CN110760063A - 高性能含锂有机硫电极材料及一体化柔性电极的制备方法 - Google Patents

高性能含锂有机硫电极材料及一体化柔性电极的制备方法 Download PDF

Info

Publication number
CN110760063A
CN110760063A CN201911063297.5A CN201911063297A CN110760063A CN 110760063 A CN110760063 A CN 110760063A CN 201911063297 A CN201911063297 A CN 201911063297A CN 110760063 A CN110760063 A CN 110760063A
Authority
CN
China
Prior art keywords
lithium
containing organic
dib
electrode
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911063297.5A
Other languages
English (en)
Other versions
CN110760063B (zh
Inventor
郑时有
杨俊和
董飞
庞越鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201911063297.5A priority Critical patent/CN110760063B/zh
Publication of CN110760063A publication Critical patent/CN110760063A/zh
Priority to US16/972,592 priority patent/US11228036B2/en
Priority to JP2020556936A priority patent/JP7037219B2/ja
Priority to PCT/CN2020/082850 priority patent/WO2021082347A1/zh
Application granted granted Critical
Publication of CN110760063B publication Critical patent/CN110760063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提出了高性能含锂有机硫电极材料及一体化柔性电极的制备方法,本发明以具有双烯烃键的1,3‑二异丙烯基苯和Li2S6作为前驱体通过原位聚合的方法,反应生成含锂的有机硫化物Poly(Li2S6‑r‑DIB)。由于合成的含锂有机硫化物Poly(Li2S6‑r‑DIB)加热到一定温度表现出良好的粘性,可直接附着在柔性的导电碳布上,从而制得一体化的柔性电极。得到的柔性电极,具有高容量、高柔韧度、结构稳定等优点。

Description

高性能含锂有机硫电极材料及一体化柔性电极的制备方法
技术领域
本发明涉及有机聚合材料和一体化电极器件技术领域,尤其涉及高性能含锂有机硫电极材料及一体化柔性电极的制备方法。
背景技术
高容量、轻质和柔性化是便携式电子产品最重要发展趋势,随着时代和社会的不断发展,可折叠或可弯曲的便携式电子产品在不远的将来会影响甚至改变人类的生活方式。储能器件是便携式电子产品的核心部件,开发出高性能并具有柔性轻量化等综合性能的储能器件是柔性电子产品广泛应用的关键之一。因此,具有高比容度、柔性、轻量型等综合性能的储能器件的开发利用是柔性电子产品广泛投入使用的关键。
锂硫电池作为新一代储能体系,其理论比容量(1672mAh g-1)远远高于目前商业化的锂离子电池,可满足大部分电子设备对于储能的要求。由于硫在地壳中含量丰富且经济实惠,使得锂硫电池成为一种特别具有吸引力且成本低的储能技术。虽然在锂硫电池体系中硫正极具有成本低、环境友好等优点,但是在长期的研究中,人们也发现了锂硫体系中存在着一些缺点,这也阻碍了锂硫电池体系商业化的进程。锂硫电池在充放电的循环中,其电化学过程并不是一步完成的,而是包括一系列的转化反应和多硫化物(Li2Sx,2<x≤8)的形成,其结果就导致硫的体积膨胀和产生穿梭效应。而且,硫是不良导体,具体较低的电导率,这些缺陷导致电池循环寿命大大减少。然而,在上述的缺陷中,锂硫电池的穿梭效应是最为致命的。在放电和充电循环过程中,正极中产生可溶解在电解液中的长链多硫化物(Li2Sx,4<x≤8)向负极移动并与锂金属反应形成不溶于电解液的短链多硫化物(Li2Sx,2<x≤4),而且短链多硫化物扩散回正极再次产生长链多硫化物。该过程通常导致活性材料的不可逆损失和低的库仑效率,这是容量快速衰减、低能量效率、严重的自放电和差的循环稳定性的主要原因。
针对上述的缺陷,尤其是穿梭效应,国内外的研究者主要从材料改性和化学聚合方面进行研究。一是材料改性方面,通过纳米孔的物理限制和提高硫与碳基质的化学亲和力,可以协同地减少多硫化锂的穿梭效应。例如制备硫的蛋黄-壳结构复合材料,多硫化物吸收材料以及各种纳米结构碳材料作为硫主体材料来限制其通道内的硫,包括有序介孔碳(CMK-3)、碳纳米管、碳纳米纤维、碳球、石墨烯、氧化石墨烯和导电聚合物等。尽管碳材料的杂原子掺杂和表面官能化促进了多硫化物的化学捕获和提高了多孔基质与多硫化物之间的亲和力,但由于有限的表面积和少量的吸附位点,多硫化锂的捕获效率仍然不能令人满意。此外,这些官能团大的孔径和不均匀的分布成为硫的均匀分布和固态产物在碳基质上优先沉积的主要障碍。
二是化学聚合方面,通过聚合反应得到的特殊有机聚合物作为新的硫正极材料。有机聚合物是使用具有多个可聚合自由基基团的单体与长硫链(在100℃至200℃的温度下,熔融断开的的硫八元环分子具有双自由基)产生交联聚合得到的。但是,传统的有机硫作为锂硫电池的正极材料,依然使用传统的搅浆涂片的方法,而且对电池初始循环的容量损失没有很好的改善。
发明内容
本发明的目的在于提供一种高性能含锂有机硫电极材料及一体化柔性电极的制备方法,本发明制得的含锂有机硫化物在加热的情况下表现出良好的粘性,能够直接粘附在柔性导电碳布上,从而可以制得柔性的有机硫正极。一方面,摒弃了传统搅浆涂片制备电极的方法,使活性物质能够不加入粘结剂和导电碳直接涂覆在碳布上;另一方面,使用化学聚合的方法制得含锂有机硫化物不仅将硫原子通过化学键的形式紧固在交联的高分子中,而且在分子中引入了锂离子,能够很好的抑制锂硫电池初始循环的容量损失。
为实现上述目的,本发明所采用的技术方案为:高性能含锂有机硫电极材料的制备方法,其包括:1)以Li2S和升华硫为原材料,四氢呋喃(THF)作为介质,在40-60℃的惰性气体环境下,Li2S与升华硫以1:5的摩尔比反应24h得到Li2S6的THF溶液;2)向步骤1所制得的Li2S6的THF溶液中,加入一定量的1,3-二异丙烯基苯(DIB),在130-150℃下反应30-60min发生聚合反应,得到含锂有机硫化物Poly(Li2S6-r-DIB),其中DIB的质量分数可在一定范围内任意调节;3)将步骤2制得的含锂有机硫化物Poly(Li2S6-r-DIB)溶液加热到70-80℃,在真空条件下将THF溶剂蒸发分离,最终得到类沥青状的黑色含锂有机硫化物Poly(Li2S6-r-DIB)。
高性能含锂有机硫电极材料的制备方法中,步骤2中所述Li2S6的THF溶液浓度在160mg ml-1。1,3-二异丙烯基苯的质量分数采用5%、10%、15%、20%、25%、30%、50%中的一种,其中1,3-二异丙烯基苯的质量分数是指1,3-二异丙烯基苯和Li2S6发生聚合反应制得Poly(Li2S6-r-DIB)时,所加1,3-二异丙烯基苯的质量与反应物1,3-二异丙烯基苯和Li2S6质量总和之比。例如,制备时,取上述5ml Li2S6的THF溶液,加入1,3-二异丙烯基苯(DIB)的质量分别为42.1mg、88.9mg、141.2mg、200mg、266.7mg、342.8mg、800mg。
一体化柔性电极的制备方法,该方法为:将前述制备方法得到的黑色含锂有机硫化物Poly(Li2S6-r-DIB)加热到50-70℃,将其用涂覆的方法直接均匀地涂布到柔性的导电布上,从而制得一体化有机硫电极。
本发明提供的一体化柔性电极的制备方法中,所述导电布为碳纤维编织物。
一体化柔性电极,其采用前述制备方法制备而成。
与现有技术相比,本发明的优点为:
1.本发明制备的含锂有机硫化物,既解决了传统S/C复合材料对穿梭效应低的抑制,又解决了常规有机硫导电性较差的问题。
2.本发明所设计的一体化电极不需要粘结剂和额外导电碳的加入,提高了硫的载量和电池的体积比容量,且制备方法简单,制备成本低。
3.采用本发明的方法得到含锂有机硫化物电极材料及一体化电极具有良好柔性、比容量高和循环稳定性好的特点。
附图说明
图1是本发明实施例的含锂有机硫化物一体化柔性电极作为正极,以纯锂片作为负极制得的电池,该电池的容量及充放电效率的曲线图。
图2是本发明实施例的含锂有机硫化物一体化柔性电极作为正极,以纯锂片作为负极制得的电池,该电池的在0.1A g-1~2A g-1充放电电流密度下的放电容量曲线图。
具体实施方式
下面将结合示意图对本发明所采用的技术方案作进一步的说明。
实施例1:高性能含锂有机硫电极材料的制备方法如下:1)以Li2S和升华硫为原材料,四氢呋喃(THF)作为介质,在40-60℃的惰性气体环境下,Li2S与升华硫以1:5的摩尔比反应24h得到Li2S6的THF溶液;
2)向步骤1所制得的Li2S6的THF溶液中,加入一定量的1,3-二异丙烯基苯(DIB),在130-150℃下反应30-60min发生聚合反应,得到含锂有机硫化物Poly(Li2S6-r-DIB),其中DIB的质量分数可在一定范围内任意调节;
3)将步骤2制得的含锂有机硫化物Poly(Li2S6-r-DIB)溶液加热到70-80℃,在真空条件下将THF溶剂蒸发分离,最终得到类沥青状的黑色含锂有机硫化物Poly(Li2S6-r-DIB),该黑色含锂有机硫化物Poly(Li2S6-r-DIB)即为高性能含锂有机硫电极材料。
实施例2:一体化柔性电极的制备方法,其在实施例1制备获得黑色含锂有机硫化物Poly(Li2S6-r-DIB)基础上,还包括如下步骤:
4)将实施例1中步骤3制得的含锂有机硫化物Poly(Li2S6-r-DIB)加热到50-70℃表现出良好的粘性,可将其用涂覆的方法直接均匀地涂布到柔性的导电碳布上,从而制得具有极好柔性的一体化有机硫电极,而且制得的电极不需要粘结剂和导电碳的加热。
本实施例中导电碳布是商业碳纤维编织物中的一种。
本实施例中DIB的质量分数采用5%、10%、15%、20%、25%、30%、50%中的不同含量,表现出的物理特性和电化学性能不同,其中电性能最好的是其中的一种。
利用德国公司制造的型号为Vario EL Cube的元素分析仪对含锂有机硫化物的硫含量进行测试,利用德国Bruker Advance公司制造的型号为AV500 MHz的核磁进行结构表征,可以证明Li2S6和DIB发生聚合反应,是硫原子以化学键的形式固定在高分子中。
将本发明实施例的电极材料制作成锂电池的正极,并以这种锂电池作为测试对象,利用武汉市蓝电电子股份有限公司制造的型号为CT2001A的多通道电池测试仪对该测试对象进行电化学性能测试;测试的充放电电压窗口为1.5~3V,充放电电流为100mA g-1,所测得的容量及充放电效率的曲线图如图1所示,图1的横轴为循环次数数轴,图1中的右侧竖轴为库伦效率数轴,图1中的左侧竖轴为容量数轴,图1中的曲线S1为库伦效率曲线,图1中的曲线S2为容量曲线,从图1中可以看出,测试对象的首次放电容量在1200mAh g-1左右,经过140次充放电循环后,测试对象的容量稳定在760.9mAh g-1,且库伦效率始终维持在97%以上,由此可见测试对象具有高容量和优异循环稳定性。
将本发明实施例的电极材料制作成锂电池的正极,并以这种锂电池作为测试对象,利用武汉市蓝电电子股份有限公司制造的型号为CT2001A的多通道电池测试仪对该测试对象进行电化学性能测试,所测得的在0.1A g-1~2.0A g-1充放电电流密度下的放电容量曲线如图2所示,从图2可以看出,该测试对象在不同的电流密度条件下,仍具有较高的容量,尤其是在2.0A g-1如此之高的电流密度下,电池仍然具720mAh g-1的容量,而且随之减小电流密度又可以完全恢复到1100mAh g-1左右的容量。
综上,本发明以具有双烯烃键的1,3-二异丙烯基苯和Li2S6作为前驱体通过原位聚合的方法,反应生成含锂的有机硫化物Poly(Li2S6-r-DIB)。由于合成的含锂有机硫化物Poly(Li2S6-r-DIB)加热到一定温度表现出良好的粘性,可直接附着在柔性的导电碳布上,从而制得一体化的柔性电极。得到的柔性电极,具有高容量、高柔韧度、结构稳定等优点。由于传统S/C复合材料作为锂硫电池的正极,需要加入大量的导电剂,导致体积比容量较低,而且通过物理包覆的电极材料在充放电循环过程中会造成结构坍塌直至失效;另一方面,有机硫作为正极材料容易溶解在醚类电解液,使得在初始充放电循环中,由于SEI膜的形成需要一部分锂离子的参与,导致初始容量损失较大。本发明制备的含锂有机硫化物柔性电极,由于以三维导电碳布作为基底以及材料本身具有的流变性,不需要额外的导电剂和粘结剂的加入,大大提高了电池的体积比容量,同时由于锂离子的引入,在初始循环过程中,减少了负极锂离子的传输和迁移,使得初始循环容量能够得到基本保持。采用本发明的方法得到含锂有机硫化物电极材料及一体化电极具有良好柔性、比容量高和循环稳定性好的特点。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (5)

1.高性能含锂有机硫电极材料的制备方法,其特征在于,其包括:
步骤一,以Li2S和升华硫为原材料,四氢呋喃作为介质,在40~60℃的惰性气体环境下,Li2S与升华硫以1:5的摩尔比反应24h得到Li2S6的THF溶液;
步骤二,向步骤一所得到的Li2S6的THF溶液中加入一定量的1,3-二异丙烯基苯,在130-150℃下反应30-60min发生聚合反应,得到含锂有机硫化物Poly(Li2S6-r-DIB);
步骤三,将步骤二中得到的含锂有机硫化物Poly(Li2S6-r-DIB)溶液加热到70-80℃,在真空条件下将THF溶剂蒸发分离,最终得到类沥青状的黑色含锂有机硫化物Poly(Li2S6-r-DIB)。
2.根据权利要求1所述的高性能含锂有机硫电极材料的制备方法,其特征在于,所述1,3-二异丙烯基苯的质量分数采用5%、10%、15%、20%、25%、30%、50%中的一种。
3.一体化柔性电极的制备方法,其特征在于,其包括:将权利要求1-2任一项所述的制备方法得到的黑色含锂有机硫化物Poly(Li2S6-r-DIB)加热到50-70℃,将其用涂覆的方法直接均匀地涂布到柔性的导电布上,从而制得一体化有机硫电极。
4.根据权利要求4所述的一体化柔性电极的制备方法,其特征在于,所述导电布为碳纤维编织物。
5.一体化柔性电极,其特征在于,其采用如权利要求1-4任一所述制备方法制备而成。
CN201911063297.5A 2019-11-01 2019-11-01 高性能含锂有机硫电极材料及一体化柔性电极的制备方法 Active CN110760063B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911063297.5A CN110760063B (zh) 2019-11-01 2019-11-01 高性能含锂有机硫电极材料及一体化柔性电极的制备方法
US16/972,592 US11228036B2 (en) 2019-11-01 2020-04-01 High-performance lithium-containing organic sulfur electrode material and preparation method of integrated flexible electrode
JP2020556936A JP7037219B2 (ja) 2019-11-01 2020-04-01 高性能リチウム含有有機硫黄電極材料及び一体型フレキシブル電極の製造方法
PCT/CN2020/082850 WO2021082347A1 (zh) 2019-11-01 2020-04-01 高性能含锂有机硫电极材料及一体化柔性电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911063297.5A CN110760063B (zh) 2019-11-01 2019-11-01 高性能含锂有机硫电极材料及一体化柔性电极的制备方法

Publications (2)

Publication Number Publication Date
CN110760063A true CN110760063A (zh) 2020-02-07
CN110760063B CN110760063B (zh) 2022-03-29

Family

ID=69336036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911063297.5A Active CN110760063B (zh) 2019-11-01 2019-11-01 高性能含锂有机硫电极材料及一体化柔性电极的制备方法

Country Status (4)

Country Link
US (1) US11228036B2 (zh)
JP (1) JP7037219B2 (zh)
CN (1) CN110760063B (zh)
WO (1) WO2021082347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082347A1 (zh) * 2019-11-01 2021-05-06 上海理工大学 高性能含锂有机硫电极材料及一体化柔性电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023216A1 (en) * 2011-08-11 2013-02-14 Arizona Board Of Regents On Behalf Of The University Of Arizona High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them
CN102956923A (zh) * 2012-10-22 2013-03-06 中国电子科技集团公司第十八研究所 锂硫二次电池的制备方法
CN103682477A (zh) * 2013-11-12 2014-03-26 南京航空航天大学 锂硫电池电解液制备方法及其应用
CN110247034A (zh) * 2019-05-29 2019-09-17 嘉兴学院 一种有机硫电极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018385B2 (en) 2016-01-20 2021-05-25 Cornell University Multi-domained sulfur electrodes, and manufacturing therefor
CN106450423B (zh) 2016-09-30 2019-06-25 上海空间电源研究所 一种高比能柔性一体化电极及其制备方法
CN110148696B (zh) 2019-05-10 2020-07-21 浙江大学 一种能防止锂枝晶的隔膜及可充放锂电池
CN110304657B (zh) 2019-06-28 2022-07-19 武汉工程大学 基于硫链聚合物的过渡金属硫化物电极材料及其制备方法和应用
CN110760063B (zh) 2019-11-01 2022-03-29 上海理工大学 高性能含锂有机硫电极材料及一体化柔性电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023216A1 (en) * 2011-08-11 2013-02-14 Arizona Board Of Regents On Behalf Of The University Of Arizona High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them
CN102956923A (zh) * 2012-10-22 2013-03-06 中国电子科技集团公司第十八研究所 锂硫二次电池的制备方法
CN103682477A (zh) * 2013-11-12 2014-03-26 南京航空航天大学 锂硫电池电解液制备方法及其应用
CN110247034A (zh) * 2019-05-29 2019-09-17 嘉兴学院 一种有机硫电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADAM G. SIMMONDS等: "Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li−S Batteries", 《ACS MACRO LETT》 *
ALEXANDER HOEFLING等: "Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium−Sulfur Battery Studied by Solid-State NMR Spectroscopy", 《CHEM. MATER》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082347A1 (zh) * 2019-11-01 2021-05-06 上海理工大学 高性能含锂有机硫电极材料及一体化柔性电极的制备方法
US11228036B2 (en) 2019-11-01 2022-01-18 University Of Shanghai For Science And Technology High-performance lithium-containing organic sulfur electrode material and preparation method of integrated flexible electrode

Also Published As

Publication number Publication date
WO2021082347A1 (zh) 2021-05-06
US11228036B2 (en) 2022-01-18
JP2022500809A (ja) 2022-01-04
US20210367239A1 (en) 2021-11-25
CN110760063B (zh) 2022-03-29
JP7037219B2 (ja) 2022-03-16

Similar Documents

Publication Publication Date Title
CN110534683B (zh) 一种锂化共价有机框架纳米片隔膜及其制备和应用
CN110104630B (zh) 一种用于电池隔膜的多孔碳复合材料及其制备方法和应用
TWI487171B (zh) 正極及鋰離子電池
Ahmed et al. Multiscale understanding of covalently fixed sulfur–polyacrylonitrile composite as advanced cathode for metal–sulfur batteries
CN106784690B (zh) 一种复合正极材料及其制备方法以及全固态锂硫电池
CN108735991B (zh) 一种钾离子电池用负极材料及制备方法和电解液
CN103779548A (zh) 碳纳米纤维薄膜及其制备方法
CN113651935B (zh) 一种多孔聚合物-硫复合材料及其制备方法和用途
CN113444258B (zh) 一种具有阻燃特性的含磷共价多孔材料的制备方法及其应用
CN110760063B (zh) 高性能含锂有机硫电极材料及一体化柔性电极的制备方法
Shi et al. Disulfide dichloride: A high efficiency vulcanizing agent for sulfurized polyacrylonitrile
Ryu et al. Intertwining porous silicon with conducting polymer for high-efficiency stable Li-ion battery anodes
CN113213443A (zh) 一种锂硫电池用多孔镍钴双金属磷化物纳米片、改性隔膜及其制备方法
CN114456356B (zh) 聚苝四甲酰二亚胺、其制备方法及在锂/钠电池中的应用
CN111092206A (zh) 一种CeO2/TpBD/S材料的锂硫电池的制备方法
CN114605734B (zh) 有机小分子嫁接碳纳米管修饰的功能薄膜复合材料及其制备方法和应用
Song et al. Enhancing Li+ transfer efficiency and strength of PEO-based composite solid electrolyte for long stable cycling of all-solid-state lithium metal batteries
CN108493410B (zh) 一种锂硫电池正极材料的制备方法
Xu et al. Preparation of polyaniline/FeFe (CN) 6 composite and its electrochemical performance as cathode material of lithium ion battery
CN114520327B (zh) 一种介孔二硫化钼/碳复合材料的制备方法与应用
CN115911753B (zh) 以聚苯硫醚为基底的复合型锂硫电池隔膜材料的制备方法
KR102103799B1 (ko) 역가황 반응된 고분자 및 이를 이용한 리튬-황 이차전지
CN115894917B (zh) 一种聚芳硫醚聚合物及其制备方法和应用
CN117476902B (zh) 一种超低温高循环稳定性的硅基负极材料及其锂离子电池
CN109841793B (zh) 一种锂硫电池正极极片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant