CN113506838A - 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法 - Google Patents

一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法 Download PDF

Info

Publication number
CN113506838A
CN113506838A CN202110672189.9A CN202110672189A CN113506838A CN 113506838 A CN113506838 A CN 113506838A CN 202110672189 A CN202110672189 A CN 202110672189A CN 113506838 A CN113506838 A CN 113506838A
Authority
CN
China
Prior art keywords
film
sno
annealing
solar cell
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110672189.9A
Other languages
English (en)
Inventor
谭婷婷
徐云海
孟庆岱
魏登科
查钢强
李颖锐
吴森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Research Institute Of Northwest Polytechnic University
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Qingdao Research Institute Of Northwest Polytechnic University
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Research Institute Of Northwest Polytechnic University, Northwestern Polytechnical University, Shenzhen Institute of Northwestern Polytechnical University filed Critical Qingdao Research Institute Of Northwest Polytechnic University
Priority to CN202110672189.9A priority Critical patent/CN113506838A/zh
Publication of CN113506838A publication Critical patent/CN113506838A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,选用磁控溅射法沉积SnO2薄膜,近空间升华法CSS沉积Sb2Se3薄膜,并对SnO2薄膜和Sb2Se3薄膜分别进行退火改性,最后制备出了FTO/SnO2/Sb2Se3/Au顶衬结构的薄膜太阳能电池器件。磁控溅射法与喷雾热解法、低温热解法相比,制备的SnO2薄膜更加致密,纯度更高,重复性更好,厚度可控,在高真空腔室下溅射有效的避免了杂质的引入,制备的薄膜均匀性更好且不会产生废液和任何有害气体;CSS是一种将源材料加热使其快速升华并且在衬底上沉积薄膜的一种制备方法,CSS源的利用率高、工艺简单、重复性好、膜层纯度高,因此CSS制备的Sb2Se3薄膜更加适合商业化生产。

Description

一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法
技术领域
本发明属于太阳能电池的制备方法,涉及一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法。
背景技术
如今能源日益短缺,新能源的开发和利用备受关注。太阳能作为一种绿色无毒且储量丰富的新型能源,可以有效解决人类当前面临的能源危机问题,而薄膜太阳能电池以其轻便、耗材少和可柔性等特点,一直是能源领域的研究热点。其中铜铟镓锡(CIGS)和碲化镉(CdTe)已经成功商业化,但因In和Ga元素价格昂贵,Cd具有生物毒性,需要继续探索廉价且无毒的吸光材料。
研究表明硒化锑(Sb2Se3)材料具有良好的光电响应,在紫外和可见光波段有较大的吸收系数以及较好的化学稳定性,非常适合作为无机薄膜太阳能电池的吸光层材料。但其主流的缓冲层材料硫化镉(CdS),一方面由于Cd+在异质结界面的扩散会导致器件稳定性变差,另一方面Cd的生物毒性也限制了Sb2Se3薄膜太阳能电池的发展,所以需要探索制备新的缓冲层材料。到目前为止,Sb2Se3太阳能电池已经具有基于其他不同类型缓冲层的结构,如氧化锌(ZnO)、二氧化钛(TiO2)和氧化锡(SnO2)。其中氧化锡是一种无毒、低成本、稳定性高的半导体材料,并且具有较大的带隙和高迁移率,是一个很有前途的CdS替代品。
目前人们通常采用喷雾热解法和低温溶液法制备SnO2缓冲层,采用快速热蒸发法制备Sb2Se3吸收层。其中喷雾热解法在制备SnO2薄膜的过程中容易产生副产物,且大面积制备时均匀性较差;低温溶液法则会产生废液以及有害气体,并且SnO2沉积速率不易控制。其次在采用快速热蒸发法制备Sb2Se3薄膜时,尽管相较于常规热蒸发法和溅射法要快的多,但为了满足商业化生产的要求需要在保证薄膜质量的同时进一步提高Sb2Se3薄膜的沉积速率。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,制备无毒高效的太阳能电池。
技术方案
一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,其特征在于步骤如下:
步骤1、选用磁控溅射法制备SnO2薄膜:靶材SnO2与FTO导电玻璃基底的距离为8~10cm,工作气压为1~5Pa,沉积时间3~5min,基底温度100~400℃,溅射气氛一组为纯氩气,另一组为Ar/O2=1:1,流量均为25sccm,射频电源的溅射功率为100W,最后在400~500℃空气氛围中退火20~40min,在基底得到SnO2薄膜;
步骤2、选用近空间升华法制备Sb2Se3薄膜:沉积SnO2缓冲层的FTO玻璃基底置于上加热台,升华源Sb2Se3粉末压成的压片置于下加热台,SnO2缓冲层与升华源Sb2Se3相对置放,两者之间的距离为4~5mm,上加热台的温度为250℃,下加热台的温度为450~480℃,沉积时间3600~7200S,最后在325~375℃下对Sb2Se3薄膜分别进行原位和硒化退火20~40min,在SnO2薄膜上得到Sb2Se3薄膜;
步骤3:采用真空蒸镀法在Sb2Se3吸光层上表面和一侧的FTO导电玻璃上镀覆Au电极,形成硒化锑薄膜太阳能电池。
最优的工艺参数下:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;选用近空间升华法制备Sb2Se3薄膜,在最优工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。
所述FTO导电玻璃基底先清洗,将FTO导电玻璃依次用丙酮、无水乙醇、去离子水超声清洗,再将超声清洗好的FTO导电玻璃使用高压氮气吹干,放入铺有无尘布的玻璃容器中存储。
有益效果
本发明提出的一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,选用磁控溅射法沉积SnO2薄膜,近空间升华法(CSS)沉积Sb2Se3薄膜,并对SnO2薄膜和Sb2Se3薄膜分别进行退火改性,最后制备出了FTO/SnO2/Sb2Se3/Au顶衬结构的薄膜太阳能电池器件,并且器件表现出良好的稳定性和稳态输出特性。磁控溅射法与喷雾热解法、低温热解法相比,制备的SnO2薄膜更加致密,纯度更高,重复性更好,厚度可控,在高真空腔室下溅射有效的避免了杂质的引入,制备的薄膜均匀性更好且不会产生废液和任何有害气体;CSS是一种将源材料加热使其快速升华并且在衬底上沉积薄膜的一种制备方法。其具体结构如附图1,在一个密封的仪器中,源和衬底分别放置于下层的AlN陶瓷片和上层的石墨掩膜版上,上下两组红外灯分别加热衬底与升华源,使源的温度高于衬底的温度,在源与衬底间存在一个平衡蒸气压差,使气相原子从源向衬底输运并沉积在衬底上。CSS与快速热蒸发法相比沉积速率更快(CSS沉积速率为10um/min,快速热蒸发法为1um/min),此外CSS源的利用率高、工艺简单、重复性好、膜层纯度高,因此CSS制备的Sb2Se3薄膜更加适合商业化生产。
本发明采用磁控溅射法制备n型缓冲层SnO2薄膜,采用近空间升华法制备p型吸光层Sb2Se3薄膜,成功制备出FTO/SnO2/Sb2Se3/Au结构的太阳能电池器件。在SnO2的制备过程中,将溅射时间控制在3min,减小了SnO2薄膜的粗糙度,使其在可见波光段的透过率提高到80~85%;采取Ar/O2=1:1的溅射气氛,成功减少SnO2薄膜的氧空位缺陷,使得载流子在传输过程中被氧空位捕获室的概率减小,复合损失减小,SnO2薄膜在可见过波段的透过率提升了10~12%,提高了薄膜太阳能电池的效率;在空气中对SnO2薄膜退火改性,薄膜致密度提高,择优生长面由(211)转变为(101),沿C轴的择优生长有利于载流子的传输。在Sb2Se3薄膜制备过程中,将源温控制在470℃,使Sb2Se3薄膜结晶质量增加,Sb2Se3薄膜致密且晶粒较大如附图15所示,且当源温为470℃时,Sb2Se3薄膜的(hk1)晶面丰度增加,如附图12所示;350℃原位退火后Sb2Se3薄膜总体的峰位置保持不变,各个峰的强度均增强,薄膜的最强峰仍为(221)峰,薄膜结晶质量增强,而350℃硒化退火后,Sb2Se3薄膜最强峰为(221)和(211)峰,不仅结晶质量增强,而且(hk1)晶面丰度显著增大,同时使(hk0)晶面丰度减小,包括(120)、(230)、(240)峰明显减弱,如附图17所示。由附图18可知当太阳能电池产生光生载流子时,沿(120)方向生长的晶粒,其载流子在运输过程中一方面要在(Se4Sb6)纳米带间的共价键传输,另一方面还需要克服范德华力在带与带之间跳跃,且这部分跳跃所需的能量较高,不利于载流子的传输,相反沿(211)和(221)取向生长的(Se4Sb6)纳米带倾斜的垂直于基底,光生载流子可以更多的在带内传输,从而减少带间的跳跃,提高了载流子的传输效率,减少了复合损失,因此通过350℃硒化退火可以增加Sb2Se3薄膜的(hk1)晶面丰度,进而使电池性能得到提升;同时硒化退火填补了蒸发过程中形成的硒空位,薄膜更加致密。
所述磁控溅射法制备SnO2薄膜工艺参数为:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;所述近空间升华法制备Sb2Se3薄膜的工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。
最优的工艺参数下:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;选用近空间升华法制备Sb2Se3薄膜,在最优工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。
附图说明
图1是本发明中近空间升华法装置的结构示意图。
图2是本发明一种基于SnO2缓冲层Sb2Se3太阳能电池的结构示意图。
图3是本发明一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法中的制备流程图及实物图。
图4是本发明中不同沉积时间下SnO2薄膜的透射光谱。
图5是本发明中不同基底温度下SnO2薄膜的透射光谱。
图6是本发明中SnO2在不同沉积温度下的电池参数。
图7是本发明中不同气氛沉积的SnO2薄膜的PL谱
图8是本发明中SnO2在不同沉积气氛下电池的J-V曲线。
图9是本发明中不同退火处理方式下SnO2薄膜的SEM图;
(a)—未退火;(b)—400℃退火;(c)—450℃退火;(d)—500℃退火
图10是本发明中不同退火处理方式下SnO2薄膜的XRD图。
图11是本发明中SnO2在不同退火温度下电池的J-V曲线。
图12是本发明中不同沉积温度下Sb2Se3薄膜的XRD谱。
图13是本发明中不同温度下制备Sb2Se3薄膜的光学透过率。
图14是本发明中Sb2Se3在不同制备温度下电池的J-V曲线。
图15是本发明中不同退火处理方式下Sb2Se3薄膜的表面形貌SEM图;
(a)—原位退火;(b)—硒化退火;(c)—未退火
图16是本发明中不同退火处理方式下Sb2Se3薄膜太阳能电池的J-V曲线;
(a)—原位退火;(b)—硒化退火;(c)—未退火
图17是本发明中不同退火处理方式下Sb2Se3薄膜的XRD谱;
(a)—未退火;(b)—原位退火;(c)—硒化退火
图18是本发明中Sb2Se3薄膜的载流子在[120]、[211]或[221]方向的传输示意图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
(1)衬底的选择与清洗:
