CN108117403A - 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 - Google Patents
一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN108117403A CN108117403A CN201711330587.2A CN201711330587A CN108117403A CN 108117403 A CN108117403 A CN 108117403A CN 201711330587 A CN201711330587 A CN 201711330587A CN 108117403 A CN108117403 A CN 108117403A
- Authority
- CN
- China
- Prior art keywords
- sic
- nanowire
- based composites
- preparation
- ceramic based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
- C04B2235/483—Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法,属于陶瓷基复合材料领域,制备的SiC纳米线增强SiC陶瓷基复合材料具有强度高,韧性好,密度小,耐高温等优点。该复合材料包括超长SiC纳米线和SiC陶瓷基体,所述超长SiC纳米线通过原位自交联生长组成SiC陶瓷基复合材料预制件,所述的SiC纳米线预制件中的超长SiC纳米线相互缠绕,交联成空间网状结构,所述的SiC陶瓷基体填充于超长SiC纳米线的孔隙中;制备方法包括SiC纳米线预制件的制备、化学气相浸渗、先驱体浸渍裂解,该制备方法可以制备复杂构件,制备方法工艺简单,设备要求低,成本低,环保。
Description
技术领域
本发明属于陶瓷基复合材料领域,尤其涉及一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法。
背景技术
连续SiC纤维增强SiC基(SiCf/SiC)复合材料具有低密度,高比强度,高比模量、低化学活性、高电阻率和低中子辐射诱导活性等特性,在航空航天、核聚变反应堆以及高温结构吸波材料等领域具有广阔的应用前景。目前的SiC纤维增强SiC基复合材料采用的纤维为直径在1μm以上的连续SiC纤维编织件或是直径为1-2μmSiC短纤组成的SiC棉毡,因此SiC纤维增强复合材料的性能受到了限制,特别在断裂韧性等方面还满足不了航空航天、国防等领域的迫切需求,需要开发更耐高温和具有更高损伤容限的SiC陶瓷基复合材料。
SiC纳米线最大弯曲强度为53.4GPa,是微米晶须的两倍,而且SiC纳米线在常温下还具有超塑性,因此以超长SiC纳米线代替传统的SiC纤维材料作为SiC陶瓷基复合材料的增强体有望提高SiC陶瓷基复合材料的强度,断裂韧性等。
目前将SiC纳米线引入SiC陶瓷基复合材料主要是添加入SiC纤维预制体中,但直接添加SiC纳米线的加入量很少,而且SiC纳米线具有巨大的比表面积和很高的长径比,因此很容易发生缠绕或团聚,在纤维内部分布不均匀,起不到相应效果。专利号为CN103993475 B的专利以Si粉和石墨粉为原料在碳纤维表面原位生长SiC纳米线,但是工序复杂,加入量少。专利号为CN 107311682 A的发明专利,采用CVD法在碳纤维表面沉积一层热解碳涂层之后沉积SiC纳米线再制备SiC陶瓷基复合材料,此种方法依旧为在碳纤维预制件中原位生长添加SiC纳米线,依旧没有解决SiC纳米线量少,分布不均匀的问题。专利号为CN106866148 A的发明专利同样是采用CVD原位生长在SiC纤维表面生长SiC纳米线,之后再进行复合,制备SiC复合材料,此种工艺方法与上两篇专利相同都是采用SiC纳米线添加入SiC纤维预制件的方法,SiC纳米线不是主要增强相,只作为辅助增强相存在,量少,分布不均匀。因此现有技术的制备方法大大限制了SiC纳米线在增强SiC陶瓷复合材料方面的作用。
发明内容
本发明提供了一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法,所制备的SiC纳米线增强SiC陶瓷基复合材料强韧性好,致密度高,复合材料中SiC纳米线量大,分布均匀。
为实现以上目的,本发明采用以下技术方案:
一种SiC纳米线增强SiC陶瓷基复合材料,包括超长SiC纳米线,SiC陶瓷基体;所述SiC纳米线的平均直径为20nm-80nm,平均长度为1mm-10mm,所述的超长SiC纳米线通过原位生长自交联组成均匀的空间网格结构的预制体,所述SiC陶瓷基体填充于超长SiC纳米线预制体的孔隙之中,所述SiC陶瓷基体质量占复合材料的60%-70%。
一种SiC纳米线增强SiC陶瓷基复合材料的制备方法,包括以下步骤:
(1)将一定形状三聚氰胺泡棉放置于管式炉中,在50sccm-100sccm的氩气保护下,以5℃/min升温至400℃,再以10℃/min升温至500℃,保温2h热解得到碳泡棉基体,之后将碳泡棉浸渍于浓度为0.01mol/L-0.05mol/L的硝酸镍酒精溶液中,随即取出烘干备用;
(2)将聚碳硅烷研磨成粉末溶解于正庚烷中,所述聚碳硅烷与所述正庚烷的溶解比例为1g:(10-15ml),之后加入活性炭,所述聚碳硅烷的正庚烷溶液与所述活性炭比例为10ml:(5-8g),超声震荡均匀,80℃-120℃烘2h-3h,研磨成粉末;
(3)将步骤(2)中所得粉末放置于氧化铝坩埚中,将步骤(1)中所得碳泡棉基体放置于氧化铝坩埚中上方;之后将氧化铝坩埚放置于管式炉中,在10sccm-20sccm氩气气流中,以10℃/min-15℃/min升温至1200℃-1350℃,保温5h-6h,之后以5℃/min降温至450℃-500℃,通入10sccm-30sccm氧气,保温1h-2h,去除碳泡棉基体得到SiC纳米线预制体;
(4)将步骤(3)所得到的SiC纳米线预制体放入管式炉中,采用三氯甲基硅烷为源气,氢气为还原性气体,氩气为稀释气体,在压强为100Pa-150Pa,温度为1100℃环境下进行化学气相浸渗30h-50h,得到SiC纳米线增强SiC陶瓷基复合材料胚体;
(5)将步骤(4)中所得SiC纳米线增强SiC陶瓷基复合材料胚体进行循环先驱体浸渍裂解,采用真空压力浸渍,浸渍液为聚碳硅烷的二甲苯的溶液,真空度压强为1Pa-2Pa,加压至1.5MPa-2Mp,固化交联温度为80℃-120℃,时间为10h-12h;裂解时先以5℃/min的速率升温至800℃,再以3℃/min的速率升温至1200℃,保温2h-3h,再以3℃/min的速率降温至800℃,之后随炉冷却至室温,浸渍裂解循环次数为12次-13次。
以上步骤中步骤(4)中所述三氯甲基硅烷流量为30sccm,所述氢气流量为30sccm,所述氩气流量为120sccm,步骤(5)中所述的聚碳硅烷与二甲苯的比例为1g:1ml。
本发明的有益效果是:本发明提供了一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法,本发明采用常压CVD的方法制备SiC纳米线,制备工艺简单,所得预制件致密性,成型性好,如图1所示碳化硅纳米线组成的方形预制体致密,稳定,具有一定的力学性能,SiC纳米线平均长度为1-10mm,长度较长,直径为20-80nm,图2中显示出超长碳化硅纳米线致密的相互缠绕,交联,且碳化硅纳米线长径比大,形态好;采用化学气相浸渗与循环先驱体浸渍裂解工艺相结合制备复合材料,首先用化学气相浸渗法对SiC纳米线棉毡定型,初期增密,之后再采用循环先驱体浸渍裂解法封填孔洞,如图3所示碳化硅纳米线之间的孔隙被碳化硅基体填充,形成了微观接触良好的复合材料,最终制得的SiC纳米线增强SiC陶瓷基复合材料密度可达3.1g/cm3,接近SiC陶瓷的实体密度;本发明制备的超长SiC纳米线增强SiC陶瓷基复合材料具有强韧性好,致密度高,密度大,抗氧化能力强等优点,此制备方法可以制备复杂构件,而且制备方法工艺简单,设备要求低,成本低,环保。
附图说明
图1为本发明制备的SiC纳米线棉毡的光学照片,其中,a为表面,b为截面。
图2为本发明制备的组成SiC纳米线预制件的SiC纳米线SEM图。
图3为本发明制备的SiC纳米线增强SiC陶瓷复合材料的SEM形貌图。
图4为本发明制备的SiC纳米线增强SiC陶瓷复合材料的XRD图谱。
具体实施方式
实施例1
(1)超长SiC纳米线预制体的制备:
1)将一定形状三聚氰胺泡棉放置于管式炉中,在50sccm流量的氩气保护下,热解得到碳泡棉基体。之后将碳泡棉浸渍于浓度为0.01mol/L的硝酸镍的酒精溶液中,随即取出,放入90℃烘箱中烘干2h备用。
2)将聚碳硅烷研磨成粉末以比例1g:10ml溶解于正庚烷中,以比例10ml:5g加入活性炭,超声震荡均匀,在100℃烘箱中干燥2h,之后取出研磨成粉末备用。
3)将2)中所得粉末放置于氧化铝坩埚中,将1)中所得碳泡棉基体放置于氧化铝坩埚中上方;之后将氧化铝坩埚放置于管式炉中,以10℃/min的升温速率升温至1250℃保持,进行CVD沉积,之后随炉冷却至450℃通入20sccm流量氧气氧化1.5h,去除碳泡棉基体得到SiC纳米线棉毡。
(2)SiC纳米线增强SiC陶瓷基复合材料的制备:
将步骤(1)所制备的SiC纳米线预制体放入管式炉中,以6℃/min的速率升温至1100℃,通入三甲基氯硅烷30sccm,氢气30sccm,氩气120sccm,保温30h。之后取出在1g:1ml的聚碳硅烷,二甲苯溶液中真空浸渍,真空压力为2Pa,之后加压至2MPa,保持2h,取出,在120℃烘箱中干燥2h;之后放入管式炉中在60sccm的氩气保护下以5℃/min的速率升温至800℃,再以3℃/min的速率升温至1200℃,保温2h,再以3℃/min的速率降温至800℃,之后随炉冷却至室温;重复浸渍裂解工序12次,密度达到3.1g/min,得到成品。
实施例2
(1)超长SiC纳米线预制体的制备:
1)将一定形状三聚氰胺泡棉放置于管式炉中,在70sccm流量的氩气保护下,热解得到碳泡棉基体。之后将碳泡棉浸渍于浓度为0.05mol/L的硝酸镍的酒精溶液中,随即取出,放入100℃烘箱中烘干3h备用。
2)将聚碳硅烷研磨成粉末以比例1g:12ml溶解于正庚烷中,以比例10ml:6g加入活性炭,超声震荡均匀,在100℃烘箱中干燥3h,之后取出研磨成粉末备用。
3)将2)中所得粉末放置于氧化铝坩埚中,将1)中所得碳泡棉基体放置于氧化铝坩埚中上方;之后将氧化铝坩埚放置于管式炉中,以10℃/min的升温速率升温至1300℃保持,进行CVD沉积,之后随炉冷却至450℃通入20sccm流量氧气氧化1.5h,去除碳泡棉基体得到SiC纳米线棉毡。
(2)SiC纳米线增强SiC陶瓷基复合材料的制备:
将步骤(1)所制备的SiC纳米线预制体放入管式炉中,以6℃/min的速率升温至1100℃,通入三甲基氯硅烷30sccm,氢气30sccm,氩气120sccm,保温30h。之后取出在1g:1ml的聚碳硅烷,二甲苯溶液中真空浸渍,真空压力为2Pa,之后加压至2MPa,保持5h,取出,在120℃烘箱中干燥2h;之后放入管式炉中在60sccm的氩气保护下以5℃/min的速率升温至800℃,再以3℃/min的速率升温至1200℃,保温3h,再以3℃/min的速率降温至800℃,之后随炉冷却至室温;重复浸渍裂解工序13次,密度达到3.1g/min,得到成品。
实施例3
(1)超长SiC纳米线预制体的制备:
1)将一定形状三聚氰胺泡棉放置于管式炉中,在100sccm流量的氩气保护下,热解得到碳泡棉基体。之后将碳泡棉浸渍于浓度为0.03mol/L的硝酸镍的酒精溶液中,随即取出,放入90℃烘箱中烘干2h备用。
2)将聚碳硅烷研磨成粉末以比例1g:10ml溶解于正庚烷中,以比例10ml:8g加入活性炭,超声震荡均匀,在100℃烘箱中干燥2h,之后取出研磨成粉末备用。
3)将2)中所得粉末放置于氧化铝坩埚中,将1)中所得碳泡棉基体放置于氧化铝坩埚中上方;之后将氧化铝坩埚放置于管式炉中,以15℃/min的升温速率升温至1200℃保持,进行CVD沉积,之后随炉冷却至500℃通入10sccm流量氧气氧化2h,去除碳泡棉基体得到SiC纳米线棉毡。
(2)SiC纳米线增强SiC陶瓷基复合材料的制备:
将步骤(1)所制备的SiC纳米线预制体放入管式炉中,以6℃/min的速率升温至1100℃,通入三甲基氯硅烷30sccm,氢气30sccm,氩气120sccm,保温50h。之后取出在1g:1ml的聚碳硅烷,二甲苯溶液中真空浸渍,真空压力为5Pa,之后加压至1.5MPa,保持4h,取出,在120℃烘箱中干燥2h;之后放入管式炉中在60sccm的氩气保护下以5℃/min的速率升温至800℃,再以3℃/min的速率升温至1200℃,保温3h,再以3℃/min的速率降温至800℃,之后随炉冷却至室温;重复浸渍裂解工序12次,密度达到3.1g/min,得到成品。
实施例4
(1)超长SiC纳米线预制体的制备:
1)将一定形状三聚氰胺泡棉放置于管式炉中,在80sccm流量的氩气保护下,热解得到碳泡棉基体。之后将碳泡棉浸渍于浓度为0.04mol/L的硝酸镍的酒精溶液中,随即取出,放入90℃烘箱中烘干2h备用。
2)将聚碳硅烷研磨成粉末以比例1g:12ml溶解于正庚烷中,以比例10ml:6g加入活性炭,超声震荡均匀,在120℃烘箱中干燥3h,之后取出研磨成粉末备用。
3)将2)中所得粉末放置于氧化铝坩埚中,将1)中所得碳泡棉基体放置于氧化铝坩埚中上方;之后将氧化铝坩埚放置于管式炉中,以10℃/min的升温速率升温至1300℃保持,进行CVD沉积,之后随炉冷却至500℃通入20sccm流量氧气氧化2h,去除碳泡棉基体得到SiC纳米线棉毡。
(2)SiC纳米线增强SiC陶瓷基复合材料的制备:
将步骤(1)所制备的SiC纳米线预制体放入管式炉中,以6℃/min的速率升温至1100℃,通入三甲基氯硅烷30sccm,氢气30sccm,氩气120sccm,保温40h。之后取出在1g:1ml的聚碳硅烷,二甲苯溶液中真空浸渍,真空压力为10Pa,之后加压至1.5MPa,保持3h,取出,在120℃烘箱中干燥2h;之后放入管式炉中在60sccm的氩气保护下以5℃/min的速率升温至800℃,再以3℃/min的速率升温至1200℃,保温3h,再以3℃/min的速率降温至800℃,之后随炉冷却至室温;重复浸渍裂解工序12次,密度达到3.1g/min,得到成品。
以上所述仅是本发明的优选实施方式,应当指出对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (6)
1.一种SiC纳米线增强SiC陶瓷基复合材料,其特征在于,包括SiC纳米线,SiC陶瓷基体;所述的SiC纳米线通过原位生长自交联组成均匀的空间网格结构的预制体,所述SiC陶瓷基体填充于SiC纳米线的孔隙之中,所述SiC陶瓷基体质量占复合材料的60%-70%。
2.根据权利要求1所述的SiC纳米线增强SiC陶瓷基复合材料,其特征在于,所述复合材料的密度为2.8-3.1g/cm3。
3.根据权利要求1所述的SiC纳米线增强SiC陶瓷基复合材料,其特征在于,所述SiC纳米线的平均直径为20nm-80nm,平均长度为1mm-10mm。
4.一种SiC纳米线增强SiC陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
(1)采用常压CVD法在碳泡棉基体上制备SiC纳米线,之后高温氧化去除碳泡棉基体得到SiC纳米线预制体;
(2)将步骤(1)所制备的SiC纳米线预制体放入管式炉中,采用三氯甲基硅烷为源气,氢气为还原性气体,氩气为稀释气体,在压强为100Pa-150Pa,温度为1100℃环境下进行化学气相浸渗30h-50h,得到SiC纳米线增强SiC陶瓷基复合材料胚体;
(3)将步骤(2)中所得SiC纳米线增强SiC陶瓷基复合材料胚体进行循环先驱体浸渍裂解,采用真空压力浸渍,浸渍液为聚碳硅烷的二甲苯的溶液,真空度压强为5Pa-20Pa,加压至1.5MPa-2Mp,并保持高压2h-5h,固化交联温度为80℃-120℃,时间为10h-12h;裂解时先以5℃/min的速率升温至800℃,再以3℃/min的速率升温至1200℃,保温2h-3h,再以3℃/min的速率降温至800℃,之后随炉冷却至室温,浸渍裂解循环次数为12次-13次。
5.根据权利要求4所述的SiC纳米线增强SiC陶瓷基复合材料的制备方法,其特征在于,步骤(2)中所述三氯甲基硅烷流量为30sccm,所述氢气流量为30sccm,所述氩气流量为120sccm。
6.根据权利要求4所述的SiC纳米线增强SiC陶瓷基复合材料的制备方法,其特征在于,步骤(3)中所述的聚碳硅烷与二甲苯的比例为1g:1ml。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711330587.2A CN108117403A (zh) | 2017-12-13 | 2017-12-13 | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711330587.2A CN108117403A (zh) | 2017-12-13 | 2017-12-13 | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108117403A true CN108117403A (zh) | 2018-06-05 |
Family
ID=62229243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711330587.2A Pending CN108117403A (zh) | 2017-12-13 | 2017-12-13 | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108117403A (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108658614A (zh) * | 2018-06-15 | 2018-10-16 | 南京航空航天大学 | 一种碳化硅陶瓷基复合材料复杂构件近净尺寸成型方法 |
CN108947554A (zh) * | 2018-08-13 | 2018-12-07 | 南京航空航天大学 | 一种SiC纳米线增强SiC多孔陶瓷复合材料及其制备方法 |
CN109485427A (zh) * | 2018-10-26 | 2019-03-19 | 中国人民解放军第五七九工厂 | 一种SiCf/SiC复合材料预制体的PIP快速致密化方法 |
CN110157940A (zh) * | 2019-06-05 | 2019-08-23 | 南京航空航天大学 | 一种激光熔覆合成碳化硅涂层增强铝基复合材料 |
CN111235496A (zh) * | 2020-02-19 | 2020-06-05 | 哈尔滨工业大学 | 一种高强度SiC纳米线增强铝基复合材料的制备方法 |
CN114573357A (zh) * | 2022-02-28 | 2022-06-03 | 南京航空航天大学 | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 |
CN114702328A (zh) * | 2022-04-13 | 2022-07-05 | 西安交通大学 | 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法 |
US12006265B2 (en) | 2019-10-16 | 2024-06-11 | Northwestern Polytechnical University | Process for the preparation of a ceramic nanowire preform |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004292222A (ja) * | 2003-03-26 | 2004-10-21 | National Institute For Materials Science | 炭化ケイ素ナノワイヤーの製造方法 |
JP2005112702A (ja) * | 2003-10-10 | 2005-04-28 | National Institute For Materials Science | SiCナノワイヤーにより強化されたSiC複合材料 |
CN102276279A (zh) * | 2011-06-10 | 2011-12-14 | 中国人民解放军国防科学技术大学 | 碳化硅纤维增强碳化硅复合材料的制备方法 |
CN105152670A (zh) * | 2015-07-01 | 2015-12-16 | 西北工业大学 | 一种SiC纳米线增强SiBCN陶瓷的制备方法 |
CN106086726A (zh) * | 2016-07-18 | 2016-11-09 | 哈尔滨工业大学 | SiC纳米线增强铝基复合材料及其制备方法 |
CN106278267A (zh) * | 2016-08-10 | 2017-01-04 | 大连理工大学 | 一种原位生长碳化硅纳米线增强多孔碳复合材料的制备方法 |
CN107188527A (zh) * | 2017-06-19 | 2017-09-22 | 西安交通大学 | 一种由纳米线构筑的SiC弹性陶瓷及其制备方法 |
-
2017
- 2017-12-13 CN CN201711330587.2A patent/CN108117403A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004292222A (ja) * | 2003-03-26 | 2004-10-21 | National Institute For Materials Science | 炭化ケイ素ナノワイヤーの製造方法 |
JP2005112702A (ja) * | 2003-10-10 | 2005-04-28 | National Institute For Materials Science | SiCナノワイヤーにより強化されたSiC複合材料 |
CN102276279A (zh) * | 2011-06-10 | 2011-12-14 | 中国人民解放军国防科学技术大学 | 碳化硅纤维增强碳化硅复合材料的制备方法 |
CN105152670A (zh) * | 2015-07-01 | 2015-12-16 | 西北工业大学 | 一种SiC纳米线增强SiBCN陶瓷的制备方法 |
CN106086726A (zh) * | 2016-07-18 | 2016-11-09 | 哈尔滨工业大学 | SiC纳米线增强铝基复合材料及其制备方法 |
CN106278267A (zh) * | 2016-08-10 | 2017-01-04 | 大连理工大学 | 一种原位生长碳化硅纳米线增强多孔碳复合材料的制备方法 |
CN107188527A (zh) * | 2017-06-19 | 2017-09-22 | 西安交通大学 | 一种由纳米线构筑的SiC弹性陶瓷及其制备方法 |
Non-Patent Citations (1)
Title |
---|
曹湘洪: "《现代化工•冶金•材料•能源 中国工程院化工、冶金与材料工程学部第九届学术会议论文集 下》", 30 September 2012, 中国矿业大学出版社 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108658614A (zh) * | 2018-06-15 | 2018-10-16 | 南京航空航天大学 | 一种碳化硅陶瓷基复合材料复杂构件近净尺寸成型方法 |
CN108947554A (zh) * | 2018-08-13 | 2018-12-07 | 南京航空航天大学 | 一种SiC纳米线增强SiC多孔陶瓷复合材料及其制备方法 |
CN109485427A (zh) * | 2018-10-26 | 2019-03-19 | 中国人民解放军第五七九工厂 | 一种SiCf/SiC复合材料预制体的PIP快速致密化方法 |
CN110157940A (zh) * | 2019-06-05 | 2019-08-23 | 南京航空航天大学 | 一种激光熔覆合成碳化硅涂层增强铝基复合材料 |
US12006265B2 (en) | 2019-10-16 | 2024-06-11 | Northwestern Polytechnical University | Process for the preparation of a ceramic nanowire preform |
CN111235496A (zh) * | 2020-02-19 | 2020-06-05 | 哈尔滨工业大学 | 一种高强度SiC纳米线增强铝基复合材料的制备方法 |
CN114573357A (zh) * | 2022-02-28 | 2022-06-03 | 南京航空航天大学 | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 |
CN114702328A (zh) * | 2022-04-13 | 2022-07-05 | 西安交通大学 | 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108117403A (zh) | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 | |
CN111099911B (zh) | 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法 | |
Li et al. | Fabrication and characterization of carbon-bonded carbon fiber composites with in-situ grown SiC nanowires | |
CN104150939B (zh) | 一种电泳沉积CNTs增强陶瓷基复合材料的制备方法 | |
CN106957180B (zh) | 一种Cf/C-SiC复合材料及其制备方法和应用 | |
CN107903067A (zh) | 一种原位生长SiC纳米线增强SiC陶瓷基复合材料及其制备方法 | |
CN108947554A (zh) | 一种SiC纳米线增强SiC多孔陶瓷复合材料及其制备方法 | |
US5217657A (en) | Method of making carbon-carbon composites | |
CN103964883B (zh) | 一维纳米纤维增强增韧碳陶复合材料薄壁或楔形构件的制备方法 | |
CN105601309A (zh) | 三维纤维预制件增强氧化铝复合材料及其制备方法 | |
CN102021817B (zh) | 原位生长有碳纳米管的碳化硅纤维立体织物及其复合材料及制备方法 | |
CN107311682A (zh) | 一种SiC纳米线增强Cf/SiC陶瓷基复合材料及其制备方法 | |
JP2013511467A5 (zh) | ||
CN102330328A (zh) | 一种三维纤维/碳纳米管多级增强体及其制备方法 | |
CN102596564A (zh) | 含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法 | |
Fu et al. | Carbon nanotube-toughened interlocking buffer layer to improve the adhesion strength and thermal shock resistance of SiC coating for C/C–ZrC–SiC composites | |
CN108329043A (zh) | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 | |
CN106966745B (zh) | 一种热压法制备热结构复合材料的方法 | |
CN112645725B (zh) | 一种带有台阶结构的陶瓷基复合材料构件及其制备方法 | |
CN108083832A (zh) | 一种C/C-HfC复合材料的高效低成本近净成形制备方法 | |
CN114573357A (zh) | 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法 | |
CN109608217A (zh) | 一种含MAX相界面层的SiCf/SiC复合材料的制备方法 | |
CN103951454A (zh) | 一种SiC晶须增强的陶瓷基复合材料 | |
CN106947949A (zh) | 一种含Al/Cu双涂层的SiC连续纤维及其制备方法和应用 | |
CN108329056A (zh) | 一种补强连续纤维增强陶瓷基复合材料表面的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180605 |
|
RJ01 | Rejection of invention patent application after publication |