CN111403550B - 一种钙钛矿太阳能电池及其制备方法 - Google Patents

一种钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
CN111403550B
CN111403550B CN202010212204.7A CN202010212204A CN111403550B CN 111403550 B CN111403550 B CN 111403550B CN 202010212204 A CN202010212204 A CN 202010212204A CN 111403550 B CN111403550 B CN 111403550B
Authority
CN
China
Prior art keywords
cspbi
perovskite
film
solar cell
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010212204.7A
Other languages
English (en)
Other versions
CN111403550A (zh
Inventor
鄢永高
余力
李蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010212204.7A priority Critical patent/CN111403550B/zh
Publication of CN111403550A publication Critical patent/CN111403550A/zh
Application granted granted Critical
Publication of CN111403550B publication Critical patent/CN111403550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供一种钙钛矿太阳能电池及其制备方法。该钙钛矿太阳能电池包括基底和依次设置在所述基底上的电子传输层、CsPbI3钙钛矿层、空穴传输层及金属电极;所述CsPbI3钙钛矿层的制备方法为:首先利用双热源同时蒸镀CsI和PbI2固体粉末颗粒,一步制备CsPbI3前驱体薄膜;然后采用阶梯型退火工艺成膜。本发明通过利用双源共蒸可以一步法直接制备高质量CsPbI3薄膜,相对于目前广泛使用的一步旋涂法而言,这种方法不仅操作简单,而且更适合得到高纯度、大面积的薄膜,并能够控制薄膜的厚度和形貌。同时采用梯度热退火处理,可以精确控制晶体的生长,降低缺陷密度,进而构建高品质的CsPbI3薄膜。

Description

一种钙钛矿太阳能电池及其制备方法
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种钙钛矿太阳能电池及其制备方法。
背景技术
近几年,有机无机杂化钙钛矿太阳能电池因其低禁带宽度、高载流子迁移率和高吸光率等优点吸引了广大研究者的兴趣,但最先进的有机卤化铅钙钛矿太阳能电池的效率(经认证)已达到理论极限的70%以上,效率却很高的全无机CsPbIXBr3-X电池却低于其理论极限的60%,突出显示了其更大可提高效率的潜力。相比于有机-无极杂化的钙钛矿而言(100℃),全无机钙钛矿有着优良的热稳定性,其耐热温度可达300℃以上。因此全无机钙钛矿材料的诸多优点使其拥有广泛的应用前景。但全无机钙钛矿太阳能电池仍存在一些问题需要克服,如钙钛矿层结晶质量差、对湿度比较敏感,导致电池器件稳定性差,并且效率也有待进一步提高等。
发明内容
本发明为解决上述技术问题提供一种电转换效率较高且在空气中具有优良稳定性的钙钛矿太阳能电池及其制备方法。
为了实现上述目的,本发明的技术方案如下:
一种钙钛矿太阳能电池,所述钙钛矿太阳能电池包括基底和依次设置在所述基底上的电子传输层、CsPbI3钙钛矿层、空穴传输层及金属电极;所述CsPbI3钙钛矿层的制备方法为:首先利用双热源同时蒸镀CsI和PbI2固体粉末颗粒,一步制备CsPbI3前驱体薄膜;然后采用阶梯型退火工艺成膜。
上述方案中,所述阶梯型退火工艺具体为使前驱体薄膜先40~50℃预加热60~120s,然后再80~110℃退火8~12min,最终320~350℃退火5~10min成膜。
上述方案中,所述阶梯型退火工艺具体为使前驱体薄膜先42℃预加热1min,然后再100℃退火10min,最终340℃退火10min成膜。
上述方案中,所述基底的厚度为350~400nm。
上述方案中,所述电子传输层为TiO2电子传输层,其厚度为30~50nm。
上述方案中,所述CsPbI3钙钛矿层的厚度为450~600nm。
所述的钙钛矿太阳能电池的制备方法,包括如下步骤:
提供基底;
在所述基底上沉积电子传输层;
在无水无氧的环境下利用双热源同时蒸镀CsI和PbI2固体粉末颗粒,一步制备CsPbI3前驱体薄膜,并采用阶梯型退火工艺形成CsPbI3钙钛矿层;
在所述CsPbI3钙钛矿层表面制备空穴传输层;
在空穴传输层表面制备金属电极。
上述方案中,双热源同时蒸镀CsI和PbI2固体粉末颗粒的具体过程为:加入适量的CsI和PbI2固体粉末,准备好之后关闭舱门抽真空,待真空度抽至3×10-6torr以下时,以
Figure BDA0002423214450000021
的速率蒸镀PbI2,同时以
Figure BDA0002423214450000022
的固定速率蒸镀CsI至PbI2蒸镀结束。
上述方案中,CsI蒸镀厚度为200~250nm,PbI2的为500~600nm。
上述方案中,采用液相沉积法制备电子传输层。
本发明与现有技术相比具有如下有益效果:本发明通过利用双源共蒸可以一步法直接制备高质量CsPbI3薄膜,相对于目前广泛使用的一步旋涂法而言,这种方法不仅操作简单,而且更适合得到高纯度、大面积的薄膜,并能够控制薄膜的厚度和形貌。同时采用梯度热退火处理,可以精确控制晶体的生长,降低缺陷密度,进而构建高品质的CsPbI3薄膜,该方法制备的γ-CsPbI3黑色钙钛矿相能够于10%的湿度环境中放置3天而未发生明显相变(25℃)。
附图说明
图1为实施例1中电池器件的结构模拟图;
图2为实施例1中PVD共蒸示意图;
图3为实施例1中钙钛矿及衬底的XRD图(γ标注为γ-CsPbI3);
图4为实施例1的钙钛矿太阳能电池的J-V曲线图(A、B、C分别代表最终340℃不同的退火时间1、5和10min)。
图5为实施例1(b)和对比例1(a)退火完毕后的钙钛矿薄膜SEM图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。下面通过附图和实施例详述本发明。
实施例1
本发明提供了一种全无机钙钛矿太阳能电池,如图1所示,所述钙钛矿太阳能电池包括基底1和依次附着在基底1上的TiO2电子传输层2、CsPbI3钙钛矿层3、空穴传输层4和金属电极5。
所示的基底1为FTO导电玻璃。所述的FTO导电玻璃的厚度优选为350~400nm,沉积工艺为磁控溅射。本发明对所述FTO导电玻璃的来源没有特殊要求,采用本领域技术人员熟知来源的FTO导电玻璃即可。
本发明所述的钙钛矿太阳能电池包括沉积在FTO导电玻璃上TiO2层。所述的TiO2层厚度优选为30~50nm。采用的薄膜制备工艺为液相沉积:采用TiCl4制备TiO2·2H2O母液,取适量母液用去离子水稀释,将上述FTO导电玻璃浸入其中,70℃加热30min;上述步骤重复一次;取出玻璃用气枪吹干;最后置于钛基热台上450℃退火30min。
本发明所述的钙钛矿太阳能电池包括钙钛矿光吸收层,本发明中选用的钙钛矿层的化学成分是CsPbI3。所述钙钛矿层通过蒸镀法,一步将CsI和PbI2粉末颗粒共蒸到TiO2层表面。首先利用双热源同时蒸镀CsI和PbI2固体粉末颗粒,一步制备CsPbI3前驱体薄膜;然后采用阶梯型退火工艺成膜。具体过程为:加入适量的CsI和PbI2固体粉末,CsI蒸镀厚度为200~250nm,PbI2的为500~600nm。此处所指的厚度为各热源对应的晶振片显示厚度。准备好之后关闭舱门抽真空,待真空度抽至3×10-6torr以下时,以
Figure BDA0002423214450000031
的速率蒸镀PbI2,同时以
Figure BDA0002423214450000032
Figure BDA0002423214450000033
的固定速率蒸镀CsI至PbI2蒸镀结束。所述钙钛矿层的厚度优选为450~600nm。对沉积后的混合物进行阶梯退火:优选低温退火温度40~50℃预加热60~120s,优选中间退火温度为80~110℃退火8~12min,优选高温退火温度为320~350℃,优选退火时间为5~10min。
在本实施例中,阶梯退火机制为:先42℃预加热1min,而后再100℃退火10min,最终340℃退火成膜。高温热退火形成的α-CsPbI3钙钛矿快速冷却至室温使其形成γ-CsPbI3。本实施例对340℃退火不同时间(1、5和10min)分别进行了试验,如图4所示,发现随着退火时间的延长,器件的光电转换效率并没有明显改变。本发明所述钙钛矿层中CsPbI3的晶粒粒度优选为1nm左右。
表1为实施例1的钙钛矿太阳能电池的J-V曲线具体参数。
表1
Figure BDA0002423214450000034
本发明采用上述方法制备的钙钛矿层,得到了高纯度、大面积的钙钛矿层薄膜,并能够精细控制薄膜的厚度和形貌,微观上精准控制结晶质量,降低缺陷密度,最后的粒径均匀性良好,有利于提高钙钛矿太阳能电池的稳定性和电池的光电转换效率。
本发明所述的钙钛矿太阳能电池包括空穴传输层,所述空穴传输层沉积在钙钛矿层表面。本发明对所述空穴传输层的沉积方式没有特殊要求,采用本领域技术人员熟知的沉积方式即可。在本发明中,所述空穴传输层厚度优选为80~120nm。本发明对所述的空穴传输层的化学成分优选为Spiro-OMeTAD(2',7,7'-四-(二甲氧基二苯胺)-螺芴)。
本发明提供的钙钛矿太阳能电池包括金属电极,所述金属电极沉积在空穴传输层的表面。本发明对所述金属电极的沉积方式没有特殊要求,采用本领域技术人员熟知的沉积方式即可。本发明中,所述金属电极的厚度优选为60~100nm;所述金属电极优选为Au电极。
对比例1
本对比例与实施例1大致相同,不同之处在于退火工艺:将蒸镀完毕后的钙钛矿前驱体薄膜直接340℃高温退火10min,待冷却后得到的黑色的γ-CsPbI3。在SEM图像上看,直接高温退火获得的钙钛矿薄膜,很明显会形成更多的孔洞缺陷。而且该工艺得到的γ-CsPbI3在N2手套箱内部就开始缓慢向黄色δ相转变,在10%的湿度下20min后完全转变为黄相(25℃)。
由以上实施例可知,本发明提供了一种钙钛矿太阳能电池及其制备方法,本发明提供的钙钛矿太阳能电池电池效率高,且在空气中具有良好的稳定性。

Claims (9)

1.一种钙钛矿太阳能电池,其特征在于,所述钙钛矿太阳能电池包括基底和依次设置在所述基底上的电子传输层、CsPbI3钙钛矿层、空穴传输层及金属电极;所述CsPbI3钙钛矿层的制备方法为:首先利用双热源同时蒸镀CsI和PbI2固体粉末颗粒,一步制备CsPbI3前驱体薄膜;然后采用阶梯型退火工艺成膜,所述阶梯型退火工艺具体为使前驱体薄膜先40~50℃预加热60~120s,然后再80~110℃退火8~12min,最终320~350℃退火5~10min成膜。
2.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述阶梯型退火工艺具体为使前驱体薄膜先42℃预加热1min,然后再100℃退火10min,最终340℃退火10min成膜。
3.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述基底的厚度为350~400nm。
4.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述电子传输层为TiO2电子传输层,其厚度为30~50nm。
5.如权利要求1所述的钙钛矿太阳能电池,其特征在于,所述CsPbI3钙钛矿层的厚度为450~600nm。
6.如权利要求1至5任一项所述的钙钛矿太阳能电池的制备方法,其特征在于,包括如下步骤:
提供基底;
在所述基底上沉积电子传输层;
在无水无氧的环境下利用双热源同时蒸镀CsI和PbI2固体粉末颗粒,一步制备CsPbI3前驱体薄膜,并采用阶梯型退火工艺形成CsPbI3钙钛矿层;
在所述CsPbI3钙钛矿层表面制备空穴传输层;
在空穴传输层表面制备金属电极。
7.如权利要求6所述的制备方法,其特征在于,双热源同时蒸镀CsI和PbI2固体粉末颗粒的具体过程为:加入适量的CsI和PbI2固体粉末,准备好之后关闭舱门抽真空,待真空度抽至3×10-6torr以下时,以
Figure FDA0003210948520000011
的速率蒸镀PbI2,同时以
Figure FDA0003210948520000012
的固定速率蒸镀CsI至PbI2蒸镀结束。
8.如权利要求6所述的制备方法,其特征在于,CsI蒸镀厚度为200~250nm,PbI2的为500~600nm。
9.如权利要求6所述的制备方法,其特征在于,采用液相沉积法制备电子传输层。
CN202010212204.7A 2020-03-24 2020-03-24 一种钙钛矿太阳能电池及其制备方法 Active CN111403550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010212204.7A CN111403550B (zh) 2020-03-24 2020-03-24 一种钙钛矿太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010212204.7A CN111403550B (zh) 2020-03-24 2020-03-24 一种钙钛矿太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN111403550A CN111403550A (zh) 2020-07-10
CN111403550B true CN111403550B (zh) 2021-12-07

Family

ID=71413518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010212204.7A Active CN111403550B (zh) 2020-03-24 2020-03-24 一种钙钛矿太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111403550B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192821A (zh) * 2021-04-20 2021-07-30 电子科技大学 一种全无机CsPbI3钙钛矿薄膜的制备方法及其应用
CN114551637A (zh) * 2022-01-20 2022-05-27 华南理工大学 钙钛矿光吸收层及其制备方法、太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275523A (zh) * 2017-06-13 2017-10-20 苏州大学 一种纯无机钙钛矿发光二极管器件的制备方法
CN108039393A (zh) * 2017-12-07 2018-05-15 暨南大学 一种全无机钙钛矿型太阳能电池及其制备方法
CN109148644A (zh) * 2018-08-09 2019-01-04 苏州大学 基于梯度退火与反溶剂协同效应制备无机钙钛矿电池的方法及制备的无机钙钛矿电池
CN110416361A (zh) * 2019-07-26 2019-11-05 武汉理工大学 一种全无机钙钛矿太阳能电池的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020041068A1 (en) * 2018-08-20 2020-02-27 Alliance For Sustainable Energy, Llc Perovskite nanocrystals and methods of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275523A (zh) * 2017-06-13 2017-10-20 苏州大学 一种纯无机钙钛矿发光二极管器件的制备方法
CN108039393A (zh) * 2017-12-07 2018-05-15 暨南大学 一种全无机钙钛矿型太阳能电池及其制备方法
CN109148644A (zh) * 2018-08-09 2019-01-04 苏州大学 基于梯度退火与反溶剂协同效应制备无机钙钛矿电池的方法及制备的无机钙钛矿电池
CN110416361A (zh) * 2019-07-26 2019-11-05 武汉理工大学 一种全无机钙钛矿太阳能电池的制备方法

Also Published As

Publication number Publication date
CN111403550A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
US8617642B2 (en) Preparation of thin film for solar cell using paste
Olgar Optimization of sulfurization time and temperature for fabrication of Cu2ZnSnS4 (CZTS) thin films
CN110828602B (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN111403550B (zh) 一种钙钛矿太阳能电池及其制备方法
CN105244416B (zh) 一种铜锑硒太阳能电池光吸收层薄膜的低温沉积工艺
KR100789064B1 (ko) 금속유기물증착법에 의한 CuInS2 박막의 제조방법,그로 제조된 CuInS2 박막 및 그를 이용한 In2S3박막의 제조방법
CN111370582B (zh) 一种在微米级大绒面上钙钛矿太阳电池的制备方法
JP2014096569A (ja) 銅・インジウム・ガリウム・セレニウム(cigs)または銅・亜鉛・錫・硫黄(czts)系薄膜型太陽電池及びその製造方法
CN101820018A (zh) 一种CdS薄膜的制备方法
CN112331557A (zh) 一种无机无铅双钙钛矿薄膜、太阳能电池及其制备方法
CN103343318A (zh) 太阳能电池的光吸收层的制备方法
CN111697142A (zh) 一种有机无机杂化钙钛矿薄膜的制备方法
CN111244220A (zh) 一种全无机p/n异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN105390373B (zh) 一种铜锑硫太阳能电池光吸收层薄膜的制备方法
CN107994123B (zh) 一种钙钛矿型太阳能电池及其制备方法
CN112467043B (zh) 一种钙钛矿太阳能电池及其制作方法
KR101582200B1 (ko) Czts계 태양전지용 박막의 제조방법 및 이를 통해 제조된 박막을 포함하는 czts계 태양전지
JPH06120545A (ja) 薄膜太陽電池の製造方法
CN112481593B (zh) 一种气固反应制备太阳能电池吸收层四硫化锑三铜薄膜的方法
Sujith et al. Effect of solution and dry processing techniques on the optical and transport properties of inorganic CsPbBr3 perovskite films
CN112951933A (zh) 室温脉冲激光沉积法制备铜锌锡硫/硫化铋薄膜异质结
CN111020506B (zh) 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法
Liang et al. Enhanced crystallinity and performance of CH3NH3PbI3 thin film prepared by controlling hot CH3NH3I solution onto evaporated PbI2 nanocrystal
Kuan et al. Growth process control produces high-crystallinity and complete-reaction perovskite solar cells
CN113506838A (zh) 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant