WO2021217962A1 - 生物基紫外光固化3d打印树脂及其制备方法 - Google Patents

生物基紫外光固化3d打印树脂及其制备方法 Download PDF

Info

Publication number
WO2021217962A1
WO2021217962A1 PCT/CN2020/110123 CN2020110123W WO2021217962A1 WO 2021217962 A1 WO2021217962 A1 WO 2021217962A1 CN 2020110123 W CN2020110123 W CN 2020110123W WO 2021217962 A1 WO2021217962 A1 WO 2021217962A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
resin
photoinitiator
curable
printing
Prior art date
Application number
PCT/CN2020/110123
Other languages
English (en)
French (fr)
Inventor
洪英盛
Original Assignee
深圳市智能派科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市智能派科技有限公司 filed Critical 深圳市智能派科技有限公司
Publication of WO2021217962A1 publication Critical patent/WO2021217962A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the invention relates to the field of 3D printing materials, in particular to a bio-based ultraviolet curing 3D printing resin and a preparation method thereof.
  • UV-curable resins in the printing materials are non-recyclable materials, which are easy to cause environmental pollution, are not biologically safe, and most have the disadvantages of poor performance and easy skin irritation.
  • the technical problem to be solved by the present invention is to provide a bio-based ultraviolet curing 3D printing resin that is biodegradable, reduces environmental pollution, has good performance, and has a small skin irritation value and a preparation method thereof.
  • a bio-based UV-curable 3D printing resin the composition of the components by weight percentage includes 19 ⁇ 78% of biodegradable starch resin polymer, 1 ⁇ 9% of free radical initiator, and 0.2 ⁇ 4%, active diluent 13 ⁇ 62%.
  • the biodegradable starch resin polymer is composed of 320 g of biodegradable starch resin, 189 g of polyethylene glycol, and 0.2 g of hydrogen. Calcium oxide, 180g of phthalic anhydride and 65g of maleic acid are mixed and reacted.
  • the free radical initiator is photoinitiator 1173, photoinitiator 184, photoinitiator 907, photoinitiator TPO, and photoinitiator 651 , Any one or a combination of photoinitiator 819, photoinitiator 369, and photoinitiator DETX.
  • the auxiliary agent includes a smoothing agent and a defoaming agent.
  • the smoothing agent is polydimethylsiloxane, polymethylphenylsiloxane, and silicone-modified polysiloxane. Any kind of.
  • the smoothing agent is any one or a combination of BYK-UV333, MOK-2120, and B-0520.
  • the reactive diluent is isobornyl acrylate, tetrahydrofuran acrylate, isodecyl acrylate, tridecyl acrylate, polyethylene glycol (400) Diacrylate [PEG(400)DA], cyclotrimethylolpropane methylal acrylate, 2-phenoxyethyl acrylate, cyclohexyl methacrylate, propoxylation (2) Any one or several combinations of neopentyl glycol diacrylate.
  • a method for preparing the above-mentioned bio-based UV-curable 3D printing resin is:
  • the present invention has the following beneficial effects:
  • Adopt renewable resources reduce environmental pollution and energy consumption, and have biological safety.
  • the polymer compound formed by the hydroxyethylation of the glucose ring with the amylose increases the polymerization speed, improves the conversion rate of resin molding, and reduces the ratio of photoinitiator and monomer chemical substances. .
  • the biodegradable effect of the 3D printed product is achieved. After use, it can decompose itself in the natural environment by the action of microorganisms, light and water, and finally it is decomposed into carbon dioxide and oxygen, which hardly pollutes the environment.
  • the 3D printing resin has excellent performance and low skin irritation value.
  • the present invention provides a bio-based ultraviolet curing 3D printing resin and a preparation method thereof.
  • the components in weight percentage include 19 ⁇ 78% of biodegradable starch resin polymer, 1 ⁇ 9% of free radical initiator, and 0.2 ⁇ 4%, active diluent 13 ⁇ 62%.
  • the biodegradable starch resin polymer is produced by a mixture reaction of 320 g of biodegradable starch resin, 189 g of polyethylene glycol, 0.2 g of calcium hydroxide, 180 g of phthalic anhydride, and 65 g of maleic acid in a mass ratio.
  • the free radical initiator is any one of photoinitiator 1173, photoinitiator 184, photoinitiator 907, photoinitiator TPO, photoinitiator 651, photoinitiator 819, photoinitiator 369, and photoinitiator DETXkind or several combinations.
  • the auxiliary agent includes a smoothing agent and a defoaming agent.
  • the smoothing agent is any one of polydimethylsiloxane, polymethylphenylsiloxane, and silicone-modified polysiloxane.
  • the leveling agent is any one or a combination of BYK-UV333 from BYK, MOK-2120 from Merck, Germany, and B-0520 from China Federal Chemical Company.
  • the reactive diluent is isobornyl acrylate, tetrahydrofuran acrylate, isodecyl acrylate, tridecyl acrylate, polyethylene glycol (400) diacrylate [PEG(400)DA], cyclotrimethylol Propane methylal acrylate, 2-phenoxyethyl acrylate, cyclohexyl methacrylate, propoxylated (2) neopentyl glycol diacrylate or any combination of several.
  • the hydroxyethyl starch is an existing product produced by Hubei Hengjingrui Chemical Co., Ltd. or Shanghai Kanglang Biological Technology Co., Ltd.
  • the method for preparing the above-mentioned bio-based UV-curable 3D printing resin is:
  • Biodegradable starch resin polymer 39g
  • the mixture is prepared according to the above ratio, and the mixture is sonicated with an ultrasonic cleaning machine for 20 minutes at a water temperature of 50° C., and then placed in a homogenizer and stirred evenly to obtain a bio-based UV-curable 3D printing resin.
  • Biodegradable starch resin polymer 48.5g
  • the mixture was prepared according to the above ratio, and the mixture was sonicated with an ultrasonic cleaning machine for 20 minutes at a water temperature of 50°C, and then placed in a homogenizer to stir evenly to obtain a bio-based UV-curable 3D printing resin.
  • the mixture is prepared according to the above ratio, and ultrasonicated with an ultrasonic cleaner for 10 minutes at a water temperature of 40°C, and then placed in a homogenizer to stir evenly to obtain a new generation of environmentally and human-friendly vegetable oil-based UV-curable 3D printing resin.
  • the present invention has the following beneficial effects:
  • Adopt renewable resources reduce environmental pollution and energy consumption, and have biological safety.
  • the polymer compound formed by the hydroxyethylation of the glucose ring with the amylose increases the polymerization speed, improves the conversion rate of resin molding, and reduces the ratio of photoinitiator and monomer chemical substances. .
  • the biodegradable effect of the 3D printed product is achieved. After use, it can decompose itself in the natural environment by the action of microorganisms, light and water, and finally it is decomposed into carbon dioxide and oxygen, which hardly pollutes the environment.
  • the 3D printing resin has excellent performance and low skin irritation value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

生物基紫外光固化3D打印树脂及其制备方法,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%、羟乙基淀粉2-8%,将上述组分按比例混合,在50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。该树脂及其制备方法采用可再生资源,减少环境污染及能源消耗,具有生物安全性。羟乙基淀粉具有链淀粉的葡萄糖环经羟乙基化形成的高分子复合物增加聚合速度,提高树脂成型的转化率,降低光引发剂及单体化学物质的比例。3D打印树脂性能优异,皮肤刺激值小。

Description

[根据细则37.2由ISA制定的发明名称] 生物基紫外光固化3D打印树脂及其制备方法 技术领域
本发明涉及3D打印材料领域,尤其涉及的是一种生物基紫外光固化3D打印树脂及其制备方法。
背景技术
3D打印技术得到蓬勃发展,打印材料中的紫外光固化树脂大多数为不可回收材料,很容易造成环境污染,不具备生物安全性,且大多数具有性能较差、容易刺激皮肤等缺点。
因此,现有技术存在缺陷,需要改进。
技术解决方案
本发明所要解决的技术问题是:提供一种可生物降解、减少环境污染、性能好、皮肤刺激值小的生物基紫外光固化3D打印树脂及其制备方法。
本发明的技术方案如下:一种生物基紫外光固化3D打印树脂,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%。
采用上述技术方案,所述的生物基紫外光固化3D打印树脂中,所述生物可降解淀粉树脂聚合物由质量比为320g的生物可降解淀粉树脂、189g的聚乙二醇、0.2g的氢氧化钙、180g苯酐以及65g马来酸混合反应生成。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述自由基引发剂为光引发剂1173、光引发剂184、光引发剂907、光引发剂TPO、光引发剂651、光引发剂819、光引发剂369、光引发剂DETX中的任意一种或几种组合。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述助剂包括平流剂和消泡剂。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述平流剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、有机硅改性聚硅氧烷中的任意一种。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述平流剂为BYK-UV333、MOK-2120、B-0520中的任意一种或几种组合。
采用上述各个技术方案,所述的生物基紫外光固化3D打印树脂中,所述活性稀释剂为丙烯酸异冰片酯、丙烯酸四氢呋喃酯,丙烯酸异癸酯、十三烷基丙烯酸酯、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、环三羟甲基丙烷甲缩醛丙烯酸酯、2-苯氧基乙基丙烯酸酯、甲基丙烯酸环己酯、丙氧基化(2)新戊二醇二丙烯酸酯中的任意一种或几种组合。
一种制备上述生物基紫外光固化3D打印树脂的方法,制备方法为:
(1)、将生物可降解淀粉树脂、聚乙二醇以及氢氧化钙按照质量比混合,得到混合物;
(2)、将上述混合物在260°C下加热四小时,然后降温到120°C;
(3)、再加入苯酐和马来酸,并在260°温度下进行缩聚反应,得到生物可降解淀粉树脂聚合物;
(4)、将生物可降解淀粉树脂聚合物、自由基引发剂、助剂、活性稀释剂按照组分比例混合,在40°~50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂;
有益效果
采用上述各个技术方案,本发明具有如下有益效果:
1、采用可再生资源,减少环境污染及能源消耗,具有生物安全性。
2、通过添加羟乙基淀粉,通过其具有链淀粉的葡萄糖环经羟乙基化形成的高分子复合物增加聚合速度,提高树脂成型的转化率,降低光引发剂及单体化学物质的比例。
3、通过添加羟乙基淀粉、生物可降解淀粉树脂,达到3D打印成品可生物降解的效果。在使用完后进入自然环境中可依靠微生物、光和水等的作用自行分解,最终被分解为二氧化碳和氧气,几乎不对环境造成污染。
4、3D打印树脂性能优异,皮肤刺激值小。
本发明的实施方式
本发明提供一种生物基紫外光固化3D打印树脂及其制备方法,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%。
所述生物可降解淀粉树脂聚合物由质量比为320g的生物可降解淀粉树脂、189g的聚乙二醇、0.2g的氢氧化钙、180g苯酐以及65g马来酸混合反应生成。
所述自由基引发剂为光引发剂1173、光引发剂184、光引发剂907、光引发剂TPO、光引发剂651、光引发剂819、光引发剂369、光引发剂DETX中的任意一种或几种组合。
所述助剂包括平流剂和消泡剂。
所述平流剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、有机硅改性聚硅氧烷中的任意一种。
所述平流剂为BYK公司的BYK-UV333、德国默克公司的MOK-2120、中联邦化工公司的B-0520中的任意一种或几种组合。
所述活性稀释剂为丙烯酸异冰片酯、丙烯酸四氢呋喃酯,丙烯酸异癸酯、十三烷基丙烯酸酯、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、环三羟甲基丙烷甲缩醛丙烯酸酯、2-苯氧基乙基丙烯酸酯、甲基丙烯酸环己酯、丙氧基化(2)新戊二醇二丙烯酸酯中的任意一种或几种组合。
所述的羟乙基淀粉为湖北恒景瑞化工有限公司或上海康朗生物科技有限公司生产的现有产品。
制备上述生物基紫外光固化3D打印树脂的方法为:
(1)、将生物可降解淀粉树脂、聚乙二醇以及氢氧化钙按照质量比混合,得到混合物。采用320g的生物可降解淀粉树脂和189g的聚乙二醇进行酯交换反应,催化剂是0.2g的氢氧化钙。
(2)、将上述混合物在260°C下加热四小时,然后降温到120°C。
(3)、再加入180g苯酐和65g马来酸,并在260°温度下进行缩聚反应,直到酸值降低到初始值的10%以下,得到酸值为10.9mg KOH/g的生物可降解淀粉树脂聚合物。
(4)、将生物可降解淀粉树脂聚合物、自由基引发剂、助剂、活性稀释剂按照组分比例混合,在40°~50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
根据上述技术方案,下面通过3个实施例与2个常规的3D打印树脂进行对比。
实施例1
生物可降解淀粉树脂聚合物,39g
活性稀释剂NPG(PO) 2DA,47.5g
自由基光引发剂TPO,5g
BYK-333,2.5g
羟乙基淀粉,5g
BYK-UV3510,1g
按照以上比例调配好混合物,在50℃的水温下,用超声波清洗机超声20分钟,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
实施例2
生物可降解淀粉树脂聚合物,48.5g
活性稀释剂PEG(400)DA,39g
自由基光引发剂TPO,2g
自由基光引发剂819,2g
B-0520,2g
羟乙基淀粉,5.5g
MOK-2120,1g
按照以上比例调配混合物,在50℃的水温下,用超声波清洗机超声20分钟,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
实施例3
含生物可降解淀粉树脂(BSR)的聚合物,45.2g
活性稀释剂IBOA,42g
自由基光引发剂TPO,2g
自由基光引发剂369,2g
BYK-333,1.8g
羟乙基淀粉,6g
BYK-UV3510,1g
按照以上比例调配混合物,在40℃的水温下,用超声波清洗机超声10分钟,再将其置于匀浆机搅拌均匀,得到新一代环境及人体友好型植物油基紫外光固化3D打印树脂。
对比例1
普通聚酯型环氧丙烯酸树脂光固化3D打印树脂样品
对比例2
普通聚醚型聚氨酯丙烯酸酯光固化3D打印树脂
将上述3个实施例和2个常规对比例进行性能测试对比,得到表1的数据结果。
表1
项目 实施例1 实施例2 实施例3 对比例1 对比例2
断裂伸长率(%) 2.8 2.6 2.6 1.2 1.8
光固化活性
固化收缩率(%) 2.8 2.6 2.6 2.9 3.0
粘度(cps/25℃) 3.8 3.8 3.6 3.8 3.9
缺口冲击强度(KJ/m 2 29.9 29.6 28.8 28.9 28.5
拉伸强度(MPa) 24.9 25.9 23.6 25.6 24.9
GB/T20197-2006 符合 符合 符合 不符合 不符合
PII刺激值 0.6 0.5 0.5 5 5
通过上述对比,可以发现,3个实施例的打印树脂性能优于2个常规的打印树脂性能,3个实施例的打印树脂的皮肤刺激值也远小于2个常规的打印树脂。
采用上述各个技术方案,本发明具有如下有益效果:
1、采用可再生资源,减少环境污染及能源消耗,具有生物安全性。
2、通过添加羟乙基淀粉,通过其具有链淀粉的葡萄糖环经羟乙基化形成的高分子复合物增加聚合速度,提高树脂成型的转化率,降低光引发剂及单体化学物质的比例。
3、通过添加羟乙基淀粉、生物可降解淀粉树脂,达到3D打印成品可生物降解的效果。在使用完后进入自然环境中可依靠微生物、光和水等的作用自行分解,最终被分解为二氧化碳和氧气,几乎不对环境造成污染。
4、3D打印树脂性能优异,皮肤刺激值小。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种生物基紫外光固化3D打印树脂,其特征在于,重量百分比的组分组成包括生物可降解淀粉树脂聚合物19~78%、自由基引发剂1~9%、助剂0.2~4%、活性稀释剂13~62%。
  2. 根据权利要求1所述的生物基紫外光固化3D打印树脂,其特征在于,所述生物可降解淀粉树脂聚合物由质量比为320g的生物可降解淀粉树脂、189g的聚乙二醇、0.2g的氢氧化钙、180g苯酐以及65g马来酸混合反应生成。
  3. 根据权利要求2所述的生物基紫外光固化3D打印树脂,其特征在于,所述自由基引发剂为光引发剂1173、光引发剂184、光引发剂907、光引发剂TPO、光引发剂651、光引发剂819、光引发剂369、光引发剂DETX中的任意一种或几种组合。
  4. 根据权利要求1所述的生物基紫外光固化3D打印树脂,其特征在于,所述助剂包括平流剂和消泡剂。
  5. 根据权利要求4所述的生物基紫外光固化3D打印树脂,其特征在于,所述平流剂为聚二甲基硅氧烷、聚甲基苯基硅氧烷、有机硅改性聚硅氧烷中的任意一种。
  6. 根据权利要求4所述的生物基紫外光固化3D打印树脂,其特征在于,所述平流剂为BYK-UV333、MOK-2120、B-0520中的任意一种或几种组合。
  7. 根据权利要求1所述的生物基紫外光固化3D打印树脂,其特征在于,所述活性稀释剂为丙烯酸异冰片酯、丙烯酸四氢呋喃酯,丙烯酸异癸酯、十三烷基丙烯酸酯、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、环三羟甲基丙烷甲缩醛丙烯酸酯、2-苯氧基乙基丙烯酸酯、甲基丙烯酸环己酯、丙氧基化(2)新戊二醇二丙烯酸酯中的任意一种或几种组合。
  8. 一种制备权1~7任一所述的生物基紫外光固化3D打印树脂,其特征在于,制备方法为:
    (1)、将生物可降解淀粉树脂、聚乙二醇以及氢氧化钙按照质量比混合,得到混合物;
    (2)、将上述混合物在260°C下加热四小时,然后降温到120°C;
    (3)、再加入苯酐和马来酸,并在260°温度下进行缩聚反应,直到酸值降低到初始值的10%以下,得到酸值为10.9mg KOH/g的生物可降解淀粉树脂聚合物;
    (4)、将生物可降解淀粉树脂聚合物、自由基引发剂、助剂、活性稀释剂按照组分比例混合,在40°~50℃的水温下,用超声波清洗机超声10~20分钟后,再将其置于匀浆机搅拌均匀,得到生物基紫外光固化3D打印树脂。
PCT/CN2020/110123 2020-04-28 2020-08-20 生物基紫外光固化3d打印树脂及其制备方法 WO2021217962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010346877.1 2020-04-28
CN202010346877.1A CN111471261A (zh) 2020-04-28 2020-04-28 一种生物基紫外光固化3d打印树脂及其制备方法

Publications (1)

Publication Number Publication Date
WO2021217962A1 true WO2021217962A1 (zh) 2021-11-04

Family

ID=71761755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110123 WO2021217962A1 (zh) 2020-04-28 2020-08-20 生物基紫外光固化3d打印树脂及其制备方法

Country Status (3)

Country Link
US (1) US11618812B2 (zh)
CN (1) CN111471261A (zh)
WO (1) WO2021217962A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471261A (zh) * 2020-04-28 2020-07-31 深圳市智能派科技有限公司 一种生物基紫外光固化3d打印树脂及其制备方法
CN114316156A (zh) * 2022-01-10 2022-04-12 深圳锐沣科技有限公司 一种用于3d打印矫治器的光固化树脂及其制备方法
CN115710483A (zh) * 2022-10-28 2023-02-24 广东桐远新材料有限公司 一种uv固化型三防胶的制备方法
CN115819670A (zh) * 2022-11-30 2023-03-21 泉州扶摇新型材料科技有限公司 基于不饱和脂肪酸的生物基3d打印光敏树脂及其制法
CN116041629B (zh) * 2023-01-09 2024-04-19 广州昊毅新材料科技股份有限公司 一种水性生物基uv树脂的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010292A1 (fr) * 1995-09-13 1997-03-20 Japan Corn Starch Co., Ltd. Dispersion aqueuse d'une composition de resine biodegradable
JPH11209514A (ja) * 1998-01-22 1999-08-03 Kawagoe Yoshiharu アルテミシア(Artemisia)を主とした薬用植物を混入の生物が分解可能な澱粉樹脂とその製品
JP2001026668A (ja) * 1999-07-13 2001-01-30 Wonder Kk 生分解性澱粉樹脂成形品
US7071249B2 (en) * 2001-10-05 2006-07-04 William Ho Biodegradable starch resin and method for making same
CN105131201A (zh) * 2015-09-21 2015-12-09 东莞市盟大塑化科技有限公司 一种uv固化光敏材料及其在光固化3d打印机的应用
CN106039414A (zh) * 2015-04-07 2016-10-26 四川蓝光英诺生物科技股份有限公司 生物砖的制备方法及由此制备的生物砖
CN107353550A (zh) * 2017-07-11 2017-11-17 杭州卓普新材料科技有限公司 一种3d打印支撑材料及其制备方法
CN108409921A (zh) * 2017-10-23 2018-08-17 同济大学 一种3d打印用紫外光固化高硬度材料及其制备方法
CN108587100A (zh) * 2018-05-18 2018-09-28 深圳永昌和科技有限公司 环境及人体友好型植物油基紫外光固化3d打印树脂
CN111471261A (zh) * 2020-04-28 2020-07-31 深圳市智能派科技有限公司 一种生物基紫外光固化3d打印树脂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010292A1 (fr) * 1995-09-13 1997-03-20 Japan Corn Starch Co., Ltd. Dispersion aqueuse d'une composition de resine biodegradable
JPH11209514A (ja) * 1998-01-22 1999-08-03 Kawagoe Yoshiharu アルテミシア(Artemisia)を主とした薬用植物を混入の生物が分解可能な澱粉樹脂とその製品
JP2001026668A (ja) * 1999-07-13 2001-01-30 Wonder Kk 生分解性澱粉樹脂成形品
US7071249B2 (en) * 2001-10-05 2006-07-04 William Ho Biodegradable starch resin and method for making same
CN106039414A (zh) * 2015-04-07 2016-10-26 四川蓝光英诺生物科技股份有限公司 生物砖的制备方法及由此制备的生物砖
CN105131201A (zh) * 2015-09-21 2015-12-09 东莞市盟大塑化科技有限公司 一种uv固化光敏材料及其在光固化3d打印机的应用
CN107353550A (zh) * 2017-07-11 2017-11-17 杭州卓普新材料科技有限公司 一种3d打印支撑材料及其制备方法
CN108409921A (zh) * 2017-10-23 2018-08-17 同济大学 一种3d打印用紫外光固化高硬度材料及其制备方法
CN108587100A (zh) * 2018-05-18 2018-09-28 深圳永昌和科技有限公司 环境及人体友好型植物油基紫外光固化3d打印树脂
CN111471261A (zh) * 2020-04-28 2020-07-31 深圳市智能派科技有限公司 一种生物基紫外光固化3d打印树脂及其制备方法

Also Published As

Publication number Publication date
CN111471261A (zh) 2020-07-31
US11618812B2 (en) 2023-04-04
US20210332219A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021217962A1 (zh) 生物基紫外光固化3d打印树脂及其制备方法
CN108170003B (zh) 一种dlp 3d打印用弹性光敏树脂及其制备方法
JP2999334B2 (ja) インキ組成物、その印刷方法及び印刷物の脱離方法
CN108587100A (zh) 环境及人体友好型植物油基紫外光固化3d打印树脂
JP2811542B2 (ja) カルボキシルを末端基とするラクトンアクリレートモノマーを含む組成物
CN111732679B (zh) 基于植物油和柠檬酸的光敏树脂及其制备方法与应用
CN104892858B (zh) 一种高生物基含量环氧树脂组合物及其固化方法和应用
CN114933849B (zh) 一种基于羧基化石墨相氮化碳的抗紫外光老化光固化涂料及其制备方法
CN108164678A (zh) 一种可uv固化的大豆油基水性聚氨酯及其制备方法
CN102633915B (zh) 一种动植物甘油三酯制备光固化树脂的方法及其制备的光固化树脂
KR20210075279A (ko) 바이오 에폭시 아크릴레이트 수지를 이용한 3d 프린팅용 광경화형 조성물 및 그 제조 방법
CN114806267A (zh) 一种可辐射固化的高稳定性抗菌油墨
CN112724605B (zh) 一种用于光固化快速成型的光敏树脂组合物及其制备方法和应用
CN108431139B (zh) 可用于涂料应用的二环戊二烯改性酯低聚物
CN108690389A (zh) 一种led光固化水性木器漆及其制备方法
EP3885386A1 (en) Polyol formulation and polyurethane resin
CN106752738B (zh) 一种可生物降解的紫外光固化上光油及其制备方法
CN111763300A (zh) 一种表面快速固化的uv树脂的制备方法
CN101418148A (zh) 一种紫外光固化涂料的制作方法
JP2009249613A (ja) 硬化性樹脂組成物
CN114349913A (zh) 一种制备单网络高强高韧水凝胶用光敏树脂及其在光固化3d打印中的应用
CN107189730A (zh) 一种基于丙烯酸改性的超支化水性聚氨酯的双固化uv胶及其制备方法
CN113603908A (zh) 一种可降解环保塑料母粒及其制备方法
CN102757726B (zh) 一种基于天然多羟基糖类制备的水性uv涂料及其方法
CN111499801A (zh) 可增稠的反应型阻燃剂、包含该阻燃剂的阻燃型乙烯基smc树脂和制备该阻燃剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932906

Country of ref document: EP

Kind code of ref document: A1