CN110606747B - 一种各向同性陶瓷纳米线预制体的制备方法 - Google Patents

一种各向同性陶瓷纳米线预制体的制备方法 Download PDF

Info

Publication number
CN110606747B
CN110606747B CN201910980538.6A CN201910980538A CN110606747B CN 110606747 B CN110606747 B CN 110606747B CN 201910980538 A CN201910980538 A CN 201910980538A CN 110606747 B CN110606747 B CN 110606747B
Authority
CN
China
Prior art keywords
preform
nanowire
activated carbon
ceramic
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910980538.6A
Other languages
English (en)
Other versions
CN110606747A (zh
Inventor
成来飞
叶昉
郭楚楚
张立同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910980538.6A priority Critical patent/CN110606747B/zh
Publication of CN110606747A publication Critical patent/CN110606747A/zh
Priority to US17/072,100 priority patent/US12006265B2/en
Application granted granted Critical
Publication of CN110606747B publication Critical patent/CN110606747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • C04B35/62281Fibres based on carbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62286Fibres based on nitrides
    • C04B35/6229Fibres based on nitrides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62286Fibres based on nitrides
    • C04B35/62295Fibres based on nitrides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种各向同性陶瓷纳米线预制体的制备方法,聚合物先驱体负载在活性炭粉上形成混合料并压制成坯体模板,使模板上的聚合物先驱体在一定温度下裂解,生长出大量相互交叉搭接的纳米线。随后氧化除去活性炭,制备出各向同性的互连三维网络结构的陶瓷纳米线预制体材料。本发明制得的各向同性陶瓷纳米线预制体中纳米线的成分纯净、结构均匀、尺寸可控、体积分数可调。工艺步骤简单、周期短、成本相对较低,工艺还具有良好的稳定性、可重复性。同时该陶瓷纳米线预制体兼具隔热、轻质和电学、光学等功能,有望实现多功能一体化要求,拓展陶瓷基复合材料的应用领域。

