CN108305906B - 太阳能电池吸收层的制备方法和太阳能电池的制备方法 - Google Patents

太阳能电池吸收层的制备方法和太阳能电池的制备方法 Download PDF

Info

Publication number
CN108305906B
CN108305906B CN201810128936.0A CN201810128936A CN108305906B CN 108305906 B CN108305906 B CN 108305906B CN 201810128936 A CN201810128936 A CN 201810128936A CN 108305906 B CN108305906 B CN 108305906B
Authority
CN
China
Prior art keywords
preparation
preset
solar battery
temperature threshold
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810128936.0A
Other languages
English (en)
Other versions
CN108305906A (zh
Inventor
叶亚宽
赵树利
郭逦达
杨立红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai zuqiang Energy Co.,Ltd.
Original Assignee
Beijing Apollo Ding Rong Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Apollo Ding Rong Solar Technology Co Ltd filed Critical Beijing Apollo Ding Rong Solar Technology Co Ltd
Priority to CN201810128936.0A priority Critical patent/CN108305906B/zh
Publication of CN108305906A publication Critical patent/CN108305906A/zh
Priority to PCT/CN2018/098106 priority patent/WO2019153668A1/zh
Priority to CN201880002666.7A priority patent/CN110352499A/zh
Priority to EP18197055.9A priority patent/EP3527687A1/en
Priority to AU2018241050A priority patent/AU2018241050A1/en
Priority to US16/263,037 priority patent/US20190245103A1/en
Priority to KR1020190012746A priority patent/KR20190096285A/ko
Priority to JP2019017161A priority patent/JP2019140392A/ja
Application granted granted Critical
Publication of CN108305906B publication Critical patent/CN108305906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种太阳能电池吸收层的制备方法和太阳能电池的制备方法,其中该吸收层的制备方法包括在沉积有背电极的基底上依次溅射铜镓合金层和铟层;将铜铟镓预制膜放入具有第一温度阈的反应腔中,并在反应腔中通入第一载气流量值的硒气氛,使铜铟镓预制膜在第一时长内持续反应;向反应腔内通入第二载气流量值的硒气氛,使铜铟镓预制膜在第二时长内持续反应;在预设的第二温度阈和第三时长内对基底进行退火处理。本发明提供的太阳能电池吸收层的制备方法,通过控制通入的硒气氛的载气流量、反应温度及反应时间,使硒元素可以穿过不饱和In‑Se、Cu‑Se二元相向预制膜底部扩散,避免了镓元素向底部富集的问题。

Description

太阳能电池吸收层的制备方法和太阳能电池的制备方法
技术领域
本发明涉及太阳能电池制造技术领域,尤其涉及一种太阳能电池吸收层的制备方法和太阳能电池的制备方法。
背景技术
铜铟镓硒(简称CIGS)薄膜太阳能电池是新一代最具发展前景的太阳能电池。它具有转换效率高、成本低、寿命长、弱光性能好、抗辐射能力强等优点。自20世纪90年代以来一直是实验室转换效率最高的薄膜太阳能电池。2016年德国ZSW将CIGS实验室效率提升至22.6%,与晶硅电池的转换效率较为接近,发展前景巨大。
CIGS吸收层的制备方法主要有共蒸发法、溅射后硒化法(简称两步法)以及电化学法等。其中,共蒸发法是通过蒸发Cu、In、Ga、Se四种元素,使其同时在基底沉积反应得到CIGS吸收层;两步法是首先通过溅射In2Se3、Ga2Se3、Cu2Se等化合物靶材得到铜铟镓硒预制膜,然后在H2Se或者Se蒸气气氛下进行高温热处理获得CIGS吸收层。
共蒸发法制备CIGS吸收层能够使小面积电池获得较高的转换效率,但对于大面积电池而言,由于大面积电池加工均匀性难以控制,产业化应用受到一定局限,无法获得高转换效率。对于两步法制备CIGS,由于Se与Cu、In、Ga元素的反应速率存在差异,导致热处理后形成底部富集Ga元素的细小晶粒,无法形成良好Ga元素分布的高性能CIGS吸收层。电化学法目前在大面积电池的稳定性以及CIGS电池的最高效率等方面仍与共蒸发法及两步法制备CIGS电池存在一定差距,产业化进程较慢。
发明内容
本发明的目的是提供一种太阳能电池吸收层的制备方法和太阳能电池的制备方法,以提高大面积CIGS薄膜制备工艺的稳定性,以及提高CIGS薄膜太阳能电池的光电转换效率。
本发明提供了一种太阳能电池吸收层的制备方法,其中,包括如下步骤:
在沉积有背电极的基底上依次溅射铜镓合金层和铟层,以形成铜铟镓预制膜;
将所述铜铟镓预制膜放入具有预设的第一温度阈的反应腔中,并在所述反应腔中通入预设的第一载气流量值的硒气氛,使所述铜铟镓预制膜在所述第一载气流量值的硒气氛中反应第一预设时长;
向所述反应腔内通入预设的第二载气流量值的硒气氛,使所述铜铟镓预制膜在所述第二载气流量值的硒气氛中反应第二预设时长;
在预设的第二温度阈和第三预设时长内对所述基底进行退火处理。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述第一载气流量值与所述第二载气流量值的比大于5。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,在将所述铜铟镓预制膜放入具有预设的第一温度阈的反应腔中之前还包括:
在真空或设定气压的惰性气体中,将固态硒源加热至预设的第三温度阈内,以在所述反应腔中形成硒气氛。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述预设的第一温度阈为550℃~580℃,所述预设的第二温度阈为500℃~600℃,所述预设的第三温度阈为250℃~470℃,所述设定气压为1Pa~1atm。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述第一预设时长为25s~35s,所述第二预设时长为260s~275s,所述第三预设时长为5min~30min。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述预设的第一温度阈为620℃~700℃,所述预设的第二温度阈为500℃~600℃,所述预设的第三温度阈为380℃~500℃。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述第一预设时长为15s~25s,所述第二预设时长为15s~35s,所述第三预设时长为5min~30min。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述铜铟镓预制膜组成元素的原子比例满足:0.8≤Cu/(In+Ga)≤0.96,0.25≤Ga/(In+Ga)≤0.35。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述反应腔为石墨反应腔。
如上所述的太阳能电池吸收层的制备方法,其中,优选的是,所述硒气氛包括:硒蒸气或硒化氢气体。
本发明还提供了一种太阳能电池的制备方法,其中,包括上述任一项所述的本发明提供的太阳能电池吸收层的制备方法。
本发明提供的太阳能电池吸收层的制备方法和太阳能电池的制备方法,通过控制通入的硒气氛的载气流量、反应温度及反应时间,使硒元素可以穿过不饱和In-Se、Cu-Se二元相向预制膜底部扩散,避免了镓元素向底部富集的问题,提高了CIGS薄膜晶粒尺寸。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明一种实施例提供的太阳能电池吸收层的制备方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
如图1所示,本发明实施例提供了一种太阳能电池吸收层的制备方法,其包括如下步骤:
S100、在沉积有背电极的基底上依次溅射铜镓合金层和铟层,以形成铜铟镓预制膜(CIG预制膜)。
其中,基底采用2~3.2mm厚度的钠钙玻璃,同时采用金属钼作为背电极,金属钼层的厚度为300~1000nm。铜镓合金层中铜原子和镓原子所占的百分比分别为75%和25%;铜镓合金层的厚度可以为300nm,铟层的厚度可以为250nm。此外,对铜镓合金层和铟层的溅射采用磁控溅射,具体可以为直流溅射或中频溅射。
S200、将铜铟镓预制膜放入具有预设的第一温度阈的反应腔中,并在反应腔中通入预设的第一载气流量值的硒气氛,使铜铟镓预制膜在第一载气流量值的硒气氛中反应第一预设时长。其中,上述反应腔为石墨反应腔。
S300、向所述反应腔内通入预设的第二载气流量值的硒气氛,使铜铟镓预制膜在第二载气流量值的硒气氛中反应第二预设时长。
S400、在预设的第二温度阈和第三预设时长内对基底进行退火处理。
需要说明的是,传统的两步硒化法采用在饱和的硒气氛下反应生成铜铟镓硒(CIGS)吸收层,但是,此方法无法精确控制Cu、In、Ga几种金属原子与Se分子的反应过程,由于In、Cu与Se的反应生成焓较低,反应速率较快,由此导致通过传统两步法制备的CIGS吸收层的底部出现Ga富集现象,并形成了底部细小晶粒。
如果采用传统的两步硒化法,会在本申请中的CIG预制膜表面形成稳定浓度的Se蒸气,Se首先与In、Cu分别反应形成相对稳定的In2Se3和Cu2Se二元相,在CIG预制膜表面覆盖了稳定的In2Se3和Cu2Se二元相后,此二元相会成为Se元素的扩散阻碍,导致Se元素向CIG预制膜底部扩散能力下降,进而又进一步导致In、Cu元素向CIG预制膜表面扩散而与Se反应形成二元相,最终形成了具有Ga元素富集于CIGS底部的细晶粒的CIGS吸收层,而无法获得具有良好的Ga元素分布的高性能CIGS吸收层。
而为了解决上述问题,在本申请实施例中,先形成CIG预制膜,在CIG预制膜进入反应腔后,通入高浓度的硒气氛,并维持一定时间,在此阶段,CIG预制膜表面可以形成非饱和的In-Se、Cu-Se二元相,该非饱和的二元相由于部分化学键未饱和,从而不会成为Se元素扩散的阻碍,使得Se元素可通过此不饱和的化学键向CIG预制膜底部进行扩散。
在高浓度硒气氛中完成反应后,将硒气氛的浓度降低,从而不会使得CIG预制膜表面的不饱和In-Se、Cu-Se二元相快速形成饱和的In2Se3和Cu2Se而阻挡了Se元素向CIG预制膜底部扩散;在低浓度硒气氛条件下,Se原子通过不饱和键向底部快速扩散,从而避免了Ga元素向底部富集的现象,同时提高了CIGS薄膜晶粒尺寸;同时,低浓度的硒气氛能够补足CIG预制膜反应生成CIGS四元相时所需的硒。最后,将反应腔温度升高至一定温度范围内后,使CIG预制膜在高温以及一定浓度硒气氛环境下进行退火处理,以提高CIGS薄膜的晶粒尺寸及进一步改善Ga元素的扩散,从而可以获得具有良好的Ga元素分布的高性能CIGS吸收层,同时解决了现有技术中大面积电池稳定性及加工均匀性难以控制的问题。
需要说明的是,铜铟镓预制膜组成元素的原子比例满足:0.8≤Cu/(In+Ga)≤0.96,0.25≤Ga/(In+Ga)≤0.35。
其中,当Cu/(In+Ga)高于0.96时,易于形成富Cu的CuxSe相,导致CIGS薄膜性能显著下降,从而无法获得高性能电池;而当Cu/(In+Ga)低于0.80时,易于在CIGS膜层中形成富余的In-Se、Ga-Se二元相,当In-Se、Ga-Se二元相较多时,无法获得性能优异的黄铜矿CIGS相,导致电池性能下降。
另外,第一载气流量值与第二载气流量值的比大于5。可选的,第一载气流量值可以大于等于5slm且小于等于15slm,由此可以提供高浓度的硒气氛,使得CIG预制膜表面可以形成非饱和的In-Se、Cu-Se二元相,而第二载气流量值可以大于0且小于等于2slm,由此可以使Se原子通过不饱和键向底部快速扩散,从而避免了Ga元素向底部富集的现象,此外,在上述载气流量下,硒气氛可以充分参与反应,避免了硒元素反应过剩而浪费。其中,向反应腔中通入的硒气氛可以为硒蒸气或硒化氢(H2Se)气体。
进一步地,在步骤S200之前还包括:
S110、在真空或设定气压的惰性气体中,将固态硒源加热至预设的第三温度阈内,以在所述反应腔中形成硒气氛,以便于后续向反应腔中通入硒气氛的载气流量的控制。其中,该惰性气体可以为氮气。
在本申请提供的一具体实施例中,预设的第一温度阈可以为550℃~580℃,在该温度范围下,CIG预制膜可以与硒气氛充分反应,以获得具有良好的Ga元素分布的高性能CIGS吸收层;预设的第二温度阈可以为500℃~600℃,预设的第三温度阈可以为250℃~470℃,以形成高温硒气氛,便于后续与CIG预制膜的反应。另外,上述设定气压可以为1Pa~1atm。
其中,第一预设时长可以为25s~35s,本实施例中第一预设时长优选为30s,以在较短的时间内使CIG预制膜表面形成非饱和的In-Se、Cu-Se二元相,而第二预设时长可以为260s~275s,本实施例中第二预设时长优选为270s,从而可以提供较长的时间以使Se元素向CIG预制膜底部扩散,避免Ga元素向底部富集的现象,同时,能够在充分的反应时间内补足CIG预制膜反应生成CIGS四元相时所需的硒;另外,第三预设时长可以为5min~30min,以充分进行退火处理。在此实施例中,加热升温的速度相对较慢,反应速率较慢,利于控制硒气氛流量;此方法工艺窗口较大,利于工艺控制。
在本申请提供的又一实施例中,预设的第一温度阈可以为620℃~700℃,在该温度范围下,在较高反应温度下的CIG预制膜可以与硒气氛充分反应,以获得具有良好的Ga元素分布的高性能CIGS吸收层;预设的第二温度阈可以为500℃~600℃;预设的第三温度阈可以为380℃~500℃,以形成高温硒气氛,便于后续与CIG预制膜的反应。
由于硒气氛获得了较高的温度,从而可以使第一预设时长为15s~25s,第二预设时长为15s~35s,以缩短CIG预制膜的反应时间,提高反应效率;
其中,第二预设时长大于第一预设时长,从而可以在较短的时间内使CIG预制膜表面形成非饱和的In-Se、Cu-Se二元相,并提供较长的时间以使Se元素向CIG预制膜底部扩散,避免Ga元素向底部富集的现象,同时,能够在充分的反应时间内补足CIG预制膜反应生成CIGS四元相时所需的硒。在此实施例中,加热升温的速率较快,利于Se元素的快速扩散从而优化Ga元素的分布,提高了CIGS的膜层性能。
需要说明的是,为了改善镓元素的扩散,以获得高性能的CIGS吸收层,在本实施例中,第二温度阈优选为580℃,第三预设时长为5min~30min。
上述硒气氛可以为硒蒸气或硒化氢气体。当然不限于所列举的这两种。
本发明实施例还提供了一种太阳能电池的制备方法,包括上述任一项所述的太阳能吸收层的制备方法。
本发明实施例提供的太阳能电池吸收层的制备方法及太阳能电池的制备方法,通过控制通入的硒气氛的载气流量、反应温度及反应时间,使硒元素可以穿过不饱和In-Se、Cu-Se二元相向预制膜底部扩散,避免了镓元素向底部富集的问题,提高了CIGS薄膜晶粒尺寸。
以上依据图式所示的实施例详细说明了本发明的构造、特征及作用效果,以上所述仅为本发明的较佳实施例,但本发明不以图面所示限定实施范围,凡是依照本发明的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本发明的保护范围内。

Claims (10)

1.一种太阳能电池吸收层的制备方法,其特征在于,包括如下步骤:
在沉积有背电极的基底上依次溅射铜镓合金层和铟层,以形成铜铟镓预制膜;
将所述铜铟镓预制膜放入具有预设的第一温度阈的反应腔中,并在所述反应腔中通入预设的第一载气流量值的硒气氛,使所述铜铟镓预制膜在所述第一载气流量值的硒气氛中反应第一预设时长;
向所述反应腔内通入预设的第二载气流量值的硒气氛,使所述铜铟镓预制膜在所述第二载气流量值的硒气氛中反应第二预设时长;所述第一载气流量值与所述第二载气流量值的比大于5;
在预设的第二温度阈和第三预设时长内对所述基底进行退火处理。
2.根据权利要求1所述的太阳能电池吸收层的制备方法,其特征在于,在将所述铜铟镓预制膜放入具有预设的第一温度阈的反应腔中之前还包括:
在真空或设定气压的惰性气体中,将固态硒源加热至预设的第三温度阈内,以在所述反应腔中形成硒气氛。
3.根据权利要求2所述的太阳能电池吸收层的制备方法,其特征在于,所述预设的第一温度阈为550℃~580℃,所述预设的第二温度阈为500℃~600℃,所述预设的第三温度阈为250℃~470℃,所述设定气压为1Pa~1atm。
4.根据权利要求3所述的太阳能电池吸收层的制备方法,其特征在于,所述第一预设时长为25s~35s,所述第二预设时长为260s~275s,所述第三预设时长为5min~30min。
5.根据权利要求2所述的太阳能电池吸收层的制备方法,其特征在于,所述预设的第一温度阈为620℃~700℃,所述预设的第二温度阈为500℃~600℃,所述预设的第三温度阈为380℃~500℃。
6.根据权利要求5所述的太阳能电池吸收层的制备方法,其特征在于,所述第一预设时长为15s~25s,所述第二预设时长为15s~35s,所述第三预设时长为5min~30min。
7.根据权利要求1-6任一项所述的太阳能电池吸收层的制备方法,其特征在于,所述铜铟镓预制膜组成元素的原子比例满足:0.8≤Cu/(In+Ga)≤0.96,0.25≤Ga/(In+Ga)≤0.35。
8.根据权利要求7所述的太阳能电池吸收层的制备方法,其特征在于,所述反应腔为石墨反应腔。
9.根据权利要求1-6任一项所述的太阳能电池吸收层的制备方法,其特征在于,所述硒气氛包括:硒蒸气或硒化氢气体。
10.一种太阳能电池的制备方法,其特征在于,包括如权利要求1~9任一项所述的太阳能电池吸收层的制备方法。
CN201810128936.0A 2018-02-08 2018-02-08 太阳能电池吸收层的制备方法和太阳能电池的制备方法 Active CN108305906B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201810128936.0A CN108305906B (zh) 2018-02-08 2018-02-08 太阳能电池吸收层的制备方法和太阳能电池的制备方法
PCT/CN2018/098106 WO2019153668A1 (zh) 2018-02-08 2018-08-01 铜铟镓硒吸收层及其制备方法、太阳能电池及其制备方法
CN201880002666.7A CN110352499A (zh) 2018-02-08 2018-08-01 铜铟镓硒吸收层及其制备方法、太阳能电池及其制备方法
EP18197055.9A EP3527687A1 (en) 2018-02-08 2018-09-27 Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
AU2018241050A AU2018241050A1 (en) 2018-02-08 2018-10-02 Copper Indium Gallium Selenide Absorption Layer And Preparation Method Thereof, Solar Cell And Preparation Method Thereof
US16/263,037 US20190245103A1 (en) 2018-02-08 2019-01-31 Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
KR1020190012746A KR20190096285A (ko) 2018-02-08 2019-01-31 구리 인듐 갈륨 셀레늄 흡수층 및 그 제조 방법, 태양 전지 및 그 제조 방법
JP2019017161A JP2019140392A (ja) 2018-02-08 2019-02-01 銅−インジウム−ガリウム−セレン吸収層及びその製造方法、太陽電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810128936.0A CN108305906B (zh) 2018-02-08 2018-02-08 太阳能电池吸收层的制备方法和太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN108305906A CN108305906A (zh) 2018-07-20
CN108305906B true CN108305906B (zh) 2019-09-03

Family

ID=62864987

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810128936.0A Active CN108305906B (zh) 2018-02-08 2018-02-08 太阳能电池吸收层的制备方法和太阳能电池的制备方法
CN201880002666.7A Pending CN110352499A (zh) 2018-02-08 2018-08-01 铜铟镓硒吸收层及其制备方法、太阳能电池及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880002666.7A Pending CN110352499A (zh) 2018-02-08 2018-08-01 铜铟镓硒吸收层及其制备方法、太阳能电池及其制备方法

Country Status (7)

Country Link
US (1) US20190245103A1 (zh)
EP (1) EP3527687A1 (zh)
JP (1) JP2019140392A (zh)
KR (1) KR20190096285A (zh)
CN (2) CN108305906B (zh)
AU (1) AU2018241050A1 (zh)
WO (1) WO2019153668A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108305906B (zh) * 2018-02-08 2019-09-03 北京铂阳顶荣光伏科技有限公司 太阳能电池吸收层的制备方法和太阳能电池的制备方法
CN110649121A (zh) * 2018-06-11 2020-01-03 北京铂阳顶荣光伏科技有限公司 一种太阳能电池吸收层及其制备方法、太阳能电池
CN111276563A (zh) * 2018-12-03 2020-06-12 北京铂阳顶荣光伏科技有限公司 一种铜铟镓硒吸收层的制备方法
CN111755538B (zh) * 2020-06-24 2023-06-06 云南师范大学 一种具有锗梯度的铜锌锡锗硒吸收层薄膜的制备方法
CN112259623B (zh) * 2020-10-20 2022-11-04 北京圣阳科技发展有限公司 一种改善铜铟镓硒(cigs)薄膜太阳能电池光吸收层结晶性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943043A (zh) * 2004-04-09 2007-04-04 本田技研工业株式会社 黄铜矿型薄膜太阳能电池用光吸收层的制造方法
CN101814553A (zh) * 2010-03-05 2010-08-25 中国科学院上海硅酸盐研究所 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN105336800A (zh) * 2015-10-28 2016-02-17 厦门神科太阳能有限公司 Cigs基薄膜太阳能电池光吸收层的制备方法
CN106229383A (zh) * 2016-09-10 2016-12-14 华南理工大学 一种镓元素均匀分布的铜铟镓硒薄膜太阳能电池及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740660B (zh) * 2008-11-17 2011-08-17 北京华仁合创太阳能科技有限责任公司 铜铟镓硒太阳能电池、其吸收层薄膜及该薄膜的制备方法、设备
CN201585209U (zh) * 2009-07-30 2010-09-15 比亚迪股份有限公司 一种具有薄膜太阳能电池的电子产品壳体
JP5837564B2 (ja) * 2010-03-17 2015-12-24 ダウ グローバル テクノロジーズ エルエルシー カルコゲン含有光吸収性構造体を製造する方法および光起電力装置
CN105932093B (zh) * 2016-04-26 2018-06-19 河南大学 一种高质量cigs薄膜太阳能电池吸收层的制备方法
CN108305906B (zh) * 2018-02-08 2019-09-03 北京铂阳顶荣光伏科技有限公司 太阳能电池吸收层的制备方法和太阳能电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943043A (zh) * 2004-04-09 2007-04-04 本田技研工业株式会社 黄铜矿型薄膜太阳能电池用光吸收层的制造方法
CN101814553A (zh) * 2010-03-05 2010-08-25 中国科学院上海硅酸盐研究所 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
CN105336800A (zh) * 2015-10-28 2016-02-17 厦门神科太阳能有限公司 Cigs基薄膜太阳能电池光吸收层的制备方法
CN106229383A (zh) * 2016-09-10 2016-12-14 华南理工大学 一种镓元素均匀分布的铜铟镓硒薄膜太阳能电池及其制备方法

Also Published As

Publication number Publication date
WO2019153668A1 (zh) 2019-08-15
JP2019140392A (ja) 2019-08-22
CN108305906A (zh) 2018-07-20
KR20190096285A (ko) 2019-08-19
AU2018241050A1 (en) 2019-08-22
CN110352499A (zh) 2019-10-18
EP3527687A1 (en) 2019-08-21
US20190245103A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
CN108305906B (zh) 太阳能电池吸收层的制备方法和太阳能电池的制备方法
CN108389918B (zh) 太阳能电池吸收层的制备方法和太阳能电池的制备方法
Kapur et al. Non-vacuum processing of CuIn1− xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks
CN101459200B (zh) 柔性铜铟镓硒薄膜太阳电池吸收层的制备方法
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
TW201507174A (zh) 用於形成硫族化合物半導體吸收物材料之方法及用於形成硫族化合物半導體吸收物材料之系統
CN101814553B (zh) 光辅助方法制备铜铟镓硒薄膜太阳电池光吸收层
TW201250020A (en) Sodium sputtering doping method for large scale cigs based thin film photovoltaic materials
JP2008520101A (ja) Cigsにおいて現場接合層を作製するための熱プロセス
CN103606596B (zh) 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN106917068A (zh) 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
Kim et al. In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction
WO2014012383A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
WO2013185506A1 (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
US9054264B2 (en) Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium
CN105047753A (zh) 制备铜锡硫或铜锡硫硒薄膜的方法
CN111223963B (zh) 一种铜铟镓硒薄膜太阳能电池大规模生产时的碱金属掺杂处理法
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
CN204237865U (zh) 一种金属预制层合金化设备
CN108342702A (zh) Cu2SrSn(SxSe1-x)4薄膜材料的制备方法
KR101083741B1 (ko) 태양 전지 광흡수층 제조를 위한 셀렌화 방법
TWI532206B (zh) A method for preparing a high quality flat transition layer and a product thereof
CN104278251A (zh) 一种金属预制层合金化设备及方法
KR101490386B1 (ko) 3성분계 셀렌화합물 소결체 제조방법
TW200926431A (en) The structure of absorbing layer of solar cell and its manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Rongchang East Street 7 hospital 6 Building 3001 room.

Patentee after: Beijing Dingrong Photovoltaic Technology Co.,Ltd.

Address before: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Rongchang East Street 7 hospital 6 Building 3001 room.

Patentee before: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210331

Address after: Room 201, Building A, 1 Qianwan Road, Qianhai Shenzhen-Hong Kong Cooperation Zone, Shenzhen, Guangdong Province

Patentee after: Shenzhen Zhengyue development and Construction Co.,Ltd.

Address before: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Rongchang East Street 7 hospital 6 Building 3001 room.

Patentee before: Beijing Dingrong Photovoltaic Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210826

Address after: No.66210, 3rd floor, Pudong Free Trade Zone, Shanghai, China

Patentee after: Shanghai zuqiang Energy Co.,Ltd.

Address before: Room 201, Building A, 1 Qianwan Road, Qianhai Shenzhen-Hong Kong Cooperation Zone, Shenzhen, Guangdong Province

Patentee before: Shenzhen Zhengyue development and Construction Co.,Ltd.