CN111020506B - 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法 - Google Patents

一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法 Download PDF

Info

Publication number
CN111020506B
CN111020506B CN201911307177.5A CN201911307177A CN111020506B CN 111020506 B CN111020506 B CN 111020506B CN 201911307177 A CN201911307177 A CN 201911307177A CN 111020506 B CN111020506 B CN 111020506B
Authority
CN
China
Prior art keywords
sputtering
substrate
strontium titanate
target
barium strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911307177.5A
Other languages
English (en)
Other versions
CN111020506A (zh
Inventor
张辉
毛飞龙
殷国栋
倪中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201911307177.5A priority Critical patent/CN111020506B/zh
Publication of CN111020506A publication Critical patent/CN111020506A/zh
Application granted granted Critical
Publication of CN111020506B publication Critical patent/CN111020506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于薄膜制备技术领域,具体涉及一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法。包括如下步骤:将待溅射铌酸锂基片移入真空室室内并放置于样品座上;将真空室内的靶材的角度调整到预设角度,调节靶材到基板的距离到预设距离;对真空室进行抽真空,到达本底真空;通入氧气和氩气,在基片上溅射二氧化硅;在氩气环境下,打开直流电源在基片上溅射金属钛;在氩气环境下,打开直流电源在基片上溅射金属铂;将基片加热至400摄氏度后,在氧气和氩气条件下,打开射频电源在基片上溅射钛酸锶钡;完成步骤70后,加热基片至650摄氏度,在氧气环境下退火。本发明不仅简化了步骤并且节约了成本;且钛酸锶钡薄膜结晶效果良好。

Description

一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法
技术领域
本发明属于薄膜制备技术领域,具体涉及一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法。
背景技术
磁控溅射作为PVD(物理气相沉积)的一种,主要用于各种功能薄膜的沉积,被广泛应用于集成电路、太阳能电池、LED、平板显示等泛半导体领域。然而在铌酸锂基片上溅射钛酸锶钡薄膜时,由于存在晶格失配以及热膨胀系数相差较大的问题,钛酸锶钡薄膜很难直接在铌酸锂基片上结晶,国内外也少有相关报道。
鉴于上述原因,本发明提出一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法。
发明内容
本发明的目的在于克服现有技术中的不足,从而提供一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,本发明不仅简化了步骤节约了成本,且制备得到的钛酸锶钡薄膜结晶效果良好。
为了实现上述目的,本发明提供如下技术方案:
1. 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,包括如下步骤:
步骤10:将待溅射铌酸锂基片移入真空室室内并放置于样品座上;
步骤20:将真空室内的靶材的角度调整到预设角度,调节靶材到基板的距离到预设距离;
步骤30:对真空室进行抽真空,到达本底真空;
步骤40:通入氧气和氩气,在基片上溅射二氧化硅;
步骤50:在氩气环境下,打开直流电源在基片上溅射金属钛;
步骤60:在氩气环境下,打开直流电源在基片上溅射金属铂;
步骤70:将基片加热至400摄氏度后,在氧气和氩气条件下,打开射频电源在基片上溅射钛酸锶钡;
步骤80:完成步骤70后,加热基片至650摄氏度,在氧气环境下退火。
优选地,所述步骤20中靶材包括二氧化硅靶材、钛靶材、铂靶材和钛酸锶钡靶材;其中所述二氧化硅靶间距为140mm,钛靶间距为60mm,铂靶间距为60mm,钛酸锶钡靶间距为90mm。
优选地,所述步骤20中真空度为6x10-5Pa。
优选地,所述步骤40具体步骤为:二氧化硅靶材作为非金属靶材需在60W的功率下进行10分钟的预溅射,其中,预溅射时关闭样品挡板,预溅射结束后打开样品挡板;预溅射结束后进行主溅射,所述氩氧比为20:2;溅射时气压为0.4Pa;射频溅射功率为100W,溅射时间为20分钟。
优选地,所述步骤50具体步骤为:钛靶材作为金属靶材需在80W的功率下进行2分钟的预溅射;预溅射结束后在对钛靶材进行主溅射,在氩气环境中,溅射时气压为0.7Pa;直流溅射功率为100W,溅射时间为10分钟。
优选地,所述步骤60具体步骤为:铂靶材作为金属靶材需在80W的功率下进行2分钟的预溅射,其中,预溅射时关闭样品挡板,预溅射结束后打开样品挡板;预溅射结束后进行主溅射,在氩气环境中,溅射时气压为0.7Pa;直流溅射功率为100W,溅射时间为10分钟。
优选地,所述步骤70具体步骤为:将基片加热至400摄氏度后,钛酸锶钡靶材作为非金属靶材需在60W的功率下进行10分钟的预溅射,其中,预溅射需要关闭样品挡板,预溅射结束后打开样品挡板;预溅射结束后进行主溅射,所述氩氧比为21:9;溅射时气压为0.4Pa;射频溅射功率为100W,溅射时间为180分钟。
优选地,所述二氧化硅靶材的纯度达到99.995%,所述钛靶材的纯度达到99.995%,所述铂靶材的纯度达到99.995%,所述钛酸锶钡靶材中钡锶元素比为0.7:0.3,纯度达到99.995%。
与现有技术相比,本发明具有以下有益效果:
1. 本发明的方法不同于传统的剥离键合工艺,不仅简化了步骤节约了成本;且制备得到的钛酸锶钡薄膜结晶效果良好。
2. 本发明的方法利用二氧化硅隔热层和与钛酸锶钡晶格系数相近的Pt下电极,二氧化硅既是扩散阻挡层又是热绝缘层;直接在铌酸锂基片上长出了质量好的钛酸锶钡薄膜。
附图说明
图1是本发明实施例1制备得到的钛酸锶钡薄膜结晶的X光衍射图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,具体包括如下步骤:
步骤10:将待溅射铌酸锂基片移入真空室室内并放置于样品座上;
步骤20:将真空室内的靶材的角度调整到预设角度,调节靶材到基板的距离到预设距离,其中二氧化硅靶间距为140mm,钛靶间距为60mm,铂靶间距为60mm,钛酸锶钡靶间距为90mm。;
步骤30:对真空室进行抽真空,到达本底真空6x10-5Pa;
步骤40:二氧化硅靶材作为非金属靶材需在60W的功率下进行10分钟的预溅射。预溅射需要关闭样品挡板,预溅射结束后打开样品挡板,进行主溅射时,氩氧比为20:2;溅射时气压为0.4Pa;射频溅射功率为100W,溅射时间为20分钟。
步骤50:钛靶材作为金属靶材需在80W的功率下进行2分钟的预溅射。预溅射结束后在对钛靶材进行主溅射时,在氩气环境中,溅射时气压为0.7Pa;直流溅射功率为100W,溅射时间为10分钟。
步骤60:铂靶材作为金属靶材需在80W的功率下进行2分钟的预溅射。预溅射需要关闭样品挡板,预溅射结束后打开样品挡板,进行主溅射时,在氩气环境中,溅射时气压为0.7Pa;直流溅射功率为100W,溅射时间为10分钟。
步骤70:将基片加热至400摄氏度后,钛酸锶钡靶材作为非金属靶材需在60W的功率下进行10分钟的预溅射。预溅射需要关闭样品挡板,预溅射结束后打开样品挡板,进行主溅射时,氩氧比为21:9;溅射时气压为0.4Pa;射频溅射功率为100W,溅射时间为180分钟。
步骤80:完成步骤70后,加热基片至650摄氏度,在氧气环境下退火。
将得到的钛酸锶钡薄膜结晶进行X光衍射图谱检测,如图1所示,在(111)面有较高的强度,通过表征发现在铌酸锂基片上长出的钛酸锶钡薄膜结晶效果良好。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (7)

1.一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,包括如下步骤:
步骤10:将待溅射铌酸锂基片移入真空室室内并放置于样品座上;
步骤20:将真空室内的靶材的角度调整到预设角度,调节靶材到基板的距离到预设距离;所述靶材包括二氧化硅靶材、钛靶材、铂靶材和钛酸锶钡靶材;其中所述二氧化硅靶间距为140mm,钛靶间距为60mm,铂靶间距为60mm,钛酸锶钡靶间距为90mm;
步骤30:对真空室进行抽真空,到达本底真空;
步骤40:通入氧气和氩气,在基片上溅射二氧化硅;
步骤50:在氩气环境下,打开直流电源在基片上溅射金属钛;
步骤60:在氩气环境下,打开直流电源在基片上溅射金属铂;
步骤70:将基片加热至400摄氏度后,在氧气和氩气条件下,打开射频电源在基片上溅射钛酸锶钡;
步骤80:完成步骤70后,加热基片至650摄氏度,在氧气环境下退火。
2.根据权利要求1所述的一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,所述步骤20中真空度为6×10-5Pa。
3.根据权利要求1所述的一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,所述步骤40具体步骤为:二氧化硅靶材作为非金属靶材需在60W的功率下进行10分钟的预溅射,其中,预溅射时关闭样品挡板,预溅射结束后打开样品挡板;预溅射结束后进行主溅射,氩氧比为20:2;溅射时气压为0.4Pa;射频溅射功率为100W,溅射时间为20分钟。
4.根据权利要求1所述的一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,所述步骤50具体步骤为:钛靶材作为金属靶材需在80W的功率下进行2分钟的预溅射;预溅射结束后在对钛靶材进行主溅射,在氩气环境中,溅射时气压为0.7Pa;直流溅射功率为100W,溅射时间为10分钟。
5.根据权利要求1所述的一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,所述步骤60具体步骤为:铂靶材作为金属靶材需在80W的功率下进行2分钟的预溅射,其中,预溅射时关闭样品挡板,预溅射结束后打开样品挡板;预溅射结束后进行主溅射,在氩气环境中,溅射时气压为0.7Pa;直流溅射功率为100W,溅射时间为10分钟。
6.根据权利要求1所述的一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,所述步骤70具体步骤为:将基片加热至400摄氏度后,钛酸锶钡靶材作为非金属靶材需在60W的功率下进行10分钟的预溅射,其中,预溅射需要关闭样品挡板,预溅射结束后打开样品挡板;预溅射结束后进行主溅射,氩氧比为21:9;溅射时气压为0.4Pa;射频溅射功率为100W,溅射时间为180分钟。
7.根据权利要求1所述的一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法,其特征在于,所述二氧化硅靶材的纯度达到99.995%,所述钛靶材的纯度达到99.995%,所述铂靶材的纯度达到99.995%,所述钛酸锶钡靶材中钡锶元素比为0.7:0.3,纯度达到99.995%。
CN201911307177.5A 2019-12-18 2019-12-18 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法 Active CN111020506B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911307177.5A CN111020506B (zh) 2019-12-18 2019-12-18 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911307177.5A CN111020506B (zh) 2019-12-18 2019-12-18 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法