Description

一种各向同性陶瓷纳米线预制体的制备方法
技术领域
本发明属于新材料的制备技术领域,涉及一种各向同性陶瓷纳米线预制体的制备方法。
背景技术
陶瓷基复合材料(例如硅基——碳化硅、氮化硅陶瓷基复合材料和碳化锆、硼化锆超高温陶瓷基复合材料等)具有高强度、高模量、良好的韧性、低密度、耐高温(硅基陶瓷基复合材料可耐1450℃,超高温陶瓷基复合材料可耐2000℃)、耐磨耐蚀等优良性能,被广泛应用于航空航天、核、制动系统等多种工业领域。陶瓷基复合材料主要由增强体和基体组成。增强体具有高强、高模的特点,能够对陶瓷基体起增强补韧作用。增强体可以通过不同的工艺成型为一种具有刚性结构特征的宏观体,这种宏观体称为预制体。预制体是陶瓷基复合材料获得优异性能的关键结构单元,其不但是陶瓷基复合材料的骨架,还决定了陶瓷材料的强韧性、可靠性和使用寿命。
目前发展的陶瓷增强体主要包括连续纤维、晶须和纳米线,不同增强体成型预制体的工艺难度不同。连续纤维增强碳化硅陶瓷基复合材料是目前研究最多、应用最成功和最广泛的陶瓷基复合材料,是航空航天等高科技领域发展不可缺少的材料。连续纤维通常需要经过编织工艺成型成二维、二维半或三维结构的纤维预制体。这种连续纤维预制体对基体的增强补韧效果非常优异,可设计性强,可以满足航空航天领域大尺寸、厚壁零件的制造需求。但(1)连续纤维预制体编织过程易造成纤维损伤,形成的孔隙结构对后续基体工艺存在选择性,而且编织孔隙很可能成为结构缺陷影响复合材料性能;(2)由于预制体的结构特征,连续纤维增强陶瓷基复合材料均表现出不同程度的各向异性,这不利于复合材料在复杂应力下的服役;(3)由于纤维/基体弱界面产生的非线性力学行为,导致材料比例极限应力低;(4)连续纤维增强陶瓷基复合材料的使用温度很大程度上由纤维决定,对适用于航空发动机热端部件的碳化硅纤维增强陶瓷基复合材料来说,由于目前碳化硅纤维的耐受温度普遍低于1400℃,导致复合材料高温力学性能差,应用条件受到较大限制。
为了改善连续纤维增强陶瓷基复合材料存在的问题,研究者采用晶须是一种内部杂质缺陷少、相成分均一的短纤维状单晶材料,将其作为增强体,有望改善连续纤维增强陶瓷基复合材料现存问题。晶须材料的传统成型方法是热压烧结。相关研究包括:Junfeng Hu等将碳化硅晶须与氮化硅颗粒混合,再加入烧结助剂氧化铝和氧化钇,球磨46h,在1825℃,1MPa氮气气氛下烧结2-4h,得到碳化硅晶须增强氮化硅复合材料。(Materials ScienceForum,2013,750:15-18)。这种工艺方法制备的复合材料虽然强度高,但韧性较差,且该方法不利于成型大尺寸构件。针对这一问题,发明人前期通过凝胶注模工艺,将晶须制成了孔隙均匀的多孔晶须预制体,并向该预制体中引入基体,致密化后的复合材料强韧性得到显著提升,可以承受较高载荷且更耐高温,并且具有各向同性特点。相关研究包括:NaiqiChen等采用凝胶注模法制备了各向同性近网状碳化硅晶须预制体。(CeramicsInternational,2018,44(1):969-979)。但是这种制备方法对设备要求较高,成型工艺复杂,制备大尺寸、厚壁零件难度较大。
纳米线耐温性好、本征力学性能高,将其作为增强体,可使复合材料的综合性能更为优异。在之前的研究中,研究人员若想将纳米线增强体引入到陶瓷材料中实现强韧化,往往通过机械混合或者原位自生方式。机械混合工艺下,纳米线容易形成团聚造成应力分配不均,影响复合材料力学性能;采用原位自生方式,纳米线的均匀性得到一定改善,但是体积分数普遍较低,并且制备工艺条件十分苛刻,工艺控制难度很大。因此,有必要发展纳米线陶瓷预制体的新型制备工艺,使所制预制体适于制备形状复杂、大尺寸、厚壁零件,有效改善连续纤维预制体与晶须预制体的不足。发明人认为新型制备工艺思路可以包括以下两种:(1)将纳米线纺制成连续纤维后进行编织形成预制体,纳米线在纤维中定向排列,可实现纳米线轴向承载最大化。但实际上,由于纳米纤维的尺度较小,在编织过程以及界面和基体制备过程中极有可能受到损伤,因此预测复合材料的最终性能可能受到不利影响。目前,如上所述由陶瓷纳米线加捻成纳米纤维预制体的相关研究还未见报道。(2)通过工艺设计直接实现纳米线制备-预制体成型一体化,即原位成型获得具有一定机械强度的纳米线预制体宏观体。这种预制体中纳米线需能够实现彼此桥接,形成三维无序网络,满足复合材料各向同性要求;预制体能够实现原位成型,不须像连续纤维经过编织成型成预制体,也不须像晶须经过浇注或热压成型成预制体,避免了预制体中增强体的损伤。然而目前,还没有如上所述陶瓷纳米线预制体的研究报道。