WO2024060425A1 - 一种cigs太阳能电池及其制备方法 - Google Patents

一种cigs太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2024060425A1
WO2024060425A1 PCT/CN2022/138220 CN2022138220W WO2024060425A1 WO 2024060425 A1 WO2024060425 A1 WO 2024060425A1 CN 2022138220 W CN2022138220 W CN 2022138220W WO 2024060425 A1 WO2024060425 A1 WO 2024060425A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cigs
electrode
solar cell
zno
Prior art date
Application number
PCT/CN2022/138220
Other languages
English (en)
French (fr)
Inventor
苑欣业
李伟民
俞深
唐玮
王赛强
李松
赵晨晨
祁同庆
马明
宁德
杨春雷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2024060425A1 publication Critical patent/WO2024060425A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of thin-film solar cells, and in particular to a CIGS solar cell and a preparation method.
  • CIGS solar cells are one of the most promising solar cells at present. They have the advantages of short energy recovery cycle, high power generation, good power generation stability, strong light absorption capacity, high conversion efficiency, and long power generation time during the day.
  • high-efficiency CIGS solar cells are usually fabricated at high substrate temperatures above 550°C. Manufacturing CIGS solar cells at temperatures below 500°C has huge advantages, reducing energy consumption and equipment requirements under high-temperature conditions, thereby reducing the cost of CIGS solar cells and modules.
  • low-temperature CIGS manufacturing processes can be applied to certain substrates, such as flexible polyimide (PI) substrates, to obtain lightweight CIGS solar cells for building integrated photovoltaics and space applications.
  • PI flexible polyimide
  • Sodium diffusion from the substrate can improve the crystallinity of CIGS films and device performance.
  • the diffusion of Na from the substrate is insufficient when the substrate is below 500°C, so post-deposition alkali element treatment is crucial for fabricating efficient CIGS solar cells.
  • One of the purposes of this application is to provide a CIGS solar cell, including: a soda-lime glass substrate, a Mo back electrode, a CIGS absorption layer, a CdS buffer layer, i-ZnO and AZO window layers, and Ni-Al- Ni gate electrode.
  • the Mo back electrode includes a double-layer Mo film
  • the double-layer Mo film includes a loose layer and a dense layer
  • the thickness of the double-layer Mo film is 500-1000 nm.
  • the CIGS absorbing layer includes 88 at.% GGI (Ga/([Ga]+[In]) and 35 at.% CIG (Cu/([Ga]+[In])),
  • the thickness of the CIGS absorption layer is 1.8-3 ⁇ m.
  • the CdS buffer layer is an n-type CdS buffer layer with a thickness of 30-80 nm.
  • the thickness of i-ZnO in the i-ZnO and AZO window layers is 50-100 nm, and the thickness of ZnO:Al is 100-300 nm.
  • the Ni-Al-Ni gate electrode includes a first layer of Ni electrode, an Al electrode evaporated on the first layer of Ni electrode, and a second layer of Ni covering the Al electrode. Electrodes, the thickness of the first layer Ni electrode is 50-1000 ⁇ , the thickness of the Al electrode is 5-10 ⁇ m ⁇ , and the thickness of the second layer Ni electrode is 50-1000 ⁇ .
  • the second object of this application is to provide a method for preparing a CIGS solar cell, which includes the following steps:
  • a Ni/Al/Ni gate electrode was deposited on the i-ZnO and AZO window layers.
  • the step of depositing the Mo back electrode on the soda-lime glass substrate specifically includes: depositing the Mo back electrode on the soda-lime glass substrate by a DC magnetron sputtering method. bottom.
  • the step of depositing the CIGS absorption layer on the Mo back electrode specifically includes the following steps: using a three-step co-evaporation method to prepare a CIGS absorption layer and depositing the CIGS absorption layer on the Mo back electrode.
  • the CIGS absorbing layer specifically includes the following steps: using a three-step co-evaporation method to prepare a CIGS absorption layer and depositing the CIGS absorption layer on the Mo back electrode.
  • a three-step co-evaporation method is used to prepare a CIGS absorption layer and deposit the CIGS absorption layer on the Mo back electrode, specifically including:
  • the soda-lime glass is lined and about 85-90% of In and Ga are evaporated to form a (In,Ga) 2 Se 3 prefabricated layer;
  • the step of depositing the CdS buffer layer on the CIGS absorber layer specifically includes the following step: depositing the CdS buffer layer on the CIGS absorber layer using a chemical water bath method.
  • the step of preparing the i-ZnO and AZO window layers on the CdS buffer layer specifically includes the following steps: using radio frequency magnetron sputtering to prepare the i-ZnO and AZO window layers on the CdS buffer layer.
  • the i-ZnO and AZO window layers are used to prepare the i-ZnO and AZO window layers.
  • the step of depositing a Ni/Al/Ni gate electrode on the i-ZnO and AZO window layers specifically includes the following steps: plating on the i-ZnO and AZO using an electron beam evaporation method. A first layer of Ni electrode is evaporated on the window layer, an Al electrode is evaporated on the first layer of Ni electrode, and a second layer of Ni electrode is evaporated on the Al electrode.
  • the CIGS solar cell and its preparation method provided by this application include a soda-lime glass substrate, a Mo back electrode, a CIGS absorption layer, a CdS buffer layer, an i-ZnO and AZO window layer and a Ni-Al-Ni gate electrode that are stacked in sequence. , which solves the problems of poor crystallization performance of CIGS films caused by too low substrate temperature, excessively small crystal grains, increased recombination probability of photogenerated carriers, resulting in reduced photoelectric conversion efficiency of cells, and realizes the improvement of CIGS solar cells.
  • Low-temperature deposition while maintaining low-temperature growth while maintaining the photoelectric performance and battery performance of CIGS solar cells without significant impact, is compatible with flexible substrate (PI) processes that are not resistant to high temperatures, and can simplify equipment manufacturing in actual production and reduce The heating energy consumption of the substrate can effectively avoid the softening and deformation of the glass, overcome the deformation problem of large-area glass in industrial production, and can accelerate the large-scale industrial application of CIGS battery technology, so it has broad market application prospects.
  • PI flexible substrate
  • Figure 1 is a schematic structural diagram of a CIGS solar cell provided in an embodiment of the present application.
  • Figure 2 is a flow chart of the steps of the CIGS solar cell preparation method provided in the embodiment of the present application.
  • Figure 3 shows the substrate temperature and deposition rates of Cu, In, Ga and Se used for CIGS thin film deposition by improved three-step co-evaporation in this embodiment.
  • Figure 4 is a schematic diagram of the device performance of the low-temperature deposited CIGS provided in Example 1.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • Figure 1 is a schematic structural diagram of a CIGS solar cell according to an embodiment of the present application, including a soda-lime glass substrate 110, a Mo back electrode 120, a CIGS absorption layer 130, a CdS buffer layer 140, and i -ZnO and AZO window layer 150, Ni-Al-Ni gate electrode 160.
  • a soda-lime glass substrate 110 a Mo back electrode 120
  • a CIGS absorption layer 130 a CdS buffer layer 140
  • i -ZnO and AZO window layer 150 Ni-Al-Ni gate electrode 160.
  • the Mo back electrode 120 includes a double-layer Mo film
  • the double-layer Mo film includes a loose layer and a dense layer
  • the thickness of the double-layer Mo film is 500-1000 nm.
  • the CIGS absorbing layer includes 88 at.% GGI (Ga/([Ga]+[In]) and 35 at.% CIG (Cu/([Ga]+[In])),
  • the thickness of the CIGS absorption layer is 1.8-3 ⁇ m.
  • the CdS buffer layer is an n-type CdS buffer layer with a thickness of 30-80 nm.
  • the thickness of i-ZnO in the i-ZnO and AZO window layers is 50-100 nm, and the thickness of ZnO:Al is 100-300 nm.
  • the Ni-Al-Ni gate electrode includes a first layer of Ni electrode, an Al electrode evaporated on the first layer of Ni electrode, and a second layer of Ni covering the Al electrode. Electrode, the thickness of the first layer Ni electrode is 50-1000 ⁇ , the thickness of the Al electrode is 5-10 ⁇ m, and the thickness of the second layer Ni electrode is 50-1000 ⁇ .
  • the CIGS solar cell provided in the above-mentioned embodiment of the present application solves the problems of poor crystallization performance of CIGS thin film, too small grains, increased recombination probability of photogenerated carriers, and thus reduced photoelectric conversion efficiency of the battery due to the low substrate temperature, and realizes low-temperature deposition of CIGS solar cells. While growing at low temperature, the photoelectric performance and battery performance of CIGS solar cells are not greatly affected. It is compatible with the flexible substrate (PI) process that is not resistant to high temperatures.
  • PI flexible substrate
  • Figure 2 is a step flow chart of the CIGS solar cell preparation method provided in the embodiment of the present application, including the following steps S110 to step S150. The implementation of each step is described in detail below.
  • Step S110 Deposit the Mo back electrode on the soda-lime glass substrate.
  • a step of cleaning the soda-lime glass (SLG) substrate is also included to remove surface contaminants and dust.
  • the step of depositing the Mo back electrode on the soda-lime glass substrate specifically includes: depositing the Mo back electrode on the soda-lime glass substrate by a DC magnetron sputtering method. bottom.
  • high pressure and low power are first used to deposit a loose layer on the soda-lime glass substrate to improve the adhesion between the Mo film and the substrate, and then low pressure and high power are used to deposit a dense layer on the loose layer.
  • low pressure and high power are used to deposit a dense layer on the loose layer.
  • Step S120 Deposit the CIGS absorption layer on the Mo back electrode.
  • the step of depositing the CIGS absorption layer on the Mo back electrode specifically includes the following steps: preparing the CIGS absorption layer by a three-step co-evaporation method and depositing the CIGS absorption layer on the Mo back electrode.
  • a three-step co-evaporation method is used to prepare the CIGS absorption layer.
  • the first step about 85-90% of In and Ga are evaporated at a substrate temperature of 500-550°C to form (In, Ga ) 2 Se 3 prefabricated layer.
  • the second step open the baffle of the Cu source and evaporate only Cu to form CIGS crystal.
  • the third step keep the substrate temperature the same as in the second step and evaporate the remaining 10% of In and Ga. , keep the evaporation time at 15-20 minutes to allow it to react with the excess Cu in the second step, eventually forming a slightly Cu-poor CIGS film.
  • the entire experimental process was conducted in an atmosphere with sufficient Se.
  • the present embodiment deposits the CIGS absorption layer by an improved three-step co-evaporation process, which adds an additional copper-rich phase deposition after the second step, and this process can grow large CIGS grains with good crystallinity at low temperature even without post-deposition alkali metal element treatment.
  • the efficiency of the CIGS solar cell deposited at 460°C is equivalent to that deposited at a high temperature of 540°C.
  • the problem of poor crystallization performance of the CIGS film caused by too low substrate temperature, too small grains, increased probability of recombination of photogenerated carriers, and thus reduced photoelectric conversion efficiency of the battery is solved.
  • Step S130 Deposit the CdS buffer layer on the CIGS absorption layer.
  • the step of depositing the CdS buffer layer on the CIGS absorber layer specifically includes the following step: depositing the CdS buffer layer on the CIGS absorber layer using a chemical water bath method.
  • the CdS buffer layer is prepared by a chemical water bath method to avoid defects in the CIGS layer caused by bombardment by high-energy particles.
  • Step S140 Prepare the i-ZnO and AZO window layers on the CdS buffer layer.
  • the step of preparing the i-ZnO and AZO window layers on the CdS buffer layer specifically includes the following steps: using radio frequency magnetron sputtering to prepare the i-ZnO and AZO window layers on the CdS buffer layer.
  • the i-ZnO and AZO window layers are used to prepare the i-ZnO and AZO window layers.
  • Step S150 Deposit a Ni/Al/Ni gate electrode on the i-ZnO and AZO window layers.
  • the step of depositing a Ni/Al/Ni gate electrode on the i-ZnO and AZO window layers specifically includes the following steps: plating on the i-ZnO and AZO using an electron beam evaporation method. A first layer of Ni electrode is evaporated on the window layer, an Al electrode is evaporated on the first layer of Ni electrode, and a second layer of Ni electrode is evaporated on the Al electrode.
  • the CIGS solar cell preparation method provided by this application includes a soda-lime glass substrate, a Mo back electrode, a CIGS absorption layer, a CdS buffer layer, an i-ZnO and AZO window layer and a Ni-Al-Ni gate electrode that are stacked in sequence.
  • the low-temperature deposition of CIGS solar cells is achieved by solving problems such as poor crystallization properties of CIGS films caused by too low substrate temperature, excessively small crystal grains, and increased recombination probability of photogenerated carriers, resulting in reduced photoelectric conversion efficiency of the cells. , and the photoelectric performance and battery performance of CIGS solar cells are not greatly affected while growing at low temperature. It is compatible with the flexible substrate (PI) process that is not resistant to high temperatures.
  • the heating energy consumption can effectively avoid the softening and deformation of glass, overcome the deformation problem of large-area glass in industrial production, and can accelerate the large-scale industrial application of CIGS battery technology, so it has broad market application prospects.
  • the infrared thermometer monitors that the surface temperature of the growing film on the substrate surface suddenly drops, and a "cooling point" appears. This is the second After the cooling point appears at the end of the step, the Cu baffle is immediately closed and the second step is completed.
  • the CIGS film is slightly rich in Cu.
  • the third step keep the substrate temperature at 510°C, the same as the second step, and evaporate the remaining 10% of In and Ga. Therefore, you can increase the evaporation time in the third step to react with the excess Cu in the second step. , finally producing a slightly Cu-poor CIGS film.
  • the entire process is carried out in an atmosphere with sufficient Se.
  • Figure 3 shows the substrate temperature and deposition rates of Cu, In, Ga and Se used for CIGS thin film deposition by improved three-step co-evaporation in this embodiment.
  • the sample substrate temperature is set to 510°C, and the actual temperature is a low temperature of 460°C.
  • the reaction solution includes: cadmium sulfate (CdSO 4 ) solution (0.184g, 60mL), thiourea (CH 4 N 2 S) solution (5.694g, 150mL), concentrated ammonia NH 3 •H 2 O (45mL), deionized water (450ml). Raise the temperature of the external water bath to 69°C and keep it constant. Place the CIGS sample in a large beaker, and then pour the reaction solution in sequence. Then put the large beaker into the external water bath, turn on the magnetic stirrer, and use a stopwatch to time the reaction time. The reaction time is 9 minutes. The thickness of the deposited CdS film is approximately 50nm. Rinse the sample surface with deionized water, blow dry with high-pressure N2 gas, then quickly put the sample into a 150°C oven, anneal for 2 minutes, and finally take it out.
  • CdSO 4 cadmium sulfate
  • CH 4 N 2 S thiourea
  • i-ZnO and AZO Use radio frequency magnetron sputtering technology to prepare i-ZnO and AZO, use intrinsic ZnO target (99.99% purity) to prepare i-ZnO, and use ZnO:Al2O3 target (doped with 2wt% Al 2 O 3 ) Preparation of AZO. Under vacuum conditions with a vacuum degree of 5 ⁇ 10-5Pa, place the sample on the heating furnace plate. After adjusting the process parameters, the trolley makes periodic reciprocating motion above the target. After sputtering is completed, i-ZnO and AZO window layers with a total thickness of approximately 400 ⁇ 500nm are obtained.
  • the thickness of the first layer of Ni electrode is 1000 ⁇
  • the thickness of the Al electrode is 80000 ⁇
  • the thickness of the final evaporated Ni electrode is 1000 ⁇ .
  • FIG. 4 shows the device performance of the low-temperature deposited CIGS provided in Example 1, where (a) is represented by open circuit voltage (VOC), (b) is represented by short circuit current (JSC), (c) is represented by fill factor (FF), and (d) is represented by efficiency (Eff.).
  • VOC open circuit voltage
  • JSC short circuit current
  • FF fill factor
  • Eff. efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供的CIGS太阳能电池及其制备方法,包括依次层叠设置的钠钙玻璃衬底、Mo背电极、CIGS吸收层、CdS缓冲层、i-ZnO和AZO窗口层及Ni-Al-Ni栅电极,解决了衬底温度过低导致的CIGS薄膜的结晶性能变差,晶粒过小,光生载流子复合几率增大,从而导致的电池的光电转换效率降低等问题,实现了CIGS太阳能电池的低温沉积,且在低温生长的同时保持CIGS太阳能电池的光电性能和电池性能不受大的影响,可与不耐高温的柔性基底(PI)工艺兼容,在实际生产中可简化设备制造难度,降低衬底的加热能耗,有效避免玻璃的软化变形,克服产业化生产中大面积玻璃的变形问题,能够加速促进CIGS电池技术的大面积产业化应用,因此具有广阔的市场应用前景。

Description

一种CIGS太阳能电池及其制备方法 技术领域
本申请涉及薄膜太阳能电池技术领域,特别涉及一种CIGS太阳能电池及制备方法。
背景技术
CIGS太阳能电池是目前最有前景的太阳能电池之一,具有能源回收周期短,发电量高,发电稳定性好,光吸收能力强,转换效率高,白天发电时间长等优点。然而,高效CIGS太阳能电池通常是在550℃以上的高基板温度下制备的。在低于500℃的温度下制造CIGS太阳能电池具有巨大的优势,降低了高温条件下的能源消耗和设备要求,从而降低了CIGS太阳能电池和组件的成本。此外,低温CIGS制造工艺可以应用于某些基板,例如柔性聚酰亚胺(PI)基板,以获得用于构建集成光伏和空间应用的轻型CIGS太阳能电池。先前的研究表明,在低于450℃的温度下沉积的CIGS的效率可以与在高于550℃的高温下沉积的CIGS的效率相媲美。最近,Tiwari和他的同事们报道了在450℃沉积的聚酰亚胺基板上的20.8%的新记录效率,这归功于他们将碱元素掺入CIGS的精心策略。然而,在低温下沉积的CIGS的效率仍然存在差异。低基板温度沉积CIGS太阳能电池存在的主要挑战是结晶度差和钠钙基板的钠扩散不足。沉积在低温衬底上的CIGS薄膜结晶度差的原因是In和Ga的低互扩散性,从衬底扩散的钠可以提高CIGS薄膜的结晶度和器件的性能。然而,当基板低于500℃时,Na从基板上的扩散不足,因此沉积后的碱元素处理对于制造高效CIGS太阳能电池至关重要。
技术问题
鉴于此,有必要针对现有技术中存在的缺陷提供一种性能温度且工艺兼容性较佳的CIGS太阳能电池及其制备方法。
技术解决方案
为解决上述问题,本申请采用下述技术方案:
本申请目的之一,提供了一种CIGS太阳能电池,包括:依次层叠设置的钠钙玻璃衬底、Mo背电极、CIGS吸收层、CdS缓冲层、i-ZnO和AZO窗口层、Ni-Al-Ni栅电极。
在其中一些实施例中,所述Mo背电极包括双层Mo薄膜,所述双层Mo薄膜包括一层疏松层及一层致密层,所述双层Mo薄膜的厚度为500-1000nm。
在其中一些实施例中,所述CIGS吸收层包括88at.% 的GGI(Ga/([Ga]+[In])和35at.%的CIG(Cu/([Ga]+[In])),所述CIGS吸收层的厚度为1.8-3μm。
在其中一些实施例中,所述CdS缓冲层为n型CdS缓冲层,厚度为30-80nm。
在其中一些实施例中,所述i-ZnO和AZO窗口层中i-ZnO厚度为50-100nm,ZnO:Al厚度为100-300nm。
在其中一些实施例中,所述Ni-Al-Ni栅电极包括第一层Ni电极、蒸镀于所述第一层Ni电极上的Al电极及覆盖于所述Al电极上的第二层Ni电极,所述第一层Ni电极厚度为50-1000Å,所述Al电极厚度为5-10μm Å,所述第二层Ni电极厚度为50-1000Å。
本申请的目的之二,提供了一种所述的CIGS太阳能电池的制备方法,包括下述步骤:
在所述钠钙玻璃衬底上沉积所述Mo背电极;
在所述Mo背电极上沉积所述CIGS吸收层;
在所述CIGS吸收层上沉积所述CdS缓冲层;
在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层;
在所述i-ZnO和AZO窗口层上沉积Ni/Al/Ni 栅电极。
在其中一些实施例中,在所述钠钙玻璃衬底上沉积所述Mo背电极的步骤中,具体包括:通过直流磁控溅射法将所述Mo背电极沉积于所述钠钙玻璃衬底上。
在其中一些实施例中,在在所述Mo背电极上沉积所述CIGS吸收层的步骤中,具体包括下述步骤:利用三步共蒸发法制备CIGS吸收层在所述Mo背电极上沉积所述CIGS吸收层。
在其中一些实施例中,利用三步共蒸发法制备CIGS吸收层在所述Mo背电极上沉积所述CIGS吸收层,具体包括:
第一步,在500-550℃温度下,将所述钠钙玻璃衬,蒸发85-90%左右的In和Ga,形成(In,Ga) 2Se 3预制层;
第二步,打开Cu源的挡板,只蒸发Cu,形成CIGS结晶;
第三步,保持所述钠钙玻璃衬底温度与第二步相同,蒸发剩下的In和Ga,保持蒸发的时间在15-20分钟,使其与第二步中过量的Cu反应,最终生成略贫Cu的CIGS吸收层;
上述步骤均在足量的Se的气氛中进行。
在其中一些实施例中,在所述CIGS吸收层上沉积所述CdS缓冲层的步骤中,具体包括下述步骤:采用化学水浴法在所述CIGS吸收层上沉积所述CdS缓冲层。
在其中一些实施例中,在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层的步骤中,具体包括下述步骤:采用射频磁控溅射的方法在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层。
在其中一些实施例中,在所述i-ZnO和AZO窗口层上沉积Ni/Al/Ni 栅电极的步骤中,具体包括下述步骤:采用电子束蒸发法镀在所述i-ZnO和AZO窗口层上蒸镀第一层Ni电极,再在所述第一层Ni电极上蒸镀Al电极,再在所述Al电极蒸镀第二层Ni电极。
有益效果
本申请采用上述技术方案,其有益效果如下:
本申请提供的CIGS太阳能电池及其制备方法,包括依次层叠设置的钠钙玻璃衬底、Mo背电极、CIGS吸收层、CdS缓冲层、i-ZnO和AZO窗口层及Ni-Al-Ni栅电极,解决了衬底温度过低导致的CIGS薄膜的结晶性能变差,晶粒过小,光生载流子复合几率增大,从而导致的电池的光电转换效率降低等问题,实现了CIGS太阳能电池的低温沉积,且在低温生长的同时保持CIGS太阳能电池的光电性能和电池性能不受大的影响,可与不耐高温的柔性基底(PI)工艺兼容,在实际生产中可简化设备制造难度,降低衬底的加热能耗,有效避免玻璃的软化变形,克服产业化生产中大面积玻璃的变形问题,能够加速促进CIGS电池技术的大面积产业化应用,因此具有广阔的市场应用前景。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的CIGS太阳能电池的结构示意图。
图2为本申请实施例提供的所述的CIGS太阳能电池的制备方法的步骤流程图。
图3为本实施1例改进的三步共蒸镀用于 CIGS 薄膜沉积的基板温度和Cu、In、Ga和Se的沉积速率。
图4为本实施例1提供的低温沉积的CIGS的器件性能示意图。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
请参阅图1,为本申请一实施例提供的一种CIGS太阳能电池的结构示意图,包括依次层叠设置的钠钙玻璃衬底110、Mo背电极120、CIGS吸收层130、CdS缓冲层140、i-ZnO和AZO窗口层150、Ni-Al-Ni栅电极160。以下详细说明各层的具体实现方式。
在其中一些实施例中,所述Mo背电极120包括双层Mo薄膜,所述双层Mo薄膜包括一层疏松层及一层致密层,所述双层Mo薄膜的厚度为500-1000nm。
在其中一些实施例中,所述CIGS吸收层包括88at.% 的GGI(Ga/([Ga]+[In])和35at.%的CIG(Cu/([Ga]+[In])),所述CIGS吸收层的厚度为1.8-3μm。
在其中一些实施例中,所述CdS缓冲层为n型CdS缓冲层,厚度为30-80nm。
在其中一些实施例中,所述i-ZnO和AZO窗口层中i-ZnO厚度为50-100nm,ZnO:Al厚度为100-300nm。
在其中一些实施例中,所述Ni-Al-Ni栅电极包括第一层Ni电极、蒸镀于所述第一层Ni电极上的Al电极及覆盖于所述Al电极上的第二层Ni电极,所述第一层Ni电极厚度为50-1000Å,所述Al电极厚度为5-10μm ,所述第二层Ni电极厚度为50-1000Å。
本申请上述实施例提供的CIGS太阳能电池,解决了衬底温度过低导致的CIGS薄膜的结晶性能变差,晶粒过小,光生载流子复合几率增大,从而导致的电池的光电转换效率降低等问题,实现了CIGS太阳能电池的低温沉积,且在低温生长的同时保持CIGS太阳能电池的光电性能和电池性能不受大的影响,可与不耐高温的柔性基底(PI)工艺兼容,在实际生产中可简化设备制造难度,降低衬底的加热能耗,有效避免玻璃的软化变形,克服产业化生产中大面积玻璃的变形问题,能够加速促进CIGS电池技术的大面积产业化应用,因此具有广阔的市场应用前景。
请参阅图2,为本申请实施例提供的所述的CIGS太阳能电池的制备方法的步骤流程图,包括下述步骤S110至步骤S150,以下详细说明各个步骤的实现方式。
步骤S110:在所述钠钙玻璃衬底上沉积所述Mo背电极。
可以理解,在所述钠钙玻璃衬底上沉积所述Mo背电极之前,还包括对钠钙玻璃(SLG)衬底清洗的步骤,以除去表面污染物与灰尘。
在其中一些实施例中,在所述钠钙玻璃衬底上沉积所述Mo背电极的步骤中,具体包括:通过直流磁控溅射法将所述Mo背电极沉积于所述钠钙玻璃衬底上。
具体地,先采用高气压低功率在所述钠钙玻璃衬底上沉积一层疏松层,提高Mo膜与衬底附着性,再采用低气压高功率在所述疏松层沉积一层致密层,以提高Mo电极导电能力,从而获得适合铜铟镓硒薄膜太阳能电池工艺的Mo背电极层。
步骤S120:在所述Mo背电极上沉积所述CIGS吸收层。
在其中一些实施例中,在在所述Mo背电极上沉积所述CIGS吸收层的步骤中,具体包括下述步骤:利用三步共蒸发法制备CIGS吸收层在所述Mo背电极上沉积所述CIGS吸收层。
具体地,在MBE真空腔室内,利用三步共蒸发法制备CIGS吸收层,第一步,在500-550℃衬底温度下,蒸发85-90%左右的In和Ga,形成(In,Ga) 2Se 3预制层,第二步,打开Cu源的挡板,只蒸发Cu,形成CIGS结晶,第三步,保持衬底温度与第二步相同,蒸发剩下的10%的In和Ga,保持蒸发的时间在15-20分钟,使其与第二步中过量的Cu反应,最终生成略贫Cu的CIGS薄膜。整个实验过程都是在足量的Se的气氛中进行。
可以理解,本实施例通过改进的三步法共蒸发工艺来沉积CIGS吸收层,该工艺在第二步之后加入了额外的富铜相沉积,即使在没有沉积后碱金属元素处理的条件下,这种工艺也能够低温生长具有良好结晶度的大CIGS晶粒。在460℃下沉积的CIGS太阳能电池的效率与在540℃高温下沉积的效率相当。解决了衬底温度过低导致的CIGS薄膜的结晶性能变差,晶粒过小,光生载流子复合几率增大,从而导致的电池的光电转换效率降低等问题。
步骤S130:在所述CIGS吸收层上沉积所述CdS缓冲层。
在其中一些实施例中,在所述CIGS吸收层上沉积所述CdS缓冲层的步骤中,具体包括下述步骤:采用化学水浴法在所述CIGS吸收层上沉积所述CdS缓冲层。
可以理解,通过化学水浴法制备CdS缓冲层,从而避免CIGS层被高能粒子轰击而产生缺陷。
步骤S140:在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层。
在其中一些实施例中,在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层的步骤中,具体包括下述步骤:采用射频磁控溅射的方法在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层。
步骤S150:在所述i-ZnO和AZO窗口层上沉积Ni/Al/Ni 栅电极。
在其中一些实施例中,在所述i-ZnO和AZO窗口层上沉积Ni/Al/Ni 栅电极的步骤中,具体包括下述步骤:采用电子束蒸发法镀在所述i-ZnO和AZO窗口层上蒸镀第一层Ni电极,再在所述第一层Ni电极上蒸镀Al电极,再在所述Al电极蒸镀第二层Ni电极。
本申请提供的CIGS太阳能电池制备方法,包括依次层叠设置的钠钙玻璃衬底、Mo背电极、CIGS吸收层、CdS缓冲层、i-ZnO和AZO窗口层及Ni-Al-Ni栅电极,解决了衬底温度过低导致的CIGS薄膜的结晶性能变差,晶粒过小,光生载流子复合几率增大,从而导致的电池的光电转换效率降低等问题,实现了CIGS太阳能电池的低温沉积,且在低温生长的同时保持CIGS太阳能电池的光电性能和电池性能不受大的影响,可与不耐高温的柔性基底(PI)工艺兼容,在实际生产中可简化设备制造难度,降低衬底的加热能耗,有效避免玻璃的软化变形,克服产业化生产中大面积玻璃的变形问题,能够加速促进CIGS电池技术的大面积产业化应用,因此具有广阔的市场应用前景。
以下结合具体实施例对本申请上述技术方案进行详细说明。
实施例1
1. 选择尺寸10cm×10cm×2mm的钠钙玻璃为衬底,先用大量去离子水冲洗,再用沾水无尘纸擦拭,用含有清洁粉水溶液的无尘纸擦拭,再用大量去离子水冲洗,氮气吹干,放入高真空进样室中,烘烤10min,去除水分。
2. 利用直流磁控溅射,先在工作气压1.0Pa溅射功率350W下溅射45次,沉积一层疏松层,提高Mo膜与衬底附着性,之后在工作气压0.3Pa溅射功率800W下溅射5次,沉积一层致密层,提高Mo电极导电能力。
3. 利用三步共蒸发法低温制备CIGS吸收层,第一步,在衬底温度为370°C下,此时打开衬底的大挡板和In源、Ga源的挡板,蒸发90%左右的In和Ga,形成的(In,Ga) 2Se 3预制层,然后关闭In和Ga的挡板。第二步,将衬底温度从370°C升高到510°C,打开Cu源的挡板,只蒸发Cu,形成CIGS结晶。当GIS预制层达到CIGS化学计量比后,过量的Cu与Se反应生成Cu 2Se,红外测温仪监测到衬底表面生长中的薄膜表面温度突然降低,出现“降温点”,此为第二步的终点出现降温点后,立即关闭Cu挡板,结束第二步,CIGS薄膜略微富Cu。第三步,保持衬底温度510°C与第二步相同,蒸发剩下的10%的In和Ga,所以可通过增加第三步蒸发的时间,使其与第二步中过量的Cu反应,最终生成略贫Cu的CIGS薄膜。整个过程都是在足量的Se的气氛中进行。
请参阅图3,为本实施1例改进的三步共蒸镀用于CIGS薄膜沉积的基板温度和Cu、In、Ga和Se的沉积速率。
其中,样品衬底温度的设置为510°C,实际温度为460°C的低温。
4. 首先配置好反应溶液。反应溶液包括:硫酸镉(CdSO 4)溶液(0.184g,60mL),硫脲(CH 4N 2S)溶液(5.694g,150mL),浓氨水NH 3•H 2O(45mL),去离子水(450ml)。外置水浴锅温度升至69°C并保持该温度不变,将CIGS样品放置于大烧杯中,然后依次倒入反应溶液。接着将大烧杯放入外置水浴锅中,打开磁力搅拌器,用秒表计时,反应时间为9分钟,沉积的CdS薄膜厚度大约在50nm。用去离子水冲洗样品表面,再用高压N 2气吹干,然后把样品迅速放入到150°C烘箱中,退火2min,最后取出。
5. 利用射频磁控溅射技术制备i-ZnO和AZO,用本征ZnO靶材(纯度为99.99%)制备i-ZnO,用ZnO:Al2O3靶材(掺杂2wt%的Al 2O 3)制备AZO。在真空度5×10-5Pa的真空条件下,将样品放在加热炉盘上,调整工艺参数后,小车在靶上方做周期往返运动。溅射完成后,就得到了厚度大约总共约为400~500nm的i-ZnO和AZO窗口层。
6. 将制作好的掩模板覆盖于样品表面,通过调节束流的位置和电子束电流,蒸发置于坩埚内的金属,依次沉积Ni、Al、Ni金属源。第一层Ni电极厚度为1000Å,Al电极厚度为80000Å,最后蒸镀的Ni电极厚度为1000Å。
请参阅图4,为本实施例1提供的低温沉积的CIGS的器件性能,(a)表示为开路电压(VOC),(b)表示为短路电流(JSC),(c)表示为填充因子(FF)及(d)表示为效率(Eff.)。通过富铜相处理,可以显著提高器件的开路电压与填充因子,获得高效率低温衬底样品。
可以理解,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上仅为本申请的较佳实施例而已,仅具体描述了本申请的技术原理,这些描述只是为了解释本申请的原理,不能以任何方式解释为对本申请保护范围的限制。基于此处解释,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本申请的其他具体实施方式,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种CIGS太阳能电池,其特征在于,包括:
    依次层叠设置的钠钙玻璃衬底、Mo背电极、CIGS吸收层、CdS缓冲层、i-ZnO和AZO窗口层、Ni-Al-Ni栅电极。
  2. 如权利要求1所述的CIGS太阳能电池,其特征在于,所述Mo背电极包括双层Mo薄膜,所述双层Mo薄膜包括一层疏松层及一层致密层,所述双层Mo薄膜的厚度为500-1000nm。
  3. 如权利要求1所述的CIGS太阳能电池,其特征在于,所述CIGS吸收层包括88at.% 的GGI(Ga/([Ga]+[In])和35at.%的CIG(Cu/([Ga]+[In])),所述CIGS吸收层的厚度为1.8-3μm。
  4. 如权利要求1所述的CIGS太阳能电池,其特征在于,所述CdS缓冲层为n型CdS缓冲层,厚度为30-80nm。
  5. 如权利要求1所述的CIGS太阳能电池,其特征在于,所述i-ZnO和AZO窗口层中i-ZnO厚度为50-100nm,ZnO:Al厚度为100-300nm。
  6. 如权利要求1所述的CIGS太阳能电池,其特征在于,所述Ni-Al-Ni栅电极包括第一层Ni电极、蒸镀于所述第一层Ni电极上的Al电极及覆盖于所述Al电极上的第二层Ni电极,所述第一层Ni电极厚度为50-1000Å,所述Al电极厚度为5-10μm,所述第二层Ni电极厚度为50-1000Å。
  7. 一种如权利要求1至6任一项所述的CIGS太阳能电池的制备方法,其特征在于,包括下述步骤:
    在所述钠钙玻璃衬底上沉积所述Mo背电极;
    在所述Mo背电极上沉积所述CIGS吸收层;
    在所述CIGS吸收层上沉积所述CdS缓冲层;
    在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层;
    在所述i-ZnO和AZO窗口层上沉积Ni/Al/Ni 栅电极。
  8. 如权利要求7所述的CIGS太阳能电池的制备方法,其特征在于,在所述钠钙玻璃衬底上沉积所述Mo背电极的步骤中,具体包括:通过直流磁控溅射法将所述Mo背电极沉积于所述钠钙玻璃衬底上。
  9. 如权利要求7所述的CIGS太阳能电池的制备方法,其特征在于,在在所述Mo背电极上沉积所述CIGS吸收层的步骤中,具体包括下述步骤:利用三步共蒸发法制备CIGS吸收层在所述Mo背电极上沉积所述CIGS吸收层。
  10. 如权利要求9所述的CIGS太阳能电池的制备方法,其特征在于,利用三步共蒸发法制备CIGS吸收层在所述Mo背电极上沉积所述CIGS吸收层,具体包括:
    第一步,在500-550℃温度下,将所述钠钙玻璃衬底蒸发85-90%左右的In和Ga,形成(In,Ga) 2Se 3预制层;
    第二步,打开Cu源的挡板,只蒸发Cu,形成CIGS结晶;
    第三步,保持所述钠钙玻璃衬底温度与第二步相同,蒸发剩下的In和Ga,保持蒸发的时间在15-20分钟使其与第二步中过量的Cu反应,最终生成略贫Cu的CIGS吸收层;
    上述步骤均在足量的Se的气氛中进行。
  11. 如权利要求7所述的CIGS太阳能电池的制备方法,其特征在于,在所述CIGS吸收层上沉积所述CdS缓冲层的步骤中,具体包括下述步骤:采用化学水浴法在所述CIGS吸收层上沉积所述CdS缓冲层。
  12. 如权利要求7所述的CIGS太阳能电池的制备方法,其特征在于,在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层的步骤中,具体包括下述步骤:采用射频磁控溅射的方法在所述CdS缓冲层上制备所述i-ZnO和AZO窗口层。
  13. 如权利要求7所述的CIGS太阳能电池的制备方法,其特征在于,在所述i-ZnO和AZO窗口层上沉积Ni/Al/Ni 栅电极的步骤中,具体包括下述步骤:采用电子束蒸发法镀在所述i-ZnO和AZO窗口层上蒸镀第一层Ni电极,再在所述第一层Ni电极上蒸镀Al电极,再在所述Al电极蒸镀第二层Ni电极。
PCT/CN2022/138220 2022-09-22 2022-12-09 一种cigs太阳能电池及其制备方法 WO2024060425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211156922.2A CN115498052B (zh) 2022-09-22 2022-09-22 一种cigs太阳能电池的制备方法
CN202211156922.2 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024060425A1 true WO2024060425A1 (zh) 2024-03-28

Family

ID=84469955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138220 WO2024060425A1 (zh) 2022-09-22 2022-12-09 一种cigs太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115498052B (zh)
WO (1) WO2024060425A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743923B1 (ko) * 2006-02-08 2007-07-30 한국에너지기술연구원 씨아이예스계 화합물 박막 태양 전지의 후면 전극
WO2012064000A1 (ko) * 2010-11-12 2012-05-18 영남대학교 산학협력단 Cigs 태양광 흡수층 제조방법
CN102983219A (zh) * 2012-12-03 2013-03-20 深圳先进技术研究院 薄膜太阳能电池组件的制备方法
CN109560144A (zh) * 2018-11-26 2019-04-02 深圳先进技术研究院 一种cigs薄膜太阳能电池及其制备方法
CN110416367A (zh) * 2019-08-14 2019-11-05 浙江尚越新能源开发有限公司 一种利用In-Ga合金蒸发源制备大面积均匀性CIGS薄膜太阳能电池的方法
CN112259639A (zh) * 2020-10-20 2021-01-22 北京圣阳科技发展有限公司 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN112736150A (zh) * 2021-01-07 2021-04-30 中国科学院深圳先进技术研究院 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN113571594A (zh) * 2021-07-16 2021-10-29 北京交通大学 铜铟镓硒电池及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105023961B (zh) * 2015-08-24 2018-04-03 中国工程物理研究院材料研究所 一种柔性铜锌锡硫薄膜太阳能电池及其制备方法
CN105355676B (zh) * 2015-11-18 2017-11-03 北京四方创能光电科技有限公司 一种柔性cigs薄膜太阳电池的背电极结构
CN105826425B (zh) * 2015-12-24 2019-08-09 云南师范大学 一种铜锌锡硫薄膜太阳电池的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743923B1 (ko) * 2006-02-08 2007-07-30 한국에너지기술연구원 씨아이예스계 화합물 박막 태양 전지의 후면 전극
WO2012064000A1 (ko) * 2010-11-12 2012-05-18 영남대학교 산학협력단 Cigs 태양광 흡수층 제조방법
CN102983219A (zh) * 2012-12-03 2013-03-20 深圳先进技术研究院 薄膜太阳能电池组件的制备方法
CN109560144A (zh) * 2018-11-26 2019-04-02 深圳先进技术研究院 一种cigs薄膜太阳能电池及其制备方法
CN110416367A (zh) * 2019-08-14 2019-11-05 浙江尚越新能源开发有限公司 一种利用In-Ga合金蒸发源制备大面积均匀性CIGS薄膜太阳能电池的方法
CN112259639A (zh) * 2020-10-20 2021-01-22 北京圣阳科技发展有限公司 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN112736150A (zh) * 2021-01-07 2021-04-30 中国科学院深圳先进技术研究院 一种铜铟镓硒薄膜太阳能电池及其制备方法
CN113571594A (zh) * 2021-07-16 2021-10-29 北京交通大学 铜铟镓硒电池及其制造方法

Also Published As

Publication number Publication date
CN115498052B (zh) 2024-02-09
CN115498052A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
KR101094326B1 (ko) 태양전지용 Cu-In-Zn-Sn-(Se,S)계 박막 및 이의 제조방법
KR20090106513A (ko) Ⅰbⅲaⅵa 족 화합물 층들을 위한 도핑 기술들
CN105826425B (zh) 一种铜锌锡硫薄膜太阳电池的制备方法
JP2011003877A (ja) 太陽電池及びその製造方法
JP2014096569A (ja) 銅・インジウム・ガリウム・セレニウム(cigs)または銅・亜鉛・錫・硫黄(czts)系薄膜型太陽電池及びその製造方法
Kurokawa et al. Fabrication of three-dimensional-structure solar cell with Cu2ZnSnS4
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
WO2014012383A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
JP2015233139A (ja) 原子層蒸着法で形成されたバッファ層を含む太陽電池、及び、その製造方法
CN112038439A (zh) 一种CZTSSe柔性双面太阳电池及其制备方法
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
KR20180034274A (ko) 은이 첨가된 czts계 박막 태양전지 및 이의 제조방법
CN109638096A (zh) 一种化合物半导体薄膜太阳能电池制备方法
CN112259620A (zh) 一种Sb2Se3薄膜太阳能电池及其制备方法
KR101482786B1 (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
CN112968128B (zh) 蒸发水热两步生长锑基薄膜材料的方法和薄膜太阳电池
WO2024060425A1 (zh) 一种cigs太阳能电池及其制备方法
CN112259623B (zh) 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法
CN111403558B (zh) 高效率柔性叠层薄膜太阳能电池及其制备方法
CN114122169A (zh) 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用
CN111223963B (zh) 一种铜铟镓硒薄膜太阳能电池大规模生产时的碱金属掺杂处理法
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN112563117B (zh) 一种具有硫组分梯度的铜锌锡硫硒薄膜的制备方法
CN106684210B (zh) 一种用于太阳电池的铜锌锡硫硒薄膜制备方法、该方法制备的薄膜及包含该薄膜的太阳电池
CN111435686A (zh) 铜铟镓硒薄膜太阳能电池及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959424

Country of ref document: EP

Kind code of ref document: A1