本发明采用的深圳华南湘城科技有限公司,规格为15×15mm2,厚度185nm的FTO导电玻璃。将FTO导电玻璃置于200ml烧杯中,依次用丙酮、无水乙醇、去离子水超声清洗20~30min,再将超声清洗好的FTO导电玻璃用高压氮气吹干,放入铺有无尘布的玻璃容器中,清洗干净的FTO应尽快使用,避免长时间存放遭受二次污染。
(2)SnO2缓冲层的制备:
本发明采用北京创世威纳科技有限公司的MSP-300BT型磁控溅射镀膜机,将清洗后的FTO玻璃基底固定在样品台上,放入真空腔室中,并使磁控溅射靶材SnO2与玻璃基底上表面正对,间距8~10cm;抽真空,使腔室真空度达到2×10-4Pa后,加热样品台达到100~400℃;当样品台加热至所需温度时,关闭真空计,依次打开氩气瓶气阀,氧气瓶气阀开始送气,然后通过控制插板阀调节腔室内气压,使之维持在3Pa左右,开启功率源准备起辉,待起辉成功后,调节射频功率至设定值,反射功率调至最低,调节插板阀使腔室内的气压达到1~5Pa,开始预溅射,溅射时间10-20min,此过程的目的是去除靶材表面杂质;预溅射结束后,打开遮挡盘及挡板,开始计时溅射;溅射功率100W,工作气压1~5Pa,沉积时间3~5min,基底温度为100~400℃,一组工作气氛为纯Ar气,另一组工作气氛为Ar气和O2气,Ar/O2=1:1,气流量均为25sccm;将沉积有SnO2缓冲层的玻璃基底置于退火炉中,在空气气氛下,进行退火处理,温度400~500℃,时间20~40min。
1.将SnO2靶材与基底(FTO导电玻璃)的距离设置为8~10cm,工作气压为1~5Pa,工作气氛为Ar,流量为25sccm,基底温度为100℃,射频电源的溅射功率为100W,分别沉积3、5、10、15min,得到四组样品,其表面粗糙程度如表一所示:
表一
Figure BDA0003119802560000071
如附图4所示,3min、5min的SnO2薄膜拥有80%的透过率,随着沉积时间的增加,较厚的SnO2薄膜内部吸收更多的光子,进而导致SnO2薄膜的透过率逐渐下降,当沉积时间为15min时,样品的透过率降到70%左右。
2.上述分析表明,沉积3min得到的SnO2薄膜有着最小的粗糙度和最优的透过率,因此在选择沉积时间时,统一为3min,为了进一步探究基底温度的改变对薄膜性能的影响,采用的工艺参数为:工作气压为1Pa,射频电源的溅射功率为100W,靶材到基底的距离为8~10cm,在基底温度分别为100、200、300、400℃下沉积3min,得到四组样品。不同基底温度制备的SnO2薄膜的表面粗糙程度和电池参数,分别如表二、表三所示:
表二
Figure BDA0003119802560000072
表三
Figure BDA0003119802560000073
附图5为基底温度为100℃、200℃、300℃、400℃下沉积3min的SnO2薄膜透射光谱,从图中可知,随着温度的变化,薄膜在紫外和可见光波段的变化并不大,透射率约为80%,其中在400℃下沉积的SnO2薄膜透射率相较于其他温度略优一些,其原因可能为400℃条件下制备的SnO2薄膜的粗糙度较小,入射光达到薄膜后的散射作用减小,使得薄膜在紫外及可见光波段的透过率略有增加。但整体来看所有样品的透过率在可见光波段都在80%左右,基本吸收边在335nm左右,满足薄膜太阳能电池缓冲层的光学透过要求。
3.由上述分析可知100℃下制备的薄膜光电效率最高,说明温度为100℃时为最佳工艺参数。金属氧化物在制备过程中会有一定的氧缺失,产生氧空位,因此采用如下制备工艺参数:溅射功率100W,工作气压1Pa,沉积时间3min,基底温度为100℃。一组工作气氛为纯Ar气,Ar流量为25sccm,另一组工作气氛为Ar气和O2气,Ar/O2为1:1,制备得到两组样品,其表面粗糙程度和电池参数,如表四、表五所示:
表四
Figure BDA0003119802560000081
表五
Figure BDA0003119802560000082
由上表可知含氧气氛制备的SnO2薄膜粗糙度更小,表面更为光滑,与之同时,如附图7所示,氧气氛也填补了制备过程中SnO2薄膜体内的氧空位缺陷,使得载流子在传输过程中更少被氧空位所捕获,从而改善了开路电压和短路电流,使得电池效率得到提高。
4.通过上面的工艺研究以及制备成器件后的结果可知,进一步优化SnO2薄膜的性能可提高器件效率。通过退火处理,分别在400℃、450℃、500℃下,对在Ar/O2氛围下制备的SnO2薄膜退火处理半小时,制备的SnO2薄膜含有一定的氧空位,因此退火改性选择在空气中进行,附图9为不同处理方式下的SnO2薄膜SEM形貌图,没有退火处理的SnO2薄膜表面晶粒尺寸均匀性较差,较大尺寸的晶粒会严重影响p-n结的质量,经退火后SnO2薄膜的表面更为均匀,其中经450℃退火后,薄膜的晶粒尺寸最为均匀,几乎没有较大尺寸的晶粒,表面光滑致密,而500℃下退火得到的SnO2薄膜可看到部分晶粒发生团聚现象,这些团聚在一起的晶粒会导致界面的结合质量变差,产生更多的界面缺陷。因此,本发明选定在450℃下,对在氧气氛下制备的SnO2薄膜进行退火处理,其电池参数如表六所示:
表六
Figure BDA0003119802560000091
由上述分析可知SnO2缓冲层的最优制备工艺参数为,沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中退火温度为450℃下退火30min。(3)Sb2Se3吸光层的制备:
采用合肥科晶的OTF-1200X-RTP-II近空间升华炉制备硒化锑薄膜,在升华炉腔室的上加热台安装石墨掩膜版,下加热台安装AlN陶瓷片,并将硒化锑生长源置于AlN陶瓷片上;将沉积SnO2缓冲层的玻璃基底置于石墨掩膜版上,并与硒化锑生长源相对设置,且玻璃基底与硒化锑生长源相距4~5mm,关闭腔室;将升华炉腔室抽真空至1~5Pa,通入100Pa高纯Ar气,再抽真空至1~5Pa,重复操作直至去除升华炉腔室内残余空气,之后将升华炉腔室气压稳定在5Pa;将硒化锑生长源温度升温至450~480℃,衬底温度保持在250℃,生长时间为3600~7200S,在SnO2缓冲层上表面生长出硒化锑薄膜。将制备的Sb2Se3薄膜分别进行原位退火和硒化退火。原位退火是指将通过近空间升华法得到的Sb2Se3薄膜随炉冷却至室温,再将升华炉的上加热台和下加热台均升温至325~375℃进行原位退火,退火时间为20~40min;硒化退火是指待通过近空间升华发制备的Sb2Se3薄膜随炉冷却至室温后,将AlN陶瓷片上的Sb2Se3升华源取出,替换放入Se升华源,然后将上加热台和下加热台同时加热到325~375℃,保持20~40min。
1.固定源基距为4~5mm,设置不同的源温度参数,温度梯度为30℃,分别为440℃、470℃、500℃、530℃,衬底保持在250℃沉积Sb2Se3薄膜,得到四种样品,其电池参数如表七所示:
表七
Figure BDA0003119802560000101
如上表所示,在470℃下制备的Sb2Se3薄膜太阳能电池最好,器件拥有较高的光电转换效率2.33%。
2.想要获得更优的电池性能,就需要结晶性更好的薄膜以及高质量的p-n结界面,因此要对薄膜进行退火处理,退火参数为:在350℃下退火30min,分别采用原位退火和硒化退火两种方式,其中原位退火是在薄膜沉积后随炉冷却至室温,然后升温至设定温度进行退火处理,硒化退火是将制备好的Sb2Se3薄膜放入有硒源的腔室中,升温至设定温度在硒气氛下进行退火,两者都是在近空间升华炉内进行。退火样品选取最优参数470℃下制备的Sb2Se3薄膜,通过不同的退火处理来研究薄膜性能的变化,分析其对太阳能电池器件性能的影响。不同退火处理后Sb2Se3薄膜的表面粗糙程度及电池参数如表八、表九所示:
表八
Figure BDA0003119802560000111
表九
Figure BDA0003119802560000112
附图15为Sb2Se3薄膜SEM表面形貌对比图,可以看出没有退火前晶粒形状较为尖锐且晶粒间有少量的孔隙,这些孔隙都会阻碍载流子的传输从而使器件性能下降,经过原位退火或硒化退火后的Sb2Se3薄膜表面孔隙明显减少,薄膜更为致密,晶粒也更为圆润,这也与本文的AFM结果相吻合。更为圆润的晶粒和致密度更高的Sb2Se3薄膜与n型缓冲层组成了高质量的p-n结,使得光生载流子的收集与分离更为高效。
在经过350℃原位退火后Sb2Se3薄膜总体的峰位置保持不变,(hk1)的晶面丰度得到提高,薄膜的最强峰仍为(221)峰,而经过350℃硒化退火后的薄膜,最强峰为(221)和(211)峰,其(hk0)晶面丰度减小,包括(120)、(230)、(240)峰明显减弱,且杂峰较少,如附图17所示,并且350℃下硒化退火填补了一定的硒空位得到的Sb2Se3薄膜更为致密,表明硒气氛的引入起到正向作用。最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%。
由上述分析可知Sb2Se3吸光层的最优制备工艺为,固定源基距为5mm,下加热台的温度为250℃,上加热台的温度为470℃,沉积时间3600S,最后在350℃下硒化退火30min。
(5)电极制备:
本发明采用中科科仪多功能表面处理机SBC-2-1真空蒸镀仪来制备金电极,具体步骤如下,
打开总电源,将腔室内恢复至大气压状态,取下石英罩,将蒸发舟(钨舟)和掩膜版装至固定位置。掩膜版位于蒸发舟正上方,以保证每个样品所蒸镀电极厚度的均匀性。将样品和金粒分别放入掩膜版的通孔处和蒸发舟内,盖上石英罩,开始抽真空,直至真空度抽至5×10-3pa。打开蒸发电源,缓慢调节电流升至75A,在蒸发电流为75A时保持3min,待蒸发舟上金溶液蒸发完毕,缓慢将电流调至0A。关闭蒸发电源,继续抽真空至5×10-3pa。然后关闭真空泵,打开放气阀,5min后摘下石英罩取出样品,蒸镀完成。

Claims (3)

1.一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,其特征在于步骤如下:
步骤1、选用磁控溅射法制备SnO2薄膜:靶材SnO2与FTO导电玻璃基底的距离为8~10cm,工作气压为1~5Pa,沉积时间3~5min,基底温度100~400℃,溅射气氛一组为纯氩气,另一组为Ar/O2=1:1,流量均为25sccm,射频电源的溅射功率为100W,最后在400~500℃空气氛围中退火20~40min,在基底得到SnO2薄膜;
步骤2、选用近空间升华法制备Sb2Se3薄膜:沉积SnO2缓冲层的FTO玻璃基底置于上加热台,升华源Sb2Se3粉末压成的压片置于下加热台,SnO2缓冲层与升华源Sb2Se3相对置放,两者之间的距离为4~5mm,上加热台的温度为250℃,下加热台的温度为450~480℃,沉积时间3600~7200S,最后在325~375℃下对Sb2Se3薄膜分别进行原位和硒化退火20~40min,在SnO2薄膜上得到Sb2Se3薄膜;
步骤3:采用真空蒸镀法在Sb2Se3吸光层上表面和一侧的FTO导电玻璃上镀覆Au电极,形成硒化锑薄膜太阳能电池。
2.根据权利要求1所述基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,其特征在于:所述FTO导电玻璃基底先清洗,将FTO导电玻璃依次用丙酮、无水乙醇、去离子水超声清洗,再将超声清洗好的FTO导电玻璃使用高压氮气吹干,放入铺有无尘布的玻璃容器中存储。
3.根据权利要求1所述基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,其特征在于:所述磁控溅射法制备SnO2薄膜工艺参数为:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;所述近空间升华法制备Sb2Se3薄膜的工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。
CN202110672189.9A 2021-06-17 2021-06-17 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法 Pending CN113506838A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110672189.9A CN113506838A (zh) 2021-06-17 2021-06-17 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110672189.9A CN113506838A (zh) 2021-06-17 2021-06-17 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN113506838A true CN113506838A (zh) 2021-10-15

Family

ID=78010094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110672189.9A Pending CN113506838A (zh) 2021-06-17 2021-06-17 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN113506838A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295684A (zh) * 2022-10-08 2022-11-04 合肥工业大学 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702321A (zh) * 2015-11-16 2017-05-24 中国科学院福建物质结构研究所 一种磁控溅射制备高导高透明度本征二氧化锡薄膜的方法
CN106917068A (zh) * 2017-03-29 2017-07-04 福建师范大学 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN107546289A (zh) * 2017-08-01 2018-01-05 华中科技大学 一种硒化锑薄膜太阳能电池及其制备方法
CN110534591A (zh) * 2019-08-21 2019-12-03 西北工业大学 一种硒化锑薄膜太阳能电池及制备方法
CN112201725A (zh) * 2020-09-22 2021-01-08 西北工业大学深圳研究院 一种硒化锑薄膜太阳能电池的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702321A (zh) * 2015-11-16 2017-05-24 中国科学院福建物质结构研究所 一种磁控溅射制备高导高透明度本征二氧化锡薄膜的方法
CN106917068A (zh) * 2017-03-29 2017-07-04 福建师范大学 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN107546289A (zh) * 2017-08-01 2018-01-05 华中科技大学 一种硒化锑薄膜太阳能电池及其制备方法
CN110534591A (zh) * 2019-08-21 2019-12-03 西北工业大学 一种硒化锑薄膜太阳能电池及制备方法
CN112201725A (zh) * 2020-09-22 2021-01-08 西北工业大学深圳研究院 一种硒化锑薄膜太阳能电池的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
伍胜兰等: "硒化锑薄膜光伏性能调控研究进展", 《电子元件与材料》 *
伍胜兰等: "硒化锑薄膜光伏性能调控研究进展", 《电子元件与材料》, vol. 36, no. 12, 30 November 2017 (2017-11-30), pages 71 - 76 *
黄泰郎: "硒化锑薄膜太阳电池制备及缓冲层研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》, 15 January 2019 (2019-01-15), pages 042 - 1485 *
黄达海: "《学术探索-湛江师范学院第二届挑战杯大学生课外学术科研作品竞赛获奖作品集》", 共青团湛江师范学院委员会, pages: 41 - 45 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295684A (zh) * 2022-10-08 2022-11-04 合肥工业大学 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法

Similar Documents

Publication Publication Date Title
US20190311889A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
CN110828602B (zh) 一种硒化锑薄膜太阳电池及其制备方法
EP2284905A2 (en) Method for the preparation of group IB-IIIA-VIA quaternary or higher alloy semiconductor films
Liu et al. Enhanced open circuit voltage of Sb2Se3/CdS solar cells by annealing Se-rich amorphous Sb2Se3 films prepared via sputtering process
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
JP2008235794A (ja) 光電変換材およびその製造方法、半導体素子、並びに太陽電池
CN112201725A (zh) 一种硒化锑薄膜太阳能电池的制备方法
CN113506838A (zh) 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法
KR101582200B1 (ko) Czts계 태양전지용 박막의 제조방법 및 이를 통해 제조된 박막을 포함하는 czts계 태양전지
CN112968128B (zh) 蒸发水热两步生长锑基薄膜材料的方法和薄膜太阳电池
JPH0555615A (ja) 薄膜太陽電池の製造方法
WO2023109712A1 (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
Wei et al. Fabrication of wide band-gap CuGaSe2 solar cells for tandem device applications by sputtering from a ternary target and post selenization treatment
CN113097318B (zh) 一种硫化亚锗多晶薄膜和含有该薄膜的太阳能电池
CN108330536A (zh) PA-MBE同质外延高质量GaN单晶薄膜的制备方法
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
CN111293182A (zh) 一种溶胶-凝胶法制备大晶粒czts吸收层的方法
CN113675283B (zh) 一种锑基光阴极Sb2S3/Sb2O3异质结结构及其制备方法
CN117894882B (zh) 一种用于硒化锑太阳电池异质结的光退火装置及方法
CN115478248B (zh) 一种叠层太阳能电池吸收层材料SrZrS3薄膜及其制备方法
CN109023275B (zh) 一种绑定单靶溅射制备Cu3SnS4吸收层的方法
Gundogan et al. The Effect of Ar Gas Flow Rate on Structure and Optical Properties of Magnetron Sputtered Sb 2 Se 3 Thin Films for Solar Cells
CN113013286A (zh) 高(hk1)晶面丰度的硒化锑薄膜、硒化锑薄膜太阳能电池及其制备方法
WO2024060425A1 (zh) 一种cigs太阳能电池及其制备方法
Yamaguchi et al. NaF Addition to Cu2ZnSnSe4 Thin films prepared by sequential evaporation from compound

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211015

WD01 Invention patent application deemed withdrawn after publication