Publications (2)

Publication Number Publication Date
CN111020506A CN111020506A (zh) 2020-04-17
CN111020506B true CN111020506B (zh) 2021-09-28

Family

ID=70209619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911307177.5A Active CN111020506B (zh) 2019-12-18 2019-12-18 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法

Country Status (1)

Country Link
CN (1) CN111020506B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403600A (zh) * 2021-06-11 2021-09-17 东莞南玻工程玻璃有限公司 一种镀膜设备靶位的功率调整方法、装置、控制器及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001259367A1 (en) * 2000-05-04 2001-11-12 E.I. Du Pont De Nemours And Company Substituted barium titanate and barium strontium titanate ferroelectric compositions
CN1932080A (zh) * 2005-09-12 2007-03-21 电子科技大学 一种钛酸锶钡薄膜材料的制备方法
US20080041720A1 (en) * 2006-08-14 2008-02-21 Jaeyeon Kim Novel manufacturing design and processing methods and apparatus for PVD targets
CN104532186A (zh) * 2014-12-25 2015-04-22 庞凤梅 一种射频磁控溅射制备bts薄膜的方法

Also Published As

Publication number Publication date
CN111020506A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN101514440B (zh) 一种高电子迁移率氧化铟透明薄膜的制备方法
CN105018881B (zh) 一种含有v6o13晶体的非晶氧化钒薄膜材料和制备方法
CN103343318B (zh) 太阳能电池的光吸收层的制备方法
CN106756792B (zh) 一种氧化物透明电极薄膜的制备方法
WO2017045398A1 (zh) 一种二氧化钒薄膜低温沉积方法
CN111020506B (zh) 一种基于磁控溅射的在铌酸锂基片上的钛酸锶钡成膜方法
US4428810A (en) Method and apparatus for depositing conducting oxide on a substrate
CN110408908B (zh) 一种石墨烯/六硼化镧复合薄膜、制备方法及应用
CN108374155B (zh) Ito薄膜及其制备方法
CN111403550B (zh) 一种钙钛矿太阳能电池及其制备方法
CN104790029B (zh) 一种制备SnO外延薄膜的方法
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
Babu et al. Bias voltage dependence properties of dc reactive magnetron sputtered indium oxide films
CN102881563B (zh) 一种多晶硅薄膜组件的制备方法
JP4229803B2 (ja) 透明導電膜の製造方法
JPH11260724A (ja) 化合物半導体薄膜の製造方法および製造装置
KR100682741B1 (ko) 산화 아연 계 투명 전도성 산화물 박막의 제조 방법
JP2002217213A (ja) 化合物半導体薄膜の製造方法
CN111575666B (zh) 一种制备(222)强织构ito薄膜的方法
JPS63243261A (ja) 低抵抗透明導電膜の製造方法
JP4015861B2 (ja) 透明導電積層体の製造方法
KR20140120663A (ko) 산화알루미늄아연 박막의 제조 방법
CN115020052A (zh) 一种高效氮化钽薄膜电阻及其制备方法
CN111048404B (zh) 一种缓冲层结构及其制备方法
CN108149206B (zh) 一种ZnSnN2薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant