CN112259623B - 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法 - Google Patents

一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法 Download PDF

Info

Publication number
CN112259623B
CN112259623B CN202011114182.7A CN202011114182A CN112259623B CN 112259623 B CN112259623 B CN 112259623B CN 202011114182 A CN202011114182 A CN 202011114182A CN 112259623 B CN112259623 B CN 112259623B
Authority
CN
China
Prior art keywords
cigs
layer
film
copper
copper content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011114182.7A
Other languages
English (en)
Other versions
CN112259623A (zh
Inventor
刘沅东
汤清琼
戴万雷
张宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Shengyang Technology Development Co ltd
Original Assignee
Beijing Shengyang Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shengyang Technology Development Co ltd filed Critical Beijing Shengyang Technology Development Co ltd
Priority to CN202011114182.7A priority Critical patent/CN112259623B/zh
Publication of CN112259623A publication Critical patent/CN112259623A/zh
Application granted granted Critical
Publication of CN112259623B publication Critical patent/CN112259623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法,包含:步骤1,使用较高铜含量CIGS四元靶材在以钠钙玻璃为衬底的钼层上溅射沉积CIGS薄膜,形成第一层预制膜;步骤2,使用较低铜含量CIGS四元靶材在第一层预制膜上再次溅射沉积CIGS薄膜,形成第二层预制膜;步骤3,将双层预置膜置于含硒气氛中退火处理。本发明所述方法采用两种不同铜含量的CIGS四元靶材先后溅射,形成下层铜含量多,上层铜含量少的CIGS双层预置膜结构,并且控制CIGS薄膜处于整体贫铜(铜含量小于25at%)状态,然后在含硒气氛中退火,利用预制层铜元素梯度来促进铜元素扩散,改善了CIGS光吸收层薄膜的结晶性。

Description

一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的 方法
技术领域
本发明属于薄膜太阳电池技术领域,主要涉及一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法。
背景技术
能源危机和环境污染是当今全球所面临的两大基本问题。太阳能因其覆盖面积广,取之不尽的优良特性,使之成为解决能源危机的一种重要途径。CIGS薄膜太阳电池因为其材料光学带隙可调、抗辐射能力强、电池性能稳定、弱光性好等优点,使之成为薄膜太阳电池中最有发展前景的光伏材料之一。
近年来,使用铜铟镓硒四元靶材溅射成膜成为一种新的铜铟镓硒光吸收层的制备方法,由于预制膜里已经形成铜铟镓硒四元化合物,使用这种方式有可能不经历复杂的硒化反应既可形成性能良好的吸收层,极大简化电池制备工艺过程,并且使用这种方法也可以获得较高的光电转换效率【S.Rampino,N.Armani,F. Bissoli,M.Bronzoni,D.Calestani,M.Calicchio,N.Delmonte,E.Gilioli, E.Gombia,R.Mosca,L.Nasi,F.Pattini,A.Zappettini and M.Mazzer, 15%efficient Cu(In,Ga)Se2 solar cellsobtained by low-temperature pulsed electron deposition,Applied physicsletters.101(2012)132107-1-4.】,是一种较有发展前景的CIGS薄膜太阳电池制备技术。但是,通过CIGS四元靶制备的吸收层晶粒尺寸一般较小,通常只有0.6-0.8μm,很难达到共蒸法和金属预制膜+硒化法制备的晶粒尺寸。使用四元靶材直接溅射的膜层在溅射态时已经几乎全部是由CIGS相构成,因此膜层中各元素的化学活性受到较大限制,特别是铜元素,从而对退火处理后铜铟镓硒膜层的结晶性带来了不利影响。较差的 CIGS光吸收层结晶性能会影响电池光电转换效率,也造成这种工艺的推广使用受到限制。
发明内容
针对上述问题,本发明的目的在于提供一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法。所述方法采用两种不同铜含量的CIGS四元靶材先后溅射,形成下层铜含量多,上层铜含量少的CIGS薄膜结构,并且控制CIGS 薄膜处于整体贫铜(铜含量小于25at%)状态,然后在含硒气氛中退火,利用预制层铜元素梯度来促进铜元素扩散,改善CIGS光吸收层的结晶性,从而有助于提高CIGS薄膜太阳电池的光电转换效率。为了达到以上目的,本发明采用的技术方案是:
一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述方法包含如下步骤:
步骤1,采用磁控溅射法在钠钙玻璃衬底上制备Mo层。
步骤2,使用较高铜含量的CIGS四元靶材,采用磁控溅射法在Mo层上沉积 CIGS薄膜,形成第一层预制膜。
步骤3,使用较低铜含量的CIGS四元靶材,采用磁控溅射法在第一层预制膜上再次沉积CIGS薄膜,形成第二层预制膜。
步骤4,将CIGS双层预置膜置于含硒气氛中退火处理。
上述的一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述CIGS四元靶材由铜、铟、镓、硒四种元素构成,所述较高铜含量为CIGS靶材中铜元素原子百分比含量为25~30at%,所述较低铜含量为CIGS 靶材中铜元素原子百分比含量为15~25at%。
上述的一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述CIGS双层预制膜总厚度为200~2000nm,整体铜含量小于 25at%,处于贫铜状态。
上述的一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述含硒气氛为在退火时通入Ar气与H2Se气体或者固态硒蒸气的混合气体。
上述的一种改善铜铟镓硒(CIGS)薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述退火处理温度为520~600℃,保温时间为15~120min。
本发明的有益结果是:本发明采用不同铜含量的两种CIGS四元靶材进行依次溅射,形成下层铜含量多,上层铜含量少的具有一定铜含量梯度的双层预制膜,由于下层铜含量>25%,处于富铜状态,从而在退火过程中促进了晶粒长大,进而改善了Mo/CIGS界面性能;由于吸收层薄膜整体贫铜,从而减少了富铜相的形成及其对电池效率的损害,达到改善CIGS光吸收层薄膜结晶性能,进而提升CIGS 电池效率的目的。
附图说明
图1为本发明所述采用CIGS四元靶溅射沉积的双层预制膜结构示意图。
其中,1-玻璃衬底,2-Mo层,3-较高铜含量的第一层预制膜,4-较低铜含量的第二层预制膜。
图2为本发明实施例1中退火后CIGS光吸收层薄膜截面形貌图。
具体实施方式
以下结合实施例和附图对本发明的技术方案作进一步地说明。
实施例1
(1)将钠钙玻璃衬底清洗干净之后采用磁控溅射法制备一层0.8μm厚的 Mo膜;
(2)使用铜含量为28at%的CIGS四元靶材,采用磁控溅射法在Mo层上沉积第一层预制膜,厚度为600nm;
(3),使用铜含量为20at%的CIGS四元靶材,采用磁控溅射法在第一层预制膜上沉积第二次预置膜,厚度为600nm,从而形成如图1所示的双层预制膜结构,预制膜总厚度为1200nm,整体铜含量为24at%,处于贫铜状态。
(4)将上述CIGS双层预制膜放入退火炉中,抽真空后通入Ar+H2Se混合气体,然后升温至550℃进行退火处理,保温时间为10min。退火后的CIGS光吸收层薄膜截面形貌如图2所示。
以上所述是本发明的优选实例,并非因此局限了本发明的权利范围。凡是有不脱离本发明范围和实质性修改、替换和改进,应属于本发明专利的权利范围之内。

Claims (3)

1.一种改善铜铟镓硒CIGS薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述方法包含如下步骤:
步骤1,采用磁控溅射法在钠钙玻璃衬底上制备Mo层;
步骤2,使用较高铜含量的CIGS四元靶材,采用磁控溅射法在Mo层上沉积CIGS薄膜,形成第一层预制膜;
步骤3,使用较低铜含量的CIGS四元靶材,采用磁控溅射法在第一层预制膜上再次沉积CIGS薄膜,形成第二层预制膜;
步骤4,将CIGS双层预制膜置于含硒气氛中退火处理;
所述CIGS四元靶材由铜、铟、镓、硒四种元素构成,所述较高铜含量为CIGS靶材中铜元素原子百分比含量为25~30at%,所述较低铜含量为CIGS靶材中铜元素原子百分比含量为15~25at%;
所述CIGS双层预制膜总厚度为200~2000nm,整体铜含量小于25at%,处于贫铜状态。
2.根据权利要求1所述的一种改善铜铟镓硒CIGS薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述含硒气氛为在退火时通入Ar气与H2Se气体或者固态硒蒸气的混合气体。
3.根据权利要求1所述的一种改善铜铟镓硒CIGS薄膜太阳能电池光吸收层结晶性的方法,其特征在于,所述退火处理温度为520~600℃,保温时间为15~120min。
CN202011114182.7A 2020-10-20 2020-10-20 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法 Active CN112259623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011114182.7A CN112259623B (zh) 2020-10-20 2020-10-20 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011114182.7A CN112259623B (zh) 2020-10-20 2020-10-20 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法

Publications (2)

Publication Number Publication Date
CN112259623A CN112259623A (zh) 2021-01-22
CN112259623B true CN112259623B (zh) 2022-11-04

Family

ID=74244719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011114182.7A Active CN112259623B (zh) 2020-10-20 2020-10-20 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法

Country Status (1)

Country Link
CN (1) CN112259623B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993169B (zh) * 2021-03-03 2024-03-08 北京交通大学 一种nip异质结太阳能电池及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768729B (zh) * 2010-03-05 2012-10-31 中国科学院上海硅酸盐研究所 磁控溅射法制备铜铟镓硒薄膜太阳电池光吸收层的方法
CN202167501U (zh) * 2011-05-09 2012-03-14 东莞日阵薄膜光伏技术有限公司 一种铜铟镓硒太阳能电池
CN103515482A (zh) * 2013-09-10 2014-01-15 华中科技大学 铜铟镓硒薄膜太阳能电池吸收层及其制备方法和应用
CN108305906B (zh) * 2018-02-08 2019-09-03 北京铂阳顶荣光伏科技有限公司 太阳能电池吸收层的制备方法和太阳能电池的制备方法

Also Published As

Publication number Publication date
CN112259623A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
CA2586961A1 (en) Thermal process for creation of an in-situ junction layer in cigs
CN102751388B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
AU2020100802A4 (en) A fully-inorganic perovskite-type solar cell and its preparation method
JP2011129631A (ja) Cis系薄膜太陽電池の製造方法
CN101527332A (zh) 一种高效薄膜太阳能电池光吸收层的制备方法
JP2001044464A (ja) Ib―IIIb―VIb2族化合物半導体層の形成方法、薄膜太陽電池の製造方法
CN112259623B (zh) 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN106653897A (zh) 一种铜锌锡硫硒薄膜太阳能电池及其制备方法
CN111403558B (zh) 高效率柔性叠层薄膜太阳能电池及其制备方法
CN103469170B (zh) 一种用于薄膜太阳能电池的溅射靶
CN109671803A (zh) 一种薄膜太阳能电池制备方法
CN102943238A (zh) 一种薄膜太阳电池的制备方法
CN111223963B (zh) 一种铜铟镓硒薄膜太阳能电池大规模生产时的碱金属掺杂处理法
JP2000012883A (ja) 太陽電池の製造方法
CN114203842A (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN103474514B (zh) 铜铟镓硒太阳能电池的制备方法
CN113410340A (zh) CZTSSe薄膜太阳能电池吸收层改性方法
CN106374012B (zh) 一种简单结构制备铜锌锡硫薄膜太阳电池的方法
CN106684210B (zh) 一种用于太阳电池的铜锌锡硫硒薄膜制备方法、该方法制备的薄膜及包含该薄膜的太阳电池
CN112331729A (zh) Cigs薄膜太阳能电池的光吸收层及其形成方法
CN110634986A (zh) 一种太阳能电池组件制备工艺
CN102943237A (zh) 铜铟镓硒薄膜太阳电池吸收层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant