WO2017045398A1 - 一种二氧化钒薄膜低温沉积方法 - Google Patents

一种二氧化钒薄膜低温沉积方法 Download PDF

Info

Publication number
WO2017045398A1
WO2017045398A1 PCT/CN2016/079322 CN2016079322W WO2017045398A1 WO 2017045398 A1 WO2017045398 A1 WO 2017045398A1 CN 2016079322 W CN2016079322 W CN 2016079322W WO 2017045398 A1 WO2017045398 A1 WO 2017045398A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
film
thin film
vanadium dioxide
temperature
Prior art date
Application number
PCT/CN2016/079322
Other languages
English (en)
French (fr)
Inventor
张东平
朱茂东
杨凯
范平
蔡兴民
罗景庭
钟爱华
林思敏
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2017045398A1 publication Critical patent/WO2017045398A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention belongs to the technical field of functional film preparation, and relates to a preparation process of a vanadium dioxide film, in particular to a low temperature deposition method of a vanadium dioxide film.
  • V0 2 is a solid-state thermotropic phase change material, and the single crystal V0 2 is transformed from a high temperature tetragonal rutile to a low temperature monoclinic rutile at a phase transition temperature (T j 68 ° C ⁇ ). As the temperature changes, its crystalline structure undergoes a first-order displacement phase transition from a metallic state to a semiconductor state.
  • the phase transition property of VO 2 is a thermally induced phase transition, and the change in temperature causes its resistivity and light transmission. The over-rate changes reversibly.
  • Low can suppress the incidence of infrared light, to achieve the purpose of lowering the room temperature; in contrast, when the external temperature is lower than the phase transition temperature of the V0 2 film, the infrared light can pass through the smart window at a higher transmittance, so that the indoor The temperature rises
  • the window glass is mounted on the plating film V0 2, cool the object can be achieved.
  • the vanadium dioxide film (VO 2 film) is usually deposited at a temperature of 450 to 500 ° C or by a high temperature annealing (450 to 500 ° C) at room temperature, and the window glass is usually tempered glass, that is, glass. After the production, it is subjected to a tempering process of about 600 °C. This makes it difficult to prepare V0 2 film on window glass: If the V0 2 film is deposited by tempered glass, the original tempering effect of the glass will be greatly weakened due to the higher deposition temperature; if the ordinary glass is deposited V0 2 film After tempering, the tempering temperature is too high, and the previously coated ⁇ 0 2 film will lose phase transformation properties. Low-temperature deposition technology can solve this problem, that is, by lowering the deposition temperature, the deposition process can be directly performed on tempered glass, which has great application value.
  • the present invention introduces a low-temperature preparation method of vanadium dioxide glass, using vanadium as a target, by means of reactive magnetron sputtering technology, adding a substrate negative bias method during the deposition process, realizing vanadium dioxide
  • the purpose of low temperature deposition of thin films is of great value.
  • the object of the present invention is to provide a low-temperature preparation method of a high-quality vanadium dioxide film with simple process.
  • the preparation process adopts a reactive magnetron sputtering technology, and the magnetron sputtering is performed by introducing a magnetic field on the surface of the target cathode. Electron constraining to increase the plasma density to increase the sputtering rate.
  • Reactive magnetron sputtering is to prepare a compound film by reacting a reactive gas with a sputtered metal atom during magnetron sputtering. method. Problem solution
  • the chamber is pumped to a vacuum of less than 1 xlO - 3 Pa, then a mixture of oxygen and argon is introduced, and the partial pressure of oxygen is maintained at 0.01_0.06 Pa.
  • the deposition temperature is controlled to 240 to 260 ° C.
  • a negative bias was added to the substrate, and the sputtering power density of the target surface was 2-3 W/cm 2 to obtain a high-performance V0 2 film on the surface of the substrate.
  • the method does not require a post-treatment process such as annealing, and directly prepares a V0 2 film.
  • a negative bias is applied to the substrate, and the bias voltage is -100V - 250V.
  • the substrate is ordinary glass, quartz glass, tempered glass, sapphire, glass steel or stainless steel.
  • the substrate is tempered glass.
  • the deposition temperature is controlled to be 240 °C.
  • the target surface sputtering power density is 2 W/cm 2 .
  • a method for low-temperature deposition of vanadium dioxide thin film which is mainly used for depositing a vanadium dioxide film based on tempered glass. Specifically, reactive magnetron sputtering technology is adopted, with metal vanadium or vanadium alloy as the target, oxygen as the reaction gas and argon as the sputtering gas. Before preparing the film, the vacuum chamber is pumped to below 1x10 - 3 Pa background.
  • the low temperature deposition method of the present invention reduces the deposition temperature of the V0 2 film from the usual 400-500 ° C to a minimum of about 240 ° C, and is prepared well with appropriate negative bias and other process parameters.
  • High-performance V0 2 film with phase change performance greatly reduces production cost; and especially for the formation of high-performance V0 2 film on the surface of tempered glass without changing the tempering effect of tempered glass, which makes it and existing tempering
  • the process compatibility of glass is greatly improved and it has great application value.
  • the low temperature deposition of the V0 2 film of the invention avoids the high temperature annealing process after deposition, simplifies the production process, saves manufacturing costs, and does not involve environmentally polluting raw materials in the preparation process.
  • a post-treatment process is not required, and a vanadium dioxide film is prepared at a low temperature.
  • the invention has broad application prospects in various fields such as smart windows.
  • FIG. 1 is a transmission spectrum of a tungsten-doped V0 2 film under a negative bias voltage of -150 V according to Embodiment 1 of the present invention
  • FIG. 2 is a tungsten-negative bias voltage of -200 V according to Embodiment 2 of the present invention. Dispersion of V0 2 film transmission spectrum at different temperatures
  • FIG. 3 is a transmission spectrum of a pure V0 2 film under a negative bias of -185 V in Example 2 of the present invention at different temperatures.
  • the oxygen and argon were used as the reaction gas and the sputtering gas.
  • the target was pre-sputtered for 10 minutes to remove the surface.
  • the embodiment adopts a vanadium-tungsten alloy target, and the V0 2 can be conveniently adjusted by adjusting the tungsten content in the target.
  • the phase transition temperature of the film The sample permeability and wavelength curve of the prepared vanadium dioxide film sample before and after phase change are shown in Fig. 1. It can be seen from the figure that the prepared film vanadium dioxide has a low phase transition temperature and good phase transition and infrared regulation properties.
  • the background vacuum of the film preparation was 6x10 - 4Pa .
  • the oxygen and argon were used as the reaction gas and the sputtering gas.
  • the target was pre-sputtered for 10 minutes to remove surface dirt.
  • the working vacuum is 0.5 Pa
  • the oxygen partial pressure is 0.02 Pa
  • the deposition temperature is maintained at 240 ° C.
  • a negative bias of -200 V is applied to the substrate, the sputtering power is 80 W, and the deposition time is 30 min.
  • a uniformly dense vanadium dioxide film is obtained on a tempered glass substrate.
  • the curve of the transmittance of the sample before and after the phase change of the prepared vanadium dioxide film sample is shown in Fig. 2. It can be seen from the figure that the prepared film has good phase transformation properties.
  • Embodiment Example 1 with the differences that the applied negative substrate bias voltage different sizes, resulting ⁇ 0 2 phase transition temperature of the phase change film properties and the like are also different.
  • the substrate used in this embodiment is tempered glass, so as not to affect the tempering effect of the tempered glass, the deposition temperature of the ⁇ 0 2 film is maintained at 240 ° C, and the appropriate negative bias and other process parameters are used in the tempered glass.
  • the surface forms a high-performance V0 2 film with good phase change properties; the production cost is greatly reduced.
  • the vanadium dioxide film is prepared by DC reactive magnetron sputtering, with pure vanadium as the target, the substrate is K9 glass, ultrasonic cleaning by alcohol and deionized water for 10 minutes respectively, and the background vacuum of the film preparation is 6 ⁇ 10. -4 Pa , using oxygen and argon as the reaction gas and sputtering gas. Before preparing the film, the target is pre-sputtered for 10 minutes to remove surface dirt.
  • the working vacuum is 0.5 Pa
  • the partial pressure of oxygen is 0.02 Pa
  • the deposition temperature is Maintaining at 250 ° C
  • a negative bias of -185 V was applied to the substrate
  • the sputtering power was 80 W
  • a uniform uniform V 2 2 film was obtained at a deposition time of 30 ⁇ n.
  • the sample transmittance and wavelength change curve of the obtained vanadium dioxide film sample before and after phase change are shown in Fig. 3. As can be seen from the figure, the prepared film has good phase transformation properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种二氧化钒薄膜低温沉积方法,采用磁控溅射技术,以金属钒或钒合金为靶材,以氧气为反应气体,氩气为溅射气体;制备薄膜前,先将真空室抽至低于1×10 -3Pa本底真空,然后通入氧气和氩气混合气体,氧分压保持为0.01-0.06Pa,在沉积薄膜过程中,控制沉积温度为240~260℃,并在基底添加负偏压,靶表面溅射功率密度为2-3W/cm 2,在基底表面制备得到高性能的VO 2薄膜。

Description

说明书 发明名称:一种二氧化钒薄膜氐温沉积方法 技术领域
[0001] 本发明属于功能薄膜制备技术领域, 涉及一种二氧化钒薄膜的制备工艺, 尤其 涉及一种二氧化钒薄膜低温沉积方法。
背景技术
[0002] V0 2是一种固态热致相变材料, 单晶 V0 2在相变温度 (T j 68°C吋会从高温 的四方晶系金红石型转变到低温的单斜晶系畸变金红石型, 随着温度的变化它 的晶态结构相应地发生从金属态到半导体态的一级位移相变。 VO 2的相变特性 是热致相变, 温度的变化会导致其电阻率、 光透过率发生可逆的变化。 太阳辐 射的总能量中有 98 <¾都是处于红外光与可见光波段, 其中大多数都集中在红外 波段, 而 VO 2在发生半导体-金属相变吋正好对红外波段的光透过率和反射率发 生突变, 二氧化钒这种特性使其成为智能节能窗材料的首选。 夏天温度高吋, V 0 2处于高温金属态, 此吋其对红外光透过率很低, 可以抑制红外光的入射, 达 到降低室温的目的; 与之相反, 当外界温度低于 V0 2薄膜的相变温度吋, 红外 光可以以较高的透过率透过智能窗, 使室内温度上升。 将窗户安装上镀有 V0 2 薄膜的玻璃, 则可实现冬暖夏凉的目的。
[0003] 二氧化钒薄膜 (VO 2薄膜)通常的沉积温度一般为 450~500°C, 或者通过常温沉积 高温退火 (450~500°C)方式获得, 而窗玻璃通常是钢化玻璃, 即玻璃制成后要经 过约 600°C的钢化过程。 这给在窗用玻璃上制备 V0 2薄膜带来了困难: 如果以钢 化后玻璃来沉积 V0 2薄膜, 则由于沉积温度较高, 玻璃原先的钢化效果将大大 减弱; 如果普通玻璃沉积 V0 2薄膜后再进行钢化, 这吋钢化温度太高, 原先已 镀制的 ¥0 2薄膜将失去相变性能。 低温沉积技术则可以解决这个难题, 即通过 降低沉积温度, 使沉积工艺可以直接在钢化玻璃上进行, 具有重大应用价值。
[0004] 本发明介绍了一种二氧化钒玻璃的低温制备方法, 以钒为靶材, 通过反应磁控 溅射的技术, 在沉积过程中添加基底负偏压的方法, 实现了二氧化钒薄膜低温 沉积目的, 具有巨大的价值。 技术问题
[0005] 本发明的目的在于提供一种工艺简单的高质量二氧化钒薄膜低温制备方法, 制 备工艺采用反应磁控溅射技术, 磁控溅射是通过在靶阴极表面引入磁场, 利用 磁场对电子的约束来提高等离子密度以增加溅射率的方法, 反应磁控溅射是在 磁控溅射过程中以金属为靶材, 通过通入活性气体和溅射出的金属原子反应制 备化合物薄膜的方法。 问题的解决方案
技术解决方案
[0006] 为了实现上述目的, 本发明的技术方案具体为:
[0007] 一种二氧化钒薄膜低温沉积方法, 采用磁控溅射技术, 以金属钒或钒合金为靶 材, 以氧气为反应气体, 氩气为溅射气体; 制备薄膜前, 先将真空室抽至低于 1 xlO - 3Pa本底真空, 然后通入氧气和氩气混合气体, 氧分压保持为 0.01_0.06Pa , 在沉积薄膜过程中, 控制沉积温度为 240〜 260°C, 并在基底添加负偏压, 靶 表面溅射功率密度为 2-3W/cm 2, 在基底表面得到高性能的 V0 2薄膜。 该方法不 需要退火等后处理过程, 直接制备出 V0 2薄膜。
[0008] 进一步的, 在所述沉积薄膜过程中, 在基底添加负偏压, 偏压大小为 -100V -250V。
[0009] 进一步的, 所述基底为普通玻璃、 石英玻璃、 钢化玻璃、 蓝宝石、 玻璃钢或不 锈钢。
[0010] 优选的, 所述基底为钢化玻璃。
[0011] 优选的, 在所述沉积薄膜过程中, 控制沉积温度为 240°C。
[0012] 优选的, 靶表面溅射功率密度为 2W/cm 2。
[0013] 一种二氧化钒薄膜低温沉积方法, 主要用于在以钢化玻璃为基底吋的二氧化钒 薄膜沉积。 具体采用反应磁控溅射技术, 以金属钒或钒合金为靶材, 以氧气为 反应气体, 氩气为溅射气体; 制备薄膜前, 先将真空室抽至低于 1x10 - 3Pa本底 真空, 然后通入氧气和氩气混合气体, 氧分压保持为 0.01_0.06Pa, 在沉积薄膜 过程中, 控制沉积温度为 240°C, 并在基底添加负偏压, 偏压大小为 -100V ~ -250V; 靶表面溅射功率密度为 2-3W/cm 2, 制备出高性能的 VO 2薄膜。 发明的有益效果
有益效果
[0014] 本发明具有以下技术效果:
[0015] 1. 本发明的低温沉积方法将 V0 2薄膜的沉积温度由通常的 400-500°C, 最低 降低到了约 240°C, 并配合适当的负偏压及其他工艺参数制备出具有良好相变性 能的高性能 V0 2薄膜; 大大降低了生产成本; 且尤其针对在不改变钢化玻璃的 钢化效果的前提下, 在钢化玻璃表面能够形成高性能 V0 2薄膜, 进而使得其与 现有钢化玻璃的工艺兼容性大大提高, 具有非常大的应用价值。
[0016] 2. 本发明的 V0 2薄膜的低温沉积, 避免了沉积后高温退火工艺, 简化了生 产工艺, 节约制造成本,制备过程中不涉及对环境有污染的原材料。 不需要后处 理工艺,一次在低温下制备出二氧化钒薄膜。
[0017] 3. 本发明在智能窗等多个领域有广泛应用前景。
对附图的简要说明
附图说明
[0018] 图 1为本发明实施例 1中 -150V负偏压下钨惨杂 V0 2薄膜不同温度下的透射谱; [0019] 图 2为本发明实施例 2中 -200V负偏压下钨惨杂 V0 2薄膜不同温度下的透射谱; [0020] 图 3为本发明实施例 2中 -185V负偏压下纯 V0 2薄膜不同温度下的透射谱。
实施该发明的最佳实施例
本发明的最佳实施方式
[0021] 实施例 1
[0022] 本实施例中 V0 2薄膜的制备是采用直流反应磁控溅射, 以钒钨合金靶 (W at.<¾=0.81<¾)为靶材, 基底为 K9玻璃, 经过酒精和去离子水分别超声清洗 10分钟 , 薄膜制备吋的本底真空为 6x10 -4Pa, 以氧气和氩气为反应气体和溅射气体, 制 备薄膜前, 先对靶材预溅射 10分钟以去除表面污染物, 工作真空为 0.5Pa, 氧分 压 0.02Pa, 沉积温度保持为 240°C, 在沉积薄膜过程中, 在基底添加负偏压, 偏 压大小为 -150V, 溅射功率为 80W, 沉积吋间为 30min得到均匀致密的 ¥0 2薄膜 。 其中, 本实施例采用钒钨合金靶, 通过调节靶材中钨含量可方便地调节 V0 2 薄膜的相变温度。 所制备二氧化钒薄膜样品相变前后样品透过率随波长变化曲 线见图 1, 由图可见, 所制备薄膜二氧化钒相变温度低, 具有良好相变和红外调 节性能。
[0023] 实施例 2
[0024] 二氧化钒薄膜的制备是采用直流反应磁控溅射, 以惨钨的钒钨合金靶 (W.at.% =0.81%)为靶材, 基底为钢化玻璃, 经过酒精和去离子水分别超声清洗 10分钟, 薄膜制备吋的本底真空为 6x10 -4Pa, 以氧气和氩气为反应气体和溅射气体, 制备 薄膜前, 先把靶材预溅射 lOmin以去除表面污物, 工作真空为 0.5Pa, 氧分压为 0. 02Pa, 沉积温度保持为 240°C, 在沉积薄膜过程中, 在基底添加 -200V负偏压, 溅射功率为 80W, 沉积吋间为 30min, 则在钢化玻璃基底上得到均匀致密的二氧 化钒薄膜。 所得制备二氧化钒薄膜样品相变前后样品透过率随波长变化曲线见 图 2, 由图可见, 所制备薄膜具有良好相变性能。 与实施例 1不同处在于所加的 基底负偏压大小不同, 所得 ¥0 2薄膜的相变温度等相变性能也不同。 本实施例 中所采用的基底为钢化玻璃, 为不影响钢化玻璃的钢化效果, 将 ¥0 2薄膜的沉 积温度保持在 240°C, 并配合适当的负偏压及其他工艺参数, 在钢化玻璃表面形 成具有良好相变性能的高性能 V0 2薄膜; 大大降低了生产成本。
[0025] 实施例 3
[0026] 二氧化钒薄膜的制备是采用直流反应磁控溅射, 以纯钒为靶材, 基底为 K9玻璃 , 经过酒精和去离子水分别超声清洗 10分钟, 薄膜制备吋的本底真空为 6x10 -4Pa , 以氧气和氩气为反应气体和溅射气体, 制备薄膜前, 先把靶材预溅射 lOmin以 去除表面污物, 工作真空为 0.5Pa, 氧分压为 0.02Pa, 沉积温度保持为 250°C, 在 沉积薄膜过程中, 在基底添加 -185V负偏压, 溅射功率为 80W, 沉积吋间为 30mi n得到均匀致密的 V0 2薄膜。 所得制备二氧化钒薄膜样品相变前后样品透过率随 波长变化曲线见图 3, 由图可见, 所制备薄膜具有良好相变性能。

Claims

权利要求书
[权利要求 1] 一种二氧化钒薄膜低温沉积方法, 其特征在于, 所述二氧化钒薄膜低 温沉积方法采用磁控溅射技术, 以金属钒或钒合金为靶材, 以氧气为 反应气体, 氩气为溅射气体; 制备薄膜前, 先将真空室抽至低于 1x10 3Pa
本底真空, 然后通入氧气和氩气混合气体, 氧分压保持为 0.01_0.06P a, 在沉积薄膜过程中, 控制沉积温度为 240〜260°C, 并在基底添加 负偏压, 靶表面溅射功率密度为 2-3W/cm 2, 制备在基底表面得到高 性能的 VO 2薄膜。
[权利要求 2] 根据权利要求 1所述的二氧化钒薄膜低温沉积方法, 其特征在于, 在 所述沉积薄膜过程中, 在基底添加负偏压, 偏压大小为 -100V
-250V。
[权利要求 3] 根据权利要求 1所述的二氧化钒薄膜低温沉积方法, 其特征在于, 所 述基底为普通玻璃、 石英玻璃、 钢化玻璃、 蓝宝石、 玻璃钢或不锈钢
[权利要求 4] 根据权利要求 1所述的二氧化钒薄膜低温沉积方法, 其特征在于, 所 述基底为钢化玻璃。
[权利要求 5] 根据权利要求 1所述的二氧化钒薄膜低温沉积方法, 其特征在于, 在 所述沉积薄膜过程中, 控制沉积温度为 240°C。
[权利要求 6] 根据权利要求 1所述的二氧化钒薄膜低温沉积方法, 其特征在于, 靶 表面溅射功率密度为 2W/cm 2
[权利要求 7] 根据权利要求 1所述的二氧化钒薄膜低温沉积方法, 其特征在于, 该 工艺不需要退火等后处理过程, 直接制备出 V0 2薄膜。
[权利要求 8] —种二氧化钒薄膜低温沉积方法, 其特征在于, 所述二氧化钒薄膜低 温沉积方法采用反应磁控溅射技术, 以金属钒或钒合金为靶材, 选用 钢化玻璃作为基底, 以氧气为反应气体, 氩气为溅射气体; 制备薄膜 前, 先将真空室抽至低于 1x10 - 3Pa本底真空, 然后通入氧气和氩气混 合气体, 氧分压保持为 0.01_0.06Pa, 在沉积薄膜过程中, 控制沉积 温度为 240°C, 并在基底添加负偏压, 偏压大小为 -100V ~ -250V; 靶 表面溅射功率密度为 2-3W/cm 2, 制备得到高性能的 VO 2薄膜。
PCT/CN2016/079322 2015-09-16 2016-04-14 一种二氧化钒薄膜低温沉积方法 WO2017045398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510590007.8 2015-09-16
CN201510590007.8A CN105132877B (zh) 2015-09-16 2015-09-16 一种二氧化钒薄膜低温沉积方法

Publications (1)

Publication Number Publication Date
WO2017045398A1 true WO2017045398A1 (zh) 2017-03-23

Family

ID=54718439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079322 WO2017045398A1 (zh) 2015-09-16 2016-04-14 一种二氧化钒薄膜低温沉积方法

Country Status (2)

Country Link
CN (1) CN105132877B (zh)
WO (1) WO2017045398A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072855B2 (en) 2017-08-04 2021-07-27 Royal Melbourne Institute Of Technology Vanadium oxide films and methods of fabricating the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132877B (zh) * 2015-09-16 2018-06-08 深圳大学 一种二氧化钒薄膜低温沉积方法
CN108220897B (zh) * 2016-12-14 2019-11-19 中国科学院上海硅酸盐研究所 磁控溅射低温制备二氧化钒薄膜的方法
CN108588661B (zh) * 2018-06-12 2020-06-23 电子科技大学 一种采用低价钒种子层优化氧化钒薄膜性能的方法
CN111386252A (zh) * 2019-12-11 2020-07-07 深圳大学 一种二氧化钒薄膜的制备方法
CN112126895A (zh) * 2020-09-22 2020-12-25 北京航空航天大学合肥创新研究院 一种二氧化钒单晶薄膜的制备方法
CN114561617A (zh) * 2022-03-03 2022-05-31 季华实验室 一种金属氧化物薄膜的制备方法及金属氧化物薄膜
CN117026193A (zh) * 2023-09-07 2023-11-10 无锡尚积半导体科技有限公司 一种高相变性能二氧化钒薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174671A (zh) * 2007-10-18 2008-05-07 天津大学 具有相变特性二氧化钒纳米薄膜的制备方法
CN102061073A (zh) * 2010-11-17 2011-05-18 苏州奥美材料科技有限公司 一种智能温控抗老化透明聚碳酸酯板及其制造方法
CN102912308A (zh) * 2012-10-25 2013-02-06 深圳大学 一种低相变温度二氧化钒薄膜制备工艺
CN104099563A (zh) * 2013-04-03 2014-10-15 中国科学院上海硅酸盐研究所 磁控溅射法制备二氧化钒薄膜的方法
CN105132877A (zh) * 2015-09-16 2015-12-09 深圳大学 一种二氧化钒薄膜低温沉积方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280413A (zh) * 2008-04-07 2008-10-08 中国科学院广州能源研究所 一种二氧化钒薄膜在玻璃上的低温沉积方法
CN104195552B (zh) * 2014-07-16 2016-09-07 电子科技大学 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174671A (zh) * 2007-10-18 2008-05-07 天津大学 具有相变特性二氧化钒纳米薄膜的制备方法
CN102061073A (zh) * 2010-11-17 2011-05-18 苏州奥美材料科技有限公司 一种智能温控抗老化透明聚碳酸酯板及其制造方法
CN102912308A (zh) * 2012-10-25 2013-02-06 深圳大学 一种低相变温度二氧化钒薄膜制备工艺
CN104099563A (zh) * 2013-04-03 2014-10-15 中国科学院上海硅酸盐研究所 磁控溅射法制备二氧化钒薄膜的方法
CN105132877A (zh) * 2015-09-16 2015-12-09 深圳大学 一种二氧化钒薄膜低温沉积方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN, PING ET AL.: "Formation and Thermochromism of VO2 Films Deposited by RF Magnetron Sputtering at Low Substrate Temperature", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 33, no. 3A, 31 March 1994 (1994-03-31), pages 1478 - 1483, XP055370605, ISSN: 0021-4922 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072855B2 (en) 2017-08-04 2021-07-27 Royal Melbourne Institute Of Technology Vanadium oxide films and methods of fabricating the same

Also Published As

Publication number Publication date
CN105132877A (zh) 2015-12-09
CN105132877B (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2017045398A1 (zh) 一种二氧化钒薄膜低温沉积方法
CN102912308B (zh) 一种低相变温度二氧化钒薄膜制备工艺
CN109207927B (zh) 一种氧化钒单晶薄膜的制备方法
CN102747334A (zh) 一种氧化锌基透明导电薄膜及其制备方法
CN101746961A (zh) 在平板玻璃上沉积多晶β-Ga2O3薄膜的方法
WO2018090926A1 (zh) 透明导电膜与制备方法、溅射靶与透明导电性基板及太阳能电池
CN109136859A (zh) 一种制备高透光率氧化镓薄膜的方法
Zong et al. Tuning the electrical and optical properties of ZrxOy/VO2 thin films by controlling the stoichiometry of ZrxOy buffer layer
CN109709737B (zh) 一种电致变色薄膜的制作方法
CN106119778A (zh) 室温溅射沉积柔性azo透明导电薄膜的方法
CN101798680A (zh) 环境友好半导体材料Mg2Si薄膜的磁控溅射制备工艺
CN103757594A (zh) 室温下柔性衬底上制备高性能azo透明导电薄膜的方法
Zong et al. Synchronized improvements of luminous transmittance and solar modulation ability of VO2 films by employing SnO2 buffer layers
CN111116050A (zh) 一种钨掺杂二氧化钒薄膜及其制备方法和应用
Yamada et al. Sputter Deposition of High-Mobility Sn1-xTaxO2 Films on Anatase-TiO2-Coated Glass
CN108220897B (zh) 磁控溅射低温制备二氧化钒薄膜的方法
Xu et al. Effect of vacuum annealing on the properties of sputtered SnS thin films
JP5516438B2 (ja) サーモクロミック体及びその製造方法
CN104261694A (zh) 一种红外透过率自动调节智能玻璃的产业化制备方法
CN108930019B (zh) 一种tsc陶瓷薄膜的制备方法及其产品和应用
CN103774098A (zh) 氧化亚锡织构薄膜及其制备方法
CN110565054B (zh) 一种激光两步溅射制备CsPbBrxI3-x荧光薄膜的方法
CN102650035B (zh) 一种硅掺杂氧化锌薄膜的制备方法及其制备的薄膜和应用
CN109881155B (zh) 智能选择性太阳光透过与反射涂层及其制备方法
CN112126895A (zh) 一种二氧化钒单晶薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16845512

Country of ref document: EP

Kind code of ref document: A1