一些其他研究如:Yehong Cheng等采用化学气相沉积法在石墨烯气凝胶上生长了直径约为300nm的竹节状碳化硅纳米线,制备出碳化硅纳米线-石墨烯气凝胶(Applied Surface Science,2018,448:138-144);Lei Su等通过裂解硅氧烷溶胶制备出碳化硅纳米线气凝胶,碳化硅纳米线的直径为20-50nm,长度为数十至数百μm。碳化硅纳米线弯曲曲率大,气凝胶整体呈现良好柔韧性。(ACS Nano,2018,12(4):138-144)。这些研究大多是将纳米线生长在其他材料体系的气凝胶/泡沫材料表面起修饰作用,或是制备获得纳米线柔性气凝胶材料。这些工艺方法都无法获得纯净且具有一定结构强度的陶瓷纳米线预制体宏观体。目前,还未见有关氮化硅纳米预制体和超高温体系纳米预制体的报道。
综上所述,陶瓷纳米线预制体是一种优异的陶瓷基复合材料预制体候选,现有制备工艺很难获得。针对中高温(可耐1300~1400℃)和超高温(可耐2000℃)环境使用需求,亟待发展一种具有很强普适性的陶瓷基复合材料纳米预制体制备工艺方法。发展的新型制备工艺,须可实现预制体微结构的设计与调控,以及预制体中纳米增强体体积分数的优化。预制体中纳米增强体应能够自发在三维空间均匀分布,实现各向同性。预制体须具有一定机械强度,可作为刚性骨架匹配后续基体制备工艺。当将该预制体应用于复合材料时,能最大程度发挥其纳米尺度优势,充分实现增强增韧效果,获得高性能陶瓷基复合材料。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种各向同性陶瓷纳米线预制体的制备方法,涉及一种模板法和聚合物转化法相结合制备陶瓷纳米线预制体的方法。该方法解决了陶瓷纳米线预制体中纳米相产量较低、分布不均等技术问题。该方法工艺步骤简单、成本低、周期短、产量高、稳定性好。该方法制备的陶瓷纳米线预制体具有一定机械强度,内部为高比表面积、高度多孔和原位自生的互连三维网络结构。预制体中纳米线的成分纯净、结构均匀、尺寸可控、体积分数可调。将其作为增强体能够有效提高复合材料的机械性能,满足更严苛的服役条件。同时该陶瓷纳米线预制体兼具隔热、轻质和电学、光学等功能,有望实现多功能一体化要求,拓展陶瓷基复合材料的应用领域。
与现有
技术方案
一种各向同性陶瓷纳米线预制体的制备方法,其特征在于步骤如下:
步骤1.活性炭的预处理:将活性炭粉在丙酮中浸泡24~48h后,在70-90℃蒸馏水中浸泡30min~1h,去除活性炭粉中的杂质;随后将活性炭粉置于真空干燥箱干燥,干燥温度为60~100℃,干燥时间为12~24h;
步骤2.先驱体溶液的制备:将硅基陶瓷超高温体系先驱体的有机聚合物先驱体与二甲苯或者环己烷以1︰0.5~10的质量比配制成先驱体溶液,采用磁力搅拌在200rpm的转速下连续搅拌30min;再以5wt.%的比例混入催化剂,随后采用磁力搅拌在200r/min的转速下连续搅拌30min;
步骤3.活性炭负载先驱体配合料的制备:将除杂后的活性炭粉与先驱体溶液混合配成活性炭负载先驱体配合料;将配合料倒入烧杯中,采用机械搅拌在200rpm的转速下连续搅拌10min;其中,活性炭粉与先驱体溶液的质量比为1~10︰1;︰
步骤4.活性炭负载先驱体坯体的制备:将搅拌后的配合料放入模具中,在压片机中采用1~10MPa的压力压制成预制体;
步骤5.聚合物先驱体的裂解:将压制好的活性炭负载先驱体坯体放入真空管式炉中裂解生长纳米线,炉内真空度为0.09MPa,裂解过程升温速率为3~10℃/min,裂解温度为1200~1500℃,保温时间为1~3h;然后以3~10℃/min降温至600℃后,随炉冷却;制备碳化硅纳米线预制体需要通入氩气作为保护气氛,制备氮化硅纳米线预制体时需要通入氮气作为保护气氛;
步骤6.活性炭的去除:将步骤5得到的含有活性炭的陶瓷纳米线预制体放入管式炉中在空气气氛下氧化除去活性炭,升温速率为3~10℃/min,氧化温度为600℃,保温4~7h后随炉冷却。至此,得到陶瓷纳米线预制体。
所述有机聚合物先驱体包括但不限于聚碳硅烷、聚硅氮烷、聚锆碳烷或聚硼锆烷。
所述催化剂包括但不限于二茂铁或苯乙酸铁或二茂镍。
所述活性炭粉至少采用200目粉状活性炭。
有益效果
本发明提出的一种各向同性陶瓷纳米线预制体的制备方法,将一种模板法和聚合物转化法相结合制备陶瓷纳米线预制体。聚合物先驱体负载在活性炭粉上形成混合料并压制成坯体模板。使模板上的聚合物先驱体在一定温度下裂解,生长出大量相互交叉搭接的纳米线。随后氧化除去活性炭,制备出具有一定结构强度、内部为高比表面积、高度多孔、原位自生和各向同性的互连三维网络结构的陶瓷纳米线预制体材料。本发明所提供的技术方案制得的各向同性陶瓷纳米线预制体中纳米线的成分纯净、结构均匀、尺寸可控、体积分数可调。本发明的制备工艺步骤简单、周期短、成本相对较低,在能够有效保证纳米线产量的基础上,该工艺还具有良好的稳定性、可重复性。将其作为增强体应用于复合材料,能够实现各向同性,也能最大程度发挥纳米材料的优良特性,充分提高复合材料机械性能,满足更严苛的服役条件。同时该陶瓷纳米线预制体兼具隔热、轻质和电学、光学等功能,有望实现多功能一体化要求,拓展陶瓷基复合材料的应用领域。
技术相比,本发明的有益效果有以下几点:
(1)本发明涉及的陶瓷纳米线预制体具备一定机械强度,具有低密度、高孔隙率、大比表面积、良好的热稳定性和化学稳定性等特点,有潜力作为一种各向同性全纳米预制体应用于陶瓷基复合材料;
(2)本发明涉及的陶瓷纳米线预制体内部为互连三维网络结构,其中纳米线成分纯净、结构可控、分布均匀,不存在团聚、分布不均、密度梯度等问题。这一方面能够保证其本征性能的均匀性,从而实现性能提升;另一方面当将其应用于复合材料(例如作为复合材料的增强体)时,能够实现各向同性,也能最大程度发挥纳米线的优良特性,充分提高复合材料性能;
(3)本发明涉及的陶瓷纳米线预制体制备工艺将模板法和聚合物转化法相结合,其特点在于:通过对先驱体浓度、先驱体溶液与活性炭粉比例、预制体制备压力等关键工艺参数进行控制,可实现对陶瓷纳米线预制体中纳米线结构、尺寸、体积分数的调控与优化;
(4)本发明涉及的陶瓷纳米线预制体制备工艺步骤简单、周期短、成本相对较低。在能够有效保证纳米线产率的基础上,该工艺还具有良好的稳定性、可重复性,有潜力发展成为陶瓷纳米线预制体的工程化、产业化制备技术,为其批量生产奠定工艺基础。
附图说明
图1.是本发明的工艺流程图
图2.是本发明实施例1碳化硅纳米线预制体的宏观照片
图3.是本发明实施例1碳化硅纳米线预制体的扫描电子显微镜(SEM)照片
图4.是本发明实施例1碳化硅纳米线预制体的X射线衍射(XRD)图谱
图5.是本发明实施例1碳化硅纳米线预制体的透射电子显微镜(TEM)照片
图6.是本发明实施例2氮化硅纳米线预制体的宏观照片
图7.是本发明实施例2氮化硅纳米线预制体的扫描电子显微镜(SEM)照片
图8.是本发明实施例2氮化硅纳米线预制体的X射线衍射(XRD)图谱
图9.是本发明实施例2氮化硅纳米线预制体的透射电子显微镜(TEM)照片
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1
步骤1.活性炭的预处理:本发明采用活性炭粉作为模板。将活性炭粉在丙酮中浸泡24后,在90℃蒸馏水中浸泡30min,去除活性炭粉中的杂质。随后将活性炭粉置于真空干燥箱干燥,干燥温度为100℃,干燥时间为12h;
步骤2.先驱体溶液的制备:将聚碳硅烷先驱体与二甲苯以1:5的质量比配制成先驱体溶液,采用磁力搅拌在200rpm的转速下连续搅拌30min。再以5wt.%的比例混入催化剂二茂镍,随后采用磁力搅拌在200r/min的转速下连续搅拌30min;
步骤3.活性炭负载先驱体配合料的制备:取适量除杂后的活性炭粉与步骤2中配置好的先驱体溶液混合配成活性炭负载先驱体配合料。其中,活性炭粉与先驱体溶液的质量比为3:1。将配合料倒入烧杯中,采用机械搅拌在200rpm的转速下连续搅拌10min;
步骤4.活性炭负载先驱体坯体的制备:为了使所制纳米线预制体具有一定的结构形态,将搅拌后的配合料放入模具中,在压片机中采用2MPa的压力压制成预制体。
卸载后取出压制成型的坯体;
步骤5.聚合物先驱体的裂解:将压制好的活性炭负载先驱体坯体放入管式炉中裂解生长纳米线,通入氩气作为保护气氛,炉内真空度为0.09MPa,裂解过程升温速率为3℃/min,裂解温度为1500℃,保温时间为3h。然后以5℃/min降温至600℃后,随炉冷却;
步骤6.活性炭的去除:将步骤5得到的含有活性炭的碳化硅纳米线预制体放入管式炉中在空气气氛下氧化除去活性炭,升温速率为5℃/min,氧化温度为600℃,保温7h后随炉冷却。至此,得到碳化硅纳米线预制体。本实施例所制碳化硅纳米线预制体中纳米线的体积密度为0.107g/cm3,纳米线的直径为100nm左右,纳米线的晶型为β-SiC,结构为单晶。
实施例2
步骤1.活性炭的预处理:本发明采用活性炭粉作为模板。将活性炭粉在丙酮中浸泡24后,在90℃蒸馏水中浸泡30min,去除活性炭粉中的杂质。随后将活性炭粉置于真空干燥箱干燥,干燥温度为100℃,干燥时间为12h;
步骤2.先驱体溶液的制备:将聚硅氮烷先驱体与环己烷以1:5的质量比配制成先驱体溶液,采用磁力搅拌在200rpm的转速下连续搅拌30min。再以5wt.%的比例混入催化剂二茂铁,随后采用磁力搅拌在200r/min的转速下连续搅拌30min;
步骤3.活性炭负载先驱体配合料的制备:取适量除杂后的活性炭粉与步骤2中配置好的先驱体溶液混合配成活性炭负载先驱体配合料。其中,活性炭粉与先驱体溶液的质量比为3:1。将配合料倒入烧杯中,采用机械搅拌在200rpm的转速下连续搅拌10min;
步骤4.活性炭负载先驱体坯体的制备:为了使所制纳米线预制体具有一定的结构形态,将搅拌后的配合料放入模具中,在压片机中采用5MPa的压力压制成预制体。
卸载后取出压制成型的坯体;
步骤5.聚合物先驱体的裂解:将压制好的活性炭负载先驱体坯体放入管式炉中裂解生长纳米线,通入氮气作为保护气氛,炉内真空度为0.09MPa,裂解过程升温速率为3℃/min,裂解温度为1500℃,保温时间为3h。然后以5℃/min降温至600℃后,随炉冷却;
步骤6.活性炭的去除:将步骤5得到的含有活性炭的氮化硅纳米线预制体放入管式炉中在空气气氛下氧化除去活性炭,升温速率为5℃/min,氧化温度为600℃,保温7h后随炉冷却。至此,得到氮化硅纳米线预制体。本实施例所制氮化硅纳米线预制体中纳米线的体积密度为0.073g/cm3,纳米线的直径为100nm左右,纳米线的晶型为α-Si3N4,结构为单晶。
实施例3
步骤1.活性炭的预处理:本发明采用活性炭粉作为模板。将活性炭粉在丙酮中浸泡24后,在70℃蒸馏水中浸泡1h,去除活性炭粉中的杂质。随后将活性炭粉置于真空干燥箱干燥,干燥温度为100℃,干燥时间为24h;
步骤2.先驱体溶液的制备:将聚碳硅烷先驱体与环己烷以1:10的质量比配制成先驱体溶液,采用磁力搅拌在200rpm的转速下连续搅拌30min。再以5wt.%的比例混入催化剂二茂铁,随后采用磁力搅拌在200r/min的转速下连续搅拌30min;
步骤3.活性炭负载先驱体配合料的制备:取适量除杂后的活性炭粉与步骤2中配置好的先驱体溶液混合配成活性炭负载先驱体配合料。其中,活性炭粉与先驱体溶液的质量比为2:1。将配合料倒入烧杯中,采用机械搅拌在200rpm的转速下连续搅拌10min;
步骤4.活性炭负载先驱体坯体的制备:为了使所制纳米线预制体具有一定的结构形态,将搅拌后的配合料放入模具中,在压片机中采用3MPa的压力压制成预制体。
卸载后取出压制成型的坯体;
步骤5.聚合物先驱体的裂解:将压制好的活性炭负载先驱体坯体放入管式炉中裂解生长纳米线,通入氩气作为保护气氛,炉内真空度为0.09MPa,裂解过程升温速率为3℃/min,裂解温度为1300℃,保温时间为2h。然后以5℃/min降温至600℃后,随炉冷却;
步骤6.活性炭的去除:将步骤5得到的含有活性炭的碳化硅纳米线预制体放入管式炉中在空气气氛下氧化除去活性炭,升温速率为5℃/min,氧化温度为600℃,保温7h后随炉冷却。至此,得到碳化硅纳米线预制体。本实施例所制碳化硅纳米线预制体中纳米线的体积密度为0.185g/cm3,纳米线的直径为100nm左右,纳米线的晶型为β-SiC,结构为单晶。
实施例4
步骤1.活性炭的预处理:本发明采用活性炭粉作为模板。将活性炭粉在丙酮中浸泡24后,在90℃蒸馏水中浸泡30min,去除活性炭粉中的杂质。随后将活性炭粉置于真空干燥箱干燥,干燥温度为100℃,干燥时间为12h;
步骤2.先驱体溶液的制备:将聚硼锆烷先驱体与环己烷以1:6的质量比配制成先驱体溶液,采用磁力搅拌在200rpm的转速下连续搅拌30min。再以5wt.%的比例混入催化剂二茂铁,随后采用磁力搅拌在200r/min的转速下连续搅拌30min;
步骤3.活性炭负载先驱体配合料的制备:取适量除杂后的活性炭粉与步骤2中配置好的先驱体溶液混合配成活性炭负载先驱体配合料。其中,活性炭粉与先驱体溶液的质量比为1:1。将配合料倒入烧杯中,采用机械搅拌在200rpm的转速下连续搅拌10min;
步骤4.活性炭负载先驱体坯体的制备:为了使所制纳米预制体具有一定的结构形态,将搅拌后的配合料放入模具中,在压片机中采用5MPa的压力压制成预制体。卸载后取出压制成型的坯体;
步骤5.聚合物先驱体的裂解:将压制好的活性炭负载先驱体坯体放入管式炉中裂解,通入氩气作为保护气氛,炉内真空度为0.09MPa,裂解过程升温速率为3℃/min,裂解温度为1500℃,保温时间为3h。然后以5℃/min降温至600℃后,随炉冷却;
步骤6.活性炭的去除:将步骤5得到的含有活性炭的硼化锆纳米预制体放入管式炉中在空气气氛下氧化除去活性炭,升温速率为5℃/min,氧化温度为600℃,保温7h后随炉冷却。至此,得到硼化锆纳米预制体。

Claims (4)

1.一种各向同性陶瓷纳米线预制体的制备方法,其特征在于步骤如下:
步骤1.活性炭的预处理:将活性炭粉在丙酮中浸泡24~48h后,在70-90℃蒸馏水中浸泡30min~1h,去除活性炭粉中的杂质;随后将活性炭粉置于真空干燥箱干燥,干燥温度为60~100℃,干燥时间为12~24h;
步骤2.先驱体溶液的制备:将硅基陶瓷超高温体系先驱体的有机聚合物先驱体与二甲苯或者环己烷以1︰0.5~10的质量比配制成先驱体溶液,采用磁力搅拌在200rpm的转速下连续搅拌30min;再以5wt.%的比例混入催化剂,随后采用磁力搅拌在200r/min的转速下连续搅拌30min;
步骤3.活性炭负载先驱体配合料的制备:将除杂后的活性炭粉与先驱体溶液混合配成活性炭负载先驱体配合料;将配合料倒入烧杯中,采用机械搅拌在200rpm的转速下连续搅拌10min;其中,活性炭粉与先驱体溶液的质量比为1~10︰1;
步骤4.活性炭负载先驱体坯体的制备:将搅拌后的配合料放入模具中,在压片机中采用1~10MPa的压力压制成预制体;
步骤5.聚合物先驱体的裂解:将压制好的活性炭负载先驱体坯体放入真空管式炉中裂解生长纳米线,炉内真空度为0.09MPa,裂解过程升温速率为3~10℃/min,裂解温度为1200~1500℃,保温时间为1~3h;然后以3~10℃/min降温至600℃后,随炉冷却;制备碳化硅纳米线预制体需要通入氩气作为保护气氛,制备氮化硅纳米线预制体时需要通入氮气作为保护气氛;
步骤6.活性炭的去除:将步骤5得到的含有活性炭的陶瓷纳米线预制体放入管式炉中在空气气氛下氧化除去活性炭,升温速率为3~10℃/min,氧化温度为600℃,保温4~7h后随炉冷却;至此,得到陶瓷纳米线预制体。
2.根据权利要求1所述各向同性陶瓷纳米线预制体的制备方法,其特征在于:所述有机聚合物先驱体包括但不限于聚碳硅烷、聚硅氮烷、聚锆碳烷或聚硼锆烷。
3.根据权利要求1所述各向同性陶瓷纳米线预制体的制备方法,其特征在于:所述催化剂包括但不限于二茂铁或苯乙酸铁或二茂镍。
4.根据权利要求1所述各向同性陶瓷纳米线预制体的制备方法,其特征在于:所述活性炭粉至少采用200目粉状活性炭。
CN201910980538.6A 2019-10-16 2019-10-16 一种各向同性陶瓷纳米线预制体的制备方法 Active CN110606747B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910980538.6A CN110606747B (zh) 2019-10-16 2019-10-16 一种各向同性陶瓷纳米线预制体的制备方法
US17/072,100 US12006265B2 (en) 2019-10-16 2020-10-16 Process for the preparation of a ceramic nanowire preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910980538.6A CN110606747B (zh) 2019-10-16 2019-10-16 一种各向同性陶瓷纳米线预制体的制备方法

Publications (2)

Publication Number Publication Date
CN110606747A CN110606747A (zh) 2019-12-24
CN110606747B true CN110606747B (zh) 2021-09-07

Family

ID=68894645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910980538.6A Active CN110606747B (zh) 2019-10-16 2019-10-16 一种各向同性陶瓷纳米线预制体的制备方法

Country Status (2)

Country Link
US (1) US12006265B2 (zh)
CN (1) CN110606747B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046718B (zh) * 2021-03-09 2022-07-22 西北工业大学 一种碳化硅纳米隔热吸波复合材料及其制备方法
CN113347828B (zh) * 2021-05-31 2023-03-17 Oppo广东移动通信有限公司 聚合物陶瓷壳体和电子设备
CN113603500A (zh) * 2021-08-04 2021-11-05 西北工业大学 一种层状结构非氧化物陶瓷纳米线泡沫及制备方法
CN114276163B (zh) * 2022-01-25 2023-04-07 西安交通大学 一种耐高温的轻质高强多孔陶瓷及其制备方法
CN114702325B (zh) * 2022-02-11 2023-05-12 惠州学院 一种在陶瓷粉体中均匀混合大长径比硅基纳米相的方法
CN114956858B (zh) * 2022-05-11 2023-06-06 西安交通大学 一种层状弹塑性氮化硅陶瓷及其制备方法
CN115093239B (zh) * 2022-06-05 2023-03-31 西北工业大学 一种兼具疏水和防火性能的纸及制备方法
CN115058885B (zh) * 2022-06-13 2024-01-30 西北工业大学 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN115322012A (zh) * 2022-07-05 2022-11-11 安徽工程大学 一种超高温陶瓷粉体表面原位生长SiC纳米线的方法
CN115253938B (zh) * 2022-08-10 2023-04-18 航天特种材料及工艺技术研究所 一种耐高温抗辐射弹性碳化硅纳米纤维气凝胶材料及其制备方法
CN115594513B (zh) * 2022-10-18 2023-04-28 郑州大学 一种原位生成碳纤维增强碳化硅陶瓷基复合材料及其制备方法
CN116768648B (zh) * 2023-04-25 2024-04-09 天津中德应用技术大学 一种三维网络微纳结构硅基前驱体超高温弹性陶瓷、制备方法和应用
CN116768635B (zh) * 2023-07-10 2023-11-28 兰溪泛翌精细陶瓷有限公司 一种改性氮化硅复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607743A (zh) * 2009-07-21 2009-12-23 中国科学院上海硅酸盐研究所 一类具有尖晶石结构的钴酸盐纳米线阵列的制备方法
CN102701207A (zh) * 2012-06-21 2012-10-03 西北工业大学 一种制备Al掺杂的碳化硅纳米线的方法
US20150344310A1 (en) * 2014-05-27 2015-12-03 Qatar University Method of synthesizing carbon nanorods and nanowires
CN105884356A (zh) * 2016-04-15 2016-08-24 华东师范大学 一种基于纳米纤维素的碳纳米棒气凝胶的制备方法
EP3326989A1 (en) * 2016-11-28 2018-05-30 Infineon Technologies AG Resin-impregnated boron nitride body and a method for producing the same
CN108329043A (zh) * 2018-01-20 2018-07-27 南京航空航天大学 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN108467253A (zh) * 2018-01-20 2018-08-31 南京航空航天大学 一种碳化硅纳米线预制体增强氧化铝气凝胶材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553616B (zh) * 2013-10-23 2016-03-23 中国科学院上海硅酸盐研究所 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
CN108101542A (zh) * 2017-12-07 2018-06-01 南京航空航天大学 一种SiC泡沫及其制备方法
CN108117403A (zh) 2017-12-13 2018-06-05 南京航空航天大学 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607743A (zh) * 2009-07-21 2009-12-23 中国科学院上海硅酸盐研究所 一类具有尖晶石结构的钴酸盐纳米线阵列的制备方法
CN102701207A (zh) * 2012-06-21 2012-10-03 西北工业大学 一种制备Al掺杂的碳化硅纳米线的方法
US20150344310A1 (en) * 2014-05-27 2015-12-03 Qatar University Method of synthesizing carbon nanorods and nanowires
CN105884356A (zh) * 2016-04-15 2016-08-24 华东师范大学 一种基于纳米纤维素的碳纳米棒气凝胶的制备方法
EP3326989A1 (en) * 2016-11-28 2018-05-30 Infineon Technologies AG Resin-impregnated boron nitride body and a method for producing the same
CN108329043A (zh) * 2018-01-20 2018-07-27 南京航空航天大学 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN108467253A (zh) * 2018-01-20 2018-08-31 南京航空航天大学 一种碳化硅纳米线预制体增强氧化铝气凝胶材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis of Carbide Nanostructures on Monolithic Agricultural-Waste Biomass-Activated Carbon Templates;William L. Bradbury等;《International Journal of Applied Ceramic Technology》;20110705;第8卷(第4期);第947-952页 *
聚合物前驱体热解制备SiC纳米线研究;孔雅玲等;《化学研究》;20180125;第29卷(第1期);第73-78页 *

Also Published As

Publication number Publication date
CN110606747A (zh) 2019-12-24
US20210114940A1 (en) 2021-04-22
US12006265B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
CN110606747B (zh) 一种各向同性陶瓷纳米线预制体的制备方法
CN106866148B (zh) SiC纳米线原位增强的SiCf/SiC复合材料及其制备方法
CN108285355B (zh) 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN103553616B (zh) 原位生长SiC纳米线增强C/SiC复合材料及其制备方法
Li et al. Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800° C
Han et al. Porous SiCnw/SiC ceramics with unidirectionally aligned channels produced by freeze-drying and chemical vapor infiltration
CN115058885B (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN111205100B (zh) 无催化先驱体浸渍裂解法原位生长碳化硅纳米线的方法
CN113061036A (zh) 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
CN101774814A (zh) 陶瓷和碳纳米纤维复合材料及制备方法
CN101104515A (zh) 一种SiC纳米线及其制备方法
CN108218467B (zh) 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
Li et al. In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics
CN114702328B (zh) 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法
CN110776320A (zh) 一种C/SiC-ZrC复相陶瓷基复合材料及其制备方法
CN111848196B (zh) 一种原位碳化硅纳米线增韧碳化硅陶瓷的制备方法
Yang et al. Microstructure and properties of SiO2-based ceramic cores with ball-shaped powders by the preceramic polymer technique in N2 atmosphere
CN115745643A (zh) 一种碳纳米管改性的复合材料及其制备方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN114988901A (zh) 一种高致密SiC/SiC复合材料的快速制备方法
CN113603500A (zh) 一种层状结构非氧化物陶瓷纳米线泡沫及制备方法
CN113896559B (zh) 一种碳化硅/碳纳米管复合材料及其制备方法
CN117342540A (zh) 一种炭气凝胶-热解炭复合材料及其制备方法
CN108383536A (zh) 一种新型碳基复合材料的制备方法
CN114853490A (zh) 兼具优异成型性和良好力学性能的SiC/SiC陶瓷复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant