯酸异冰片酯、丙烯酸四氢呋喃酯,丙烯酸异癸酯、十三烷基丙烯酸酯、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、环三羟甲基丙烷甲缩醛丙烯酸酯、2-苯氧基乙基丙烯酸酯、甲基丙烯酸环己酯、丙氧基化(2)新戊二醇二丙烯酸酯中的任意一种或几种组合。
一种制备上述生物基紫外光固化3D打印树脂的方法,制备方法为:
(1)、将生物可降解淀粉树脂、聚乙二醇以及氢氧化钙按照质量比混合,得到混合物;
(2)、将上述混合物在260℃下加热四小时,然后降温到120℃;
(3)、再加入苯酐和马来酸,并在260°温度下进行缩聚反应,得到生物可降解淀粉树脂聚合物;
(4)、将生物可降解淀粉树脂聚合物、自由基引发剂、助剂、活性稀释剂按照组分比例混合,在40°~50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂;
采用上述各个技术方案,本发明具有如下有益效果:
1、采用可再生资源,减少环境污染及能源消耗,具有生物安全性。
2、通过添加羟乙基淀粉,通过其具有链淀粉的葡萄糖环经羟乙基化形成的高分子复合物增加聚合速度,提高树脂成型的转化率,降低光引发剂及单体化学物质的比例。
3、通过添加羟乙基淀粉、生物可降解淀粉树脂,达到3D打印成品可生物降解的效果。在使用完后进入自然环境中可依靠微生物、光和水等的作用自行分解,最终被分解为二氧化碳和氧气,几乎不对环境造成污染。
4、3D打印树脂性能优异,皮肤刺激值小。
具体实施方式
本发明提供一种生物基紫外光固化3D打印树脂及其制备方法,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%。
所述生物可降解淀粉树脂聚合物由质量比为320g的生物可降解淀粉树脂、189g的聚乙二醇、0.2g的氢氧化钙、180g苯酐以及65g马来酸混合反应生成。
所述自由基引发剂为光引发剂1173、光引发剂184、光引发剂907、光引发剂TPO、光引发剂651、光引发剂819、光引发剂369、光引发剂DETX中的任意一种或几种组合。
所述助剂包括平流剂和消泡剂。
所述平流剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、有机硅改性聚硅氧烷中的任意一种。
所述平流剂为BYK公司的BYK-UV333、德国默克公司的MOK-2120、中联邦化工公司的B-0520中的任意一种或几种组合。
所述活性稀释剂为丙烯酸异冰片酯、丙烯酸四氢呋喃酯,丙烯酸异癸酯、十三烷基丙烯酸酯、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、环三羟甲基丙烷甲缩醛丙烯酸酯、2-苯氧基乙基丙烯酸酯、甲基丙烯酸环己酯、丙氧基化(2)新戊二醇二丙烯酸酯中的任意一种或几种组合。
所述的羟乙基淀粉为湖北恒景瑞化工有限公司或上海康朗生物科技有限公司生产的现有产品。
制备上述生物基紫外光固化3D打印树脂的方法为:
(1)、将生物可降解淀粉树脂、聚乙二醇以及氢氧化钙按照质量比混合,得到混合物。采用320g的生物可降解淀粉树脂和189g的聚乙二醇进行酯交换反应,催化剂是0.2g的氢氧化钙。
(2)、将上述混合物在260℃下加热四小时,然后降温到120℃。
(3)、再加入180g苯酐和65g马来酸,并在260°温度下进行缩聚反应,直到酸值降低到初始值的10%以下,得到酸值为10.9mg KOH/g的生物可降解淀粉树脂聚合物。
(4)、将生物可降解淀粉树脂聚合物、自由基引发剂、助剂、活性稀释剂按照组分比例混合,在40°~50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
根据上述技术方案,下面通过3个实施例与2个常规的3D打印树脂进行对比。
实施例1
生物可降解淀粉树脂聚合物,39g
活性稀释剂NPG(PO)2DA,47.5g
自由基光引发剂TPO,5g
BYK-333,2.5g
羟乙基淀粉,5g
BYK-UV3510,1g
按照以上比例调配好混合物,在50℃的水温下,用超声波清洗机超声20分钟,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
实施例2
生物可降解淀粉树脂聚合物,48.5g
活性稀释剂PEG(400)DA,39g
自由基光引发剂TPO,2g
自由基光引发剂819,2g
B-0520,2g
羟乙基淀粉,5.5g
MOK-2120,1g
按照以上比例调配混合物,在50℃的水温下,用超声波清洗机超声20分钟,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
实施例3
含生物可降解淀粉树脂(BSR)的聚合物,45.2g
活性稀释剂IBOA,42g
自由基光引发剂TPO,2g
自由基光引发剂369,2g
BYK-333,1.8g
羟乙基淀粉,6g
BYK-UV3510,1g
按照以上比例调配混合物,在40℃的水温下,用超声波清洗机超声10分钟,再将其置于匀浆机搅拌均匀,得到新一代环境及人体友好型植物油基紫外光固化3D打印树脂。
对比例1
普通聚酯型环氧丙烯酸树脂光固化3D打印树脂样品
对比例2
普通聚醚型聚氨酯丙烯酸酯光固化3D打印树脂
将上述3个实施例和2个常规对比例进行性能测试对比,得到表1的数据结果。
表1
Figure BDA0002470439690000051
Figure BDA0002470439690000061
通过上述对比,可以发现,3个实施例的打印树脂性能优于2个常规的打印树脂性能,3个实施例的打印树脂的皮肤刺激值也远小于2个常规的打印树脂。
采用上述各个技术方案,本发明具有如下有益效果:
1、采用可再生资源,减少环境污染及能源消耗,具有生物安全性。
2、通过添加羟乙基淀粉,通过其具有链淀粉的葡萄糖环经羟乙基化形成的高分子复合物增加聚合速度,提高树脂成型的转化率,降低光引发剂及单体化学物质的比例。
3、通过添加羟乙基淀粉、生物可降解淀粉树脂,达到3D打印成品可生物降解的效果。在使用完后进入自然环境中可依靠微生物、光和水等的作用自行分解,最终被分解为二氧化碳和氧气,几乎不对环境造成污染。
4、3D打印树脂性能优异,皮肤刺激值小。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种生物基紫外光固化3D打印树脂,其特征在于,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%。
2.根据权利要求1所述的生物基紫外光固化3D打印树脂,其特征在于,所述生物可降解淀粉树脂聚合物由质量比为320g的生物可降解淀粉树脂、189g的聚乙二醇、0.2g的氢氧化钙、180g苯酐以及65g马来酸混合反应生成。
3.根据权利要求2所述的生物基紫外光固化3D打印树脂,其特征在于,所述自由基引发剂为光引发剂1173、光引发剂184、光引发剂907、光引发剂TPO、光引发剂651、光引发剂819、光引发剂369、光引发剂DETX中的任意一种或几种组合。
4.根据权利要求1所述的生物基紫外光固化3D打印树脂,其特征在于,所述助剂包括平流剂和消泡剂。
5.根据权利要求4所述的生物基紫外光固化3D打印树脂,其特征在于,所述平流剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、有机硅改性聚硅氧烷中的任意一种。
6.根据权利要求4所述的生物基紫外光固化3D打印树脂,其特征在于,所述平流剂为BYK-UV333、MOK-2120、B-0520中的任意一种或几种组合。
7.根据权利要求1所述的生物基紫外光固化3D打印树脂,其特征在于,所述活性稀释剂为丙烯酸异冰片酯、丙烯酸四氢呋喃酯,丙烯酸异癸酯、十三烷基丙烯酸酯、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、环三羟甲基丙烷甲缩醛丙烯酸酯、2-苯氧基乙基丙烯酸酯、甲基丙烯酸环己酯、丙氧基化(2)新戊二醇二丙烯酸酯中的任意一种或几种组合。
8.一种制备权1~7任一所述的生物基紫外光固化3D打印树脂,其特征在于,制备方法为:
(1)、将生物可降解淀粉树脂、聚乙二醇以及氢氧化钙按照质量比混合,得到混合物;
(2)、将上述混合物在260℃下加热四小时,然后降温到120℃;
(3)、再加入苯酐和马来酸,并在260°温度下进行缩聚反应,直到酸值降低到初始值的10%以下,得到酸值为10.9mg KOH/g的生物可降解淀粉树脂聚合物;
(4)、将生物可降解淀粉树脂聚合物、自由基引发剂、助剂、活性稀释剂按照组分比例混合,在40°~50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
CN202010346877.1A 2020-04-28 2020-04-28 一种生物基紫外光固化3d打印树脂及其制备方法 Pending CN111471261A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010346877.1A CN111471261A (zh) 2020-04-28 2020-04-28 一种生物基紫外光固化3d打印树脂及其制备方法
US16/892,434 US11618812B2 (en) 2020-04-28 2020-06-04 Bio-based UV-curable 3D printed resin and preparation method thereof
PCT/CN2020/110123 WO2021217962A1 (zh) 2020-04-28 2020-08-20 生物基紫外光固化3d打印树脂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010346877.1A CN111471261A (zh) 2020-04-28 2020-04-28 一种生物基紫外光固化3d打印树脂及其制备方法

Publications (1)

Publication Number Publication Date
CN111471261A true CN111471261A (zh) 2020-07-31

Family

ID=71761755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010346877.1A Pending CN111471261A (zh) 2020-04-28 2020-04-28 一种生物基紫外光固化3d打印树脂及其制备方法

Country Status (3)

Country Link
US (1) US11618812B2 (zh)
CN (1) CN111471261A (zh)
WO (1) WO2021217962A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217962A1 (zh) * 2020-04-28 2021-11-04 深圳市智能派科技有限公司 生物基紫外光固化3d打印树脂及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316156A (zh) * 2022-01-10 2022-04-12 深圳锐沣科技有限公司 一种用于3d打印矫治器的光固化树脂及其制备方法
CN115710483A (zh) * 2022-10-28 2023-02-24 广东桐远新材料有限公司 一种uv固化型三防胶的制备方法
CN115819670A (zh) * 2022-11-30 2023-03-21 泉州扶摇新型材料科技有限公司 基于不饱和脂肪酸的生物基3d打印光敏树脂及其制法
CN116041629B (zh) * 2023-01-09 2024-04-19 广州昊毅新材料科技股份有限公司 一种水性生物基uv树脂的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010292A1 (fr) * 1995-09-13 1997-03-20 Japan Corn Starch Co., Ltd. Dispersion aqueuse d'une composition de resine biodegradable
JP2001026668A (ja) * 1999-07-13 2001-01-30 Wonder Kk 生分解性澱粉樹脂成形品
US7071249B2 (en) * 2001-10-05 2006-07-04 William Ho Biodegradable starch resin and method for making same
CN105131201A (zh) * 2015-09-21 2015-12-09 东莞市盟大塑化科技有限公司 一种uv固化光敏材料及其在光固化3d打印机的应用
CN106039414A (zh) * 2015-04-07 2016-10-26 四川蓝光英诺生物科技股份有限公司 生物砖的制备方法及由此制备的生物砖
CN107353550A (zh) * 2017-07-11 2017-11-17 杭州卓普新材料科技有限公司 一种3d打印支撑材料及其制备方法
CN108409921A (zh) * 2017-10-23 2018-08-17 同济大学 一种3d打印用紫外光固化高硬度材料及其制备方法
CN108587100A (zh) * 2018-05-18 2018-09-28 深圳永昌和科技有限公司 环境及人体友好型植物油基紫外光固化3d打印树脂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209514A (ja) * 1998-01-22 1999-08-03 Kawagoe Yoshiharu アルテミシア(Artemisia)を主とした薬用植物を混入の生物が分解可能な澱粉樹脂とその製品
CN111471261A (zh) * 2020-04-28 2020-07-31 深圳市智能派科技有限公司 一种生物基紫外光固化3d打印树脂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010292A1 (fr) * 1995-09-13 1997-03-20 Japan Corn Starch Co., Ltd. Dispersion aqueuse d'une composition de resine biodegradable
JP2001026668A (ja) * 1999-07-13 2001-01-30 Wonder Kk 生分解性澱粉樹脂成形品
US7071249B2 (en) * 2001-10-05 2006-07-04 William Ho Biodegradable starch resin and method for making same
CN106039414A (zh) * 2015-04-07 2016-10-26 四川蓝光英诺生物科技股份有限公司 生物砖的制备方法及由此制备的生物砖
CN105131201A (zh) * 2015-09-21 2015-12-09 东莞市盟大塑化科技有限公司 一种uv固化光敏材料及其在光固化3d打印机的应用
CN107353550A (zh) * 2017-07-11 2017-11-17 杭州卓普新材料科技有限公司 一种3d打印支撑材料及其制备方法
CN108409921A (zh) * 2017-10-23 2018-08-17 同济大学 一种3d打印用紫外光固化高硬度材料及其制备方法
CN108587100A (zh) * 2018-05-18 2018-09-28 深圳永昌和科技有限公司 环境及人体友好型植物油基紫外光固化3d打印树脂

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217962A1 (zh) * 2020-04-28 2021-11-04 深圳市智能派科技有限公司 生物基紫外光固化3d打印树脂及其制备方法

Also Published As

Publication number Publication date
US11618812B2 (en) 2023-04-04
WO2021217962A1 (zh) 2021-11-04
US20210332219A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
CN111471261A (zh) 一种生物基紫外光固化3d打印树脂及其制备方法
CN107759757B (zh) 一种超支化聚氨酯丙烯酸酯的制备方法及紫外光固化涂料
CN100586972C (zh) 一种水性紫外光固化涂料专用环氧树脂的制备方法
CN106866929A (zh) 一种多官能度蓖麻油基光固化树脂及其制备方法和应用
CN111732679B (zh) 基于植物油和柠檬酸的光敏树脂及其制备方法与应用
Aung et al. A comparative study of acrylate oligomer on Jatropha and Palm oil-based UV-curable surface coating
CN108587100A (zh) 环境及人体友好型植物油基紫外光固化3d打印树脂
CN112442318A (zh) 一种生物基自修复光固化涂料及其制备方法和应用
CN112225901B (zh) 一种改性蓖麻油基uv固化聚氨酯丙烯酸酯及其制备方法
Gan et al. Photo-cured materials from vegetable oils
CN106905504A (zh) 水性紫外光固化聚氨酯树脂及其制备方法和应用
CN102633915B (zh) 一种动植物甘油三酯制备光固化树脂的方法及其制备的光固化树脂
CN110229317B (zh) 高乙烯基官能度的可uv固化不饱和聚酯树脂及其制备方法与应用
CN113667106B (zh) 一种紫外光固化衣康酸基聚酯树脂及其制备方法
CN113717357A (zh) 一种水性不饱和聚酯及其制备方法和应用
CN101418148A (zh) 一种紫外光固化涂料的制作方法
CN106752738A (zh) 一种可生物降解的紫外光固化上光油及其制备方法
CN115677997A (zh) 一种低粘度uv光固化超支化聚酯丙烯酸酯树脂及其制备方法与应用
JP2003048927A (ja) エネルギー線硬化型樹脂組成物
CN110105471B (zh) 水溶性光引发剂及其制备方法
CN108484870B (zh) 一种用废旧pet瓶制备uv固化聚氨酯丙烯酸酯及其制备方法
CN111499801A (zh) 可增稠的反应型阻燃剂、包含该阻燃剂的阻燃型乙烯基smc树脂和制备该阻燃剂的方法
CN113185910A (zh) 一种水性替塑胶的涂布工艺
CN111499856A (zh) 一种可降解的光固化树脂及其制备方法和应用
CN116217845B (zh) 一种水性生物基光固化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200731