CN103682477A - 锂硫电池电解液制备方法及其应用 - Google Patents

锂硫电池电解液制备方法及其应用 Download PDF

Info

Publication number
CN103682477A
CN103682477A CN201310559172.8A CN201310559172A CN103682477A CN 103682477 A CN103682477 A CN 103682477A CN 201310559172 A CN201310559172 A CN 201310559172A CN 103682477 A CN103682477 A CN 103682477A
Authority
CN
China
Prior art keywords
lithium
electrolyte
sulfur
electrolyte solution
glove box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310559172.8A
Other languages
English (en)
Inventor
张校刚
丁兵
徐桂银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201310559172.8A priority Critical patent/CN103682477A/zh
Publication of CN103682477A publication Critical patent/CN103682477A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂硫电池电解液制备方法及其应用。电解液主要组成为醚类有机溶剂、新型电解质(不同浓度、不同化学组成的多硫化锂盐)、添加剂。电解液的具体调配方法如下:在手套箱中取一定体积醚类有机溶剂,按化学计量比加入一定量的单质硫与硫化锂,密封后取出手套箱,超声处理后充分反应。再在手套箱中向上述电解液中加入添加剂LiNO3,静置后即得到新型的锂硫电池电解液。本发明所公开的电解液配方可适合于各种不同的硫基正极材料,并可显著提高硫电极的循环寿命。

Description

锂硫电池电解液制备方法及其应用
技术领域
本发明属于锂硫电池电解液领域,具体涉及一种锂硫电池电解液制备方法及其应用。
背景技术
近年来,具有高理论能量密度的锂硫电池成为人们研究热点。锂硫电池采用单质硫作为正极,金属锂作为负极。理论上单质硫与金属锂完全反应生成硫化锂可实现2电子反应,其理论能量密度可达2600 Wh kg-1,远远高于现有锂离子电池的能量密度。此外正极材料硫还具有储量丰富、环境友好、价格低廉等优点。因此锂硫电池被视为一种高比能量、绿色、廉价的二次电池,在未来的电动汽车、智能电网、无人机动力系统等领域中极具应用前景。2010年,美国Sion Power公司将锂硫电池成功应用于无人机上,此无人机由太阳能/锂硫电池提供全部动力,白天依靠太阳能电池,晚上依靠锂硫电池放电提供动力,创造了无人机连续飞行14天的世界新纪录。美国能源部也斥资资助锂硫电池的研究,计划是至2013年比能量提高至500 Wh kg-1。日本在下一代车用电池技术发展路线中也把锂硫电池列入其中,目标是至2020年比能量达到500 Wh kg-1。近年来,国内多家高校和科研院所也相继开展了锂硫电池的研究工作。防化研究院于2007年报道研制出300 Wh kg-1的锂-硫软包装电池,清华大学也于2008年报道研制出的246 Wh kg-1软包装电池,但是与国外的指标尚有差距。
目前,锂硫电池还存在以下几个方面的问题:(1) 正极活性物质含硫材料以及放电产物为离子/电子绝缘;(2) 含硫材料充放电的中间产物——锂的多硫化物(Li2Sn, 3 ≤ n≤ 8)易溶于有机电解液中,并通过电解液扩散至锂负极,在其表面被还原生成低价的多硫离子,再扩散回到正极。这种“穿梭效应”会引起比容量的急剧衰减以及低的库仑效率;(3) 含硫材料放电时会发生严重的体积膨胀;(4) 充放电循环中,溶解在电解液中的多硫离子会在电极表面发生不可逆的硫化锂沉积,从而导致电极材料失活、电池比容量衰减。因此,造成锂硫电池性能不稳定主要是因为含硫材料充放电过程中多硫化物的不断溶解及其引起的“穿梭”效应。
        为提高锂-硫电池的比容量及能量密度、改善其循环性能,近年来研究者围绕正极材料的改性制备、负极的保护以及电解液的改性等方面进行了大量的探索研究。其中采用新型的电解液是最直接、有效的方法。目前锂硫电池所使用电解液溶剂主要为1:1的1,3-二氧环戊烷(DOL)与乙二醇二甲醚(DME)混合溶剂(DOL+ DME),电解质主要为LiTFSI,但是含硫材料在这类电解液中表现出极差的循环稳定性。
发明内容
硫电极的循环稳定性极差,这主要与其中间产物多硫化锂在有机电解液中溶解导致的“穿梭效应”有关。本发明针对此问题提出了一种以多硫化锂为电解质盐的新型电解液,多硫化锂电解质盐不仅可以提供锂离子,同时多硫离子与硫电极充放电产生的多硫离子在电解液中达到化学平衡,抑制了活性物质的损失,从而使得该电解液可以显著提高硫电极的循环稳定性。
锂硫电池电解液主要通过以下述技术方案实现:
在手套箱中量取体积比为1:1的1,3-二氧环戊烷(DOL)与乙二醇二甲醚(DME)混合溶剂(DOL+ DME),根据电解质盐Li2Sn的化学计量比加入摩尔比为(n-1):1的单质硫与硫化锂,其中n=4~8;密封后取出手套箱,超声处理后并充分反应;再在手套箱中向上述电解液中加入 LiNO3添加剂,静置后即得到Li2Sn/DOL+DME硫电池电解液。
 本发明的有益效果:  
(1) 本发明专利所采用多硫化锂盐与传统的双三氟甲磺酰亚胺锂盐(LiTFSI)相比,具有制备简单、价格便宜等优点,可以有效地降低锂硫电池的成本,具有良好的商业化前景。并且电解质盐的化学组成、浓度可以更加实际需要通过改变反应物量进行调节。
(2) 本发明专利所公开的电解液其最大优点在于其电解液中的多硫离子锂盐可以与含硫电极材料充放电产生的多硫离子达到化学平衡,可以有效地阻止单质S8、硫/碳复合材料、硫/导电聚合物复合材料、多硫化锂Li2Sn其中1≤n≤8、聚丙烯腈/硫复合材料、有机硫化物电极材料在充放电过程中多硫离子的溶解,因此可以显著提高硫电极的循环稳定性。
附图说明
图1为实例1 硫电极在1 C的电流密度下在0.5 M Li2S8/DOL+DME电解液中的循环寿命曲线。
图2为实例2 硫电极在1 C的电流密度下在0.5 M Li2S4/DOL+DME电解液中的循环寿命曲线。
图3为实例3 石墨烯/硫电极在1 C的电流密度下在0.5 M Li2S8/DOL+DME电解液中的循环寿命曲线。
具体实施方式
下面实施例是对本发明的进一步说明,但不限制本发明的范围。
对比例1]
电池组装与测试:将单质硫、乙炔黑、粘结剂按质量比70:20:10均匀混合后加入N-甲基-2-吡咯烷酮(NMP),调成浆状后涂覆在铝箔上,干燥后得到锂硫电池正极极片。采用金属锂作为负极,以添加0.1 M LiNO3的1 M LiTFSI/DOL+DME(体积比1:1)为电解液组装锂硫电池成电池。充放电截止电压为1.5~3.0 V(vs. Li/Li+),以0.5 C的电流密度进行充放电循环。
以1 M LiTFSI/DOL+DME为电解液,充放电中间产物多硫化锂会逐步溶解于该电解液中并引起严重的“穿梭效应”,从而导致锂负极的腐蚀以及活性物质的损失,降低了硫电极的循环稳定性。硫电极在1 M LiTFSI/DOL+DME电解液中初始容量为675 mAh g-1,循环100圈后比容量为240 mAh g-1,比容量保持率仅为35.6%。
实施例1]
0.5 M Li2S8/DOL+DME电解液调配:量取10 mL醚类有机溶剂DOL+DME(体积比为1:1),分别加入1120 mg单质硫(35 mmol)以及230 mg硫化锂(5mmol),密封后取出手套箱,超声处理1 h并于60 °C下反应3~5 h;再在手套箱中向上述电解液中加入69 mg (0.1 mol) LiNO3添加剂,静置6~8 h,即得到0.5 M Li2S8/DOL+DME电解液。
电池组装与测试:将单质硫、乙炔黑、粘结剂按质量比70:20:10均匀混合后加入N-甲基-2-吡咯烷酮(NMP),调成浆状后涂覆在铝箔上,干燥后得到锂硫电池正极极片。采用金属锂作为负极组装成锂硫电池,电解液为新配置的0.5 M Li2S8/DOL+DME。充放电截止电压为1.5~3.0 V(vs. Li/Li+),以1 C的电流密度进行充放电循环。硫电极在此电解液中首次比容量为414 mAh g-1,经过200圈循环后,其比容量依然保持有 406 mAh g-1。Li2S8盐与含硫材料充放电中间产物可以形成化学平衡,因此可以有效地阻止多硫离子的溶解造成的容量衰减,从而有效地提高了电极材料的循环稳定性。
实施例2]
0.5 M Li2S4/DOL+DME电解液调配:按化学计量比称取480 mg单质硫(15 mmol)以及230 mg硫化锂(5 mmol)加入10 mL混合醚类有机溶剂DOL+DME(体积比为1:1),充分反应后加入69 mg的LiNO3添加剂,具体步骤同实施例一。
电池组装与测试:硫电极极片的制备工艺同实施例一,电池组装采用的电解液为0.5 M Li2S4/DOL+DME。电化学测试条件同实施例一。硫电极在此电解液中首次比容量为281 mAh g-1,经过200圈循环后,其比容量增加至 346 mAh g-1 。
实施例3]
0.5 M Li2S8/DOL+DME电解液调配:具体步骤同实施例一。
石墨烯/硫复合材料制备:按质量比600 mg单质硫以及400 mg石墨烯,充分混合、研磨后于155 °C下处理12 h,即得到石墨烯/硫复合材料。
电池组装与测试:将石墨烯/硫复合材料、乙炔黑、粘结剂按质量比70:20:10均匀混合后加入N-甲基-2-吡咯烷酮(NMP),调成浆状后涂覆在铝箔上,干燥后得到石墨烯/硫正极极片,电池组装采用的电解液为0.5 M Li2S8/DOL+DME。电化学测试条件同实施例一。石墨烯/硫电极在此电解液中首次比容量为1337 mAh g-1,经过200圈循环后,其比容量依然保持有 1085 mAh g-1,容量保持率达82%。
以上实例不应理解为本发明的限制,凡是基于本发明的技术思想所做的其他形式上的修改、替换或变更而实现的发明均属于本发明范围。对于本领域的技术人员可以在不脱离本发明的前提下,可以对本发明作若干改进,故凡依本发明专利申请范围所述的方法、特征及原理所做的等效变化或修饰,例如电解质浓度、电解质化学组成、反应时间、有机溶剂等,这些特征同样属于专利申请保护的范围。

Claims (2)

1.一种锂硫电池电解液制备方法,其特征在于具体调配步骤如下:
在手套箱中量取体积比为1:1的1,3-二氧环戊烷(DOL)与乙二醇二甲醚(DME)混合溶剂(DOL+ DME),根据电解质盐Li2Sn的化学计量比加入摩尔比为(n-1):1的单质硫与硫化锂,其中n=4~8;密封后取出手套箱,超声处理后并充分反应;再在手套箱中向上述电解液中加入0.1 M LiNO3添加剂,静置后即得到Li2Sn/DOL+DME硫电池电解液。
2.根据权利要求1所述的锂硫电池电解液制备方法所制备的电解液的应用,其特征在于该电解液可用于含硫正极电极材料为单质S8、硫/碳复合材料、硫/导电聚合物复合材料、多硫化锂Li2Sn其中1≤n≤8、聚丙烯腈/硫复合材料或有机硫化物为正极材料的锂硫电池。
CN201310559172.8A 2013-11-12 2013-11-12 锂硫电池电解液制备方法及其应用 Pending CN103682477A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310559172.8A CN103682477A (zh) 2013-11-12 2013-11-12 锂硫电池电解液制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310559172.8A CN103682477A (zh) 2013-11-12 2013-11-12 锂硫电池电解液制备方法及其应用

Publications (1)

Publication Number Publication Date
CN103682477A true CN103682477A (zh) 2014-03-26

Family

ID=50319277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310559172.8A Pending CN103682477A (zh) 2013-11-12 2013-11-12 锂硫电池电解液制备方法及其应用

Country Status (1)

Country Link
CN (1) CN103682477A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985866A (zh) * 2014-05-16 2014-08-13 四川川为电子有限公司 一种锂硫电池所需多硫化锂的制造工艺
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN105514493A (zh) * 2016-01-27 2016-04-20 山东玉皇新能源科技有限公司 一种锂硫二次电池电解液的制备方法
CN105789561A (zh) * 2014-12-16 2016-07-20 中国科学院大连化学物理研究所 一种硫化聚合物包覆的硫/碳复合材料及其制备方法
CN107645016A (zh) * 2017-11-03 2018-01-30 河南华瑞高新材料有限公司 一种负极锂保护的锂硫电解液及其制备方法
CN108358175A (zh) * 2018-04-25 2018-08-03 北京卫蓝新能源科技有限公司 一种硫化锂的制备方法
CN108539265A (zh) * 2017-03-02 2018-09-14 深圳格林德能源有限公司 一种锂硫电池
CN110760063A (zh) * 2019-11-01 2020-02-07 上海理工大学 高性能含锂有机硫电极材料及一体化柔性电极的制备方法
CN112744843A (zh) * 2020-12-31 2021-05-04 北京化学试剂研究所有限责任公司 一种电池级硫化锂的合成方法及电池级硫化锂
CN114069046A (zh) * 2020-08-03 2022-02-18 中国科学院宁波材料技术与工程研究所 一种改善锂离子电池性能的电解液、其制备方法及锂离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236560A (zh) * 2013-04-16 2013-08-07 浙江大学 一种锂硫电池的硫/碳复合正极材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236560A (zh) * 2013-04-16 2013-08-07 浙江大学 一种锂硫电池的硫/碳复合正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. DIAO ET AL.: "Shuttle phenomenon - The irreversible oxidation mechanism of sulfur active material in LieS battery", 《JOURNAL OF POWER SOURCES》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985866B (zh) * 2014-05-16 2016-08-31 四川川为电子有限公司 一种锂硫电池所需多硫化锂的制造工艺
CN103985866A (zh) * 2014-05-16 2014-08-13 四川川为电子有限公司 一种锂硫电池所需多硫化锂的制造工艺
CN104051695A (zh) * 2014-06-20 2014-09-17 江苏大学 锂硫电池用聚合物修饰隔膜、其制备方法及锂硫电池
CN105789561B (zh) * 2014-12-16 2019-07-23 中科派思储能技术有限公司 一种锂-多硫化物二次电池的制备方法
CN105789561A (zh) * 2014-12-16 2016-07-20 中国科学院大连化学物理研究所 一种硫化聚合物包覆的硫/碳复合材料及其制备方法
CN105514493A (zh) * 2016-01-27 2016-04-20 山东玉皇新能源科技有限公司 一种锂硫二次电池电解液的制备方法
CN108539265A (zh) * 2017-03-02 2018-09-14 深圳格林德能源有限公司 一种锂硫电池
CN107645016A (zh) * 2017-11-03 2018-01-30 河南华瑞高新材料有限公司 一种负极锂保护的锂硫电解液及其制备方法
CN108358175A (zh) * 2018-04-25 2018-08-03 北京卫蓝新能源科技有限公司 一种硫化锂的制备方法
CN110760063A (zh) * 2019-11-01 2020-02-07 上海理工大学 高性能含锂有机硫电极材料及一体化柔性电极的制备方法
CN110760063B (zh) * 2019-11-01 2022-03-29 上海理工大学 高性能含锂有机硫电极材料及一体化柔性电极的制备方法
CN114069046A (zh) * 2020-08-03 2022-02-18 中国科学院宁波材料技术与工程研究所 一种改善锂离子电池性能的电解液、其制备方法及锂离子电池
CN112744843A (zh) * 2020-12-31 2021-05-04 北京化学试剂研究所有限责任公司 一种电池级硫化锂的合成方法及电池级硫化锂
CN112744843B (zh) * 2020-12-31 2021-09-10 北京化学试剂研究所有限责任公司 一种电池级硫化锂的合成方法及电池级硫化锂

Similar Documents

Publication Publication Date Title
CN103682477A (zh) 锂硫电池电解液制备方法及其应用
CN106887640B (zh) 一种提高电池容量的锂硫电池电解液及其制备方法
CN104779394A (zh) 一种水系锂(钠)离子电池混合负极材料
CN101562244A (zh) 锂二次电池用单质硫复合材料的制备方法
CN102983361A (zh) 用于Li-S电池的电解液及其制备方法和包含该电解液的Li-S电池
CN104810546A (zh) 一种用于锂硫电池的电解液及其制备方法
CN102082259A (zh) 一种锂二次电池电极及其制造方法
CN103700820A (zh) 一种长寿命锂离子硒电池
CN103247822A (zh) 锂硫二次电池体系
CN110854437B (zh) 一种含有多功能添加剂的锂硫电池电解液及其应用
WO2018095202A1 (zh) 一种复合锂电池及其制备方法
CN107359372B (zh) 一种水系电解液及水系金属离子电池
CN102522542A (zh) 含石墨烯的单质硫复合材料及其制备方法
CN108539196A (zh) 一种高性能硫基复合正极材料及其制备方法
CN103427068B (zh) 一种锂-硫电池用正极材料及其制备方法
CN101262056A (zh) 一种水溶液可充锂离子电池
CN103367791A (zh) 一种新型锂离子电池
CN107623143A (zh) 一种含功能性添加剂的锂硫电池电解液及其应用
CN101916849B (zh) 一种二次电池用硫基复合正极材料及其制备方法
CN107452950A (zh) 一种循环稳定的锂离子电池正极材料及方法
CN102263280A (zh) 一种液流水系可充碱金属离子电池
CN101262076A (zh) 一种水溶液可充锂电池
CN110400963B (zh) 一种金属钠或钠钾合金负极/硫化聚丙烯腈正极的二次电池及其制造方法
CN109728297A (zh) 金属酞菁/碳管复合材料的制备方法及其锂硫电池正极中的应用
CN104485449A (zh) 一种用于锂硫电池正极的聚合物包覆硫复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140326