CN114702328A - 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法 - Google Patents

一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法 Download PDF

Info

Publication number
CN114702328A
CN114702328A CN202210386075.2A CN202210386075A CN114702328A CN 114702328 A CN114702328 A CN 114702328A CN 202210386075 A CN202210386075 A CN 202210386075A CN 114702328 A CN114702328 A CN 114702328A
Authority
CN
China
Prior art keywords
sic
nanowire network
ceramic
sic nanowire
layered porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210386075.2A
Other languages
English (en)
Other versions
CN114702328B (zh
Inventor
王红洁
杨宇航
庄磊
卢德
苏磊
牛敏
彭康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210386075.2A priority Critical patent/CN114702328B/zh
Publication of CN114702328A publication Critical patent/CN114702328A/zh
Application granted granted Critical
Publication of CN114702328B publication Critical patent/CN114702328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法,以SiC纳米线气凝胶所提供的三维网络结构为骨架及增强体,能够确保SiC纳米线能在陶瓷基体中的均匀分布,通过基体与增强相间界面层的构筑,进一步优化了多孔陶瓷的强/韧力学性能,并且该工艺对设备要求低,制备效率高,能够制备形状和气孔率可控的多孔SiC陶瓷材料,易于实现工业规模化生产。经本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,可实现对多孔陶瓷在微纳多尺度的增韧,适合用于高温隔热、航空航天、生物医疗和能源化工等诸多领域。

Description

一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法
技术领域
本发明属于多孔陶瓷制备技术领域,具体涉及一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法。
背景技术
多孔陶瓷是一种经高温烧成、包含大量贯通和非贯通的孔道结构的块状陶瓷材料。SiC陶瓷具有耐高温、硬度高、热膨胀系数小、耐化学腐蚀和生物相容性好等优良特性,是一种被广泛应用的高温结构陶瓷。多孔SiC陶瓷材料在保留SiC固有特性的同时,还具有气孔率较高、体积密度小和比表面积大等多孔材料的优点,这些优良性能使得多孔SiC陶瓷广泛应用于过滤净化、高温隔热、航空航天、生物医疗和能源化工等诸多领域。
目前,多孔SiC陶瓷主要是以陶瓷粉体为原料,通过注射、干压、烧结等工艺进行成型得到多孔陶瓷材料,这些方法得到的多孔陶瓷具有孔隙率高、孔径可控、生产效率高等优点,但由于陶瓷本身存在脆性大、强度差和损伤容限低等问题,多孔SiC陶瓷在使用过程中寿命较低,且性能可靠性较差,制约了多孔SiC陶瓷的广泛应用。提高多孔SiC陶瓷材料的强韧性,可以通过在SiC陶瓷中引入晶须或纳米线等增强相来实现。SiC纳米线是一种物理性能和化学性能都十分优异的纳米增强体,其拉伸强度可达53.4GPa,远大于SiC纤维和SiC晶须。作为增强体引入到材料基体中时,SiC纳米线可通过裂纹偏转、脱粘及桥连等增韧机制,有效地强韧化基体材料。同时SiC纳米线的使用温度高,具有相同的热膨胀系数,可以与SiC陶瓷基体更好地配合,实现更优的综合性能。
目前,采用SiC纳米线对多孔SiC陶瓷进行增韧的应用有两种:第一种是在材料内部原位生长SiC纳米线,这种方法生长的纳米线无法达到均匀的分散效果,并且纳米线的总体积分数不足、所含杂质多;第二种是将纯化的纳米线与浆料混合后进一步加工,这种方法在处理过程中纳米线容易发生团聚,并且纳米线之间没有相互作用。因此上述的两种方法均存在一定的局限性,无法对多孔SiC陶瓷起到很好地增韧作用。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法,能够有效解决纳米线无法对多孔SiC陶瓷起到很好的增韧作用的问题。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,包括以下步骤:
1)将SiC纳米线气凝胶通过热压处理,制得具有层状结构的SiC纳米线网络;
2)对具有层状结构的SiC纳米线网络进行界面修饰处理,沉积获得界面层;
3)使用陶瓷前驱体为原料,对经过步骤2)处理的沉积有界面层的层状结构的SiC纳米线网络进行若干次真空浸渍-交联固化-高温裂解处理,制得SiC纳米线网络增强层状多孔SiC陶瓷。
优选地,步骤1)中,所用SiC纳米线气凝胶具有由SiC纳米线构建的三维网络微观结构,密度为2~50mg/cm3,直径为20~500nm,组成相为β-SiC。
优选地,步骤1)中,热压处理是在1000~1500℃下,8~20MPa的压力下,保温处理0.5~3h。
优选地,步骤1)制得的具有层状结构的SiC纳米线网络由平行排列的SiC纳米线层组成,密度为200~1000mg/cm3;SiC纳米线层是由SiC纳米线相互搭接所构成的网络。
优选地,步骤2)中,采用化学气相渗透法或化学气相沉积法进行界面修饰,获得的界面层为热解碳界面层、SiC界面层或氮化硼界面层。
优选地,步骤2)中,界面层的厚度为30~150nm。
优选地,步骤3)中,陶瓷前驱体采用聚碳硅烷或液态超支化聚碳硅烷;真空浸渍处理是在真空压力容器中,将聚碳硅烷的二甲苯溶液或液态超支化聚碳硅烷浸渗入沉积有界面层的层状SiC纳米线网络中,抽真空浸渍2-4h;交联固化处理是在惰性气氛下,于80℃~200℃,处理1~5h;高温裂解处理是在800℃~1500℃下,处理1~4h;
真空浸渍-交联固化-高温裂解次数为1~5次。
本发明公开了采用上述的制备方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,该SiC纳米线网络增强层状多孔SiC陶瓷由层状SiC纳米线网络、界面层和SiC陶瓷基体组成。
优选地,该SiC纳米线网络增强层状多孔SiC陶瓷的密度为0.9~1.8g/cm3,孔隙率为43%~72%,SiC纳米线的体积分数为6%~31%。
优选地,该SiC纳米线网络增强层状多孔SiC陶瓷的弯曲强度为40~210MPa,压缩强度为30~220MPa。
与现有技术相比,本发明具有以下有益效果:
本发明公开的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,以SiC纳米线气凝胶所提供的三维网络结构为骨架及增强体,得益于SiC气凝胶在热压过程中形成了丰富的纳米线搭接结点,骨架自身其具有高强高回弹的结构特性,可保证后续当陶瓷相通过浸渍裂解进入纳米线网络结构内部后,骨架自身的结构稳定性,进而确保SiC纳米线能在陶瓷基体中的均匀分布。而通过在SiC纳米线表面与SiC陶瓷基体间构筑界面层,可调控其二者之间的界面结合,实现SiC纳米线在陶瓷相内部的可控脱粘和拔出,进而优化多孔陶瓷的强/韧力学性能。本发明采用的前驱体浸渍裂解工艺,流程简单,制备温度较低,对设备要求低,制备效率高,能够制备形状和气孔率可控的多孔SiC陶瓷材料,易于实现工业规模化生产。
经本发明方法制备得到的SiC纳米线网络增强层状多孔SiC陶瓷,可实现对多孔陶瓷在微纳多尺度的增韧:一方面,SiC纳米线网络结构作为增强相,在陶瓷发生断裂时,纳米线自身可通过拔出和桥接消耗能量,实现陶瓷相纳米尺度的局部增韧;另一方面,所制备的多孔陶瓷具有微米尺度的层状结构特点,当断裂发生时,可通过诱导裂纹沿着层间偏转消耗能量,从而实现多孔SiC陶瓷强韧化的协同提高。
附图说明
图1为SiC纳米线网络增强层状多孔SiC陶瓷制备流程图;
图2为实施例1中SiC气凝胶热压制得的层状SiC纳米线网络宏观形貌;
图3为实施例1中SiC气凝胶热压制得的层状SiC纳米线网络微观形貌;
图4为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的XRD谱图;
图5为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的微观形貌;
图6为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的压缩试验应力应变曲线;
图7为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的三点弯曲试验应力应变曲线;
图8为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的三点弯曲试验断口宏观形貌;
图9为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的三点弯曲试验断口微观形貌;
图10为实施例2制得的SiC纳米线网络增强层状多孔SiC陶瓷的压缩试验应力应变曲线和三点弯曲试验应力应变曲线;
图11为实施例3制得的SiC纳米线网络增强层状多孔SiC陶瓷的压缩试验应力应变曲线和三点弯曲试验应力应变曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
参见图1,本发明的SiC纳米线网络增强层状多孔SiC陶瓷制备方法的工艺流程图,包括以下步骤:
1)热压成型:选取合适密度的SiC纳米线气凝胶,在模具中部分热压成型,得到具有层状结构的SiC纳米线网络;
2)界面层修饰:采用化学气相渗透或化学气相沉积工艺,在层状SiC纳米线网络中的纳米线表面沉积一定厚度的界面层;
3)前驱体真空浸渍裂解:将沉积界面层后的层状SiC纳米线网络在液态超支化聚碳硅烷中真空浸渍,保持一定时间后取出,在烘箱中以80~200℃固化交联一定时间;之后放入管式炉中在氩气的保护下以1000~1500℃温度裂解一定时间;
4)循环进行前驱体真空浸渍裂解1~5次,直至材料达到所需要的密度。
本发明所用的SiC纳米线气凝胶采用中国专利ZL201811626203.6公开的SiC纳米线气凝胶。
实施例1
本实施例制备了密度为1.7g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,具体步骤如下:
1)以密度为15mg/cm3的SiC纳米线气凝胶为原料,在部分热压模具中,在10MPa的压力下,升温至1300℃保温2h,得到具有层状结构的SiC纳米线网络,其密度为400mg/cm3
2)采用化学气相沉积法在层状SiC纳米线网络的纳米线表面沉积厚度为100nm的PyC层;
3)将沉积PyC层的层状SiC纳米线网络在液态超支化聚碳硅烷中真空浸渍2h后,在烘箱中以150℃固化交联2h,再放入管式炉中,在氩气的保护下,以5℃/min升温至1100℃裂解2h;
4)循环进行步骤3)共4次,得到密度为1.7g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,孔隙率为46%,SiC纳米线的体积分数为12.5%。
本发明上述实施例制得的SiC纳米线网络增强层状多孔SiC陶瓷的性能试验结果如下:
参见图2,为实施例1中将SiC气凝胶通过热压工艺制得的具有层状结构的SiC纳米线网络宏观形貌。该层状SiC纳米线网络的密度为400mg/cm3,直径为40mm,高度为11.6mm。
参见图3,为实施例1中将SiC气凝胶通过热压工艺制得的具有层状结构的SiC纳米线网络微观形貌。从图(a)中可以看出,采用本发明方法制得的SiC纳米线网络预制体在微米尺度具有明显的层状结构,从图(b)中,可以看出SiC纳米线之间具有明显的相互搭接,并形成许多了搭接结点。
参见图4,为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的XRD谱图。从XRD图可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷主要成分为C和SiC,其中SiC来自SiC纳米线网络和前驱体裂解产物。
参见图5,为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的微观扫描照片。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷具有明显的层状结构。
参见图6,为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的压缩实验应力应变曲线。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,在密度为1.7g/cm3、孔隙率为46%时,压缩强度可以达到183.31MPa;应变从0到20%的过程中,弯曲应力从加载到达最大值,为线性变形阶段,应力应变曲线有明显的“锯齿”状变形,这是由于在断裂过程中层间发生明显裂纹偏转造成的;应变达到20%之后,试样发生伪塑性断裂,应力应变曲线存在明显的平台区,这是由于断裂过程中SiC纳米线的脱粘、拔出和桥连起到了很好的增韧效果。
参见图7,为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的三点弯曲实验应力应变曲线。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,在密度为1.7g/cm3、孔隙率为46%时,弯曲强度可以达到169.39MPa,断裂应变为1.28%,说明SiC纳米线网络增强体和层状结构起到了多级增韧的作用。
参见图8,为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的三点弯曲实验断口宏观形貌。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷在三点弯曲试验中,断裂过程中裂纹沿层间偏转,极大增加了裂纹长度,有效地增韧了多孔陶瓷。
参见图9,为实施例1制得的SiC纳米线网络增强层状多孔SiC陶瓷的三点弯曲实验断口微观形貌。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷在三点弯曲试验的断口扫描照片中,存在很多SiC纳米线拔出留下的孔洞和线头,同时还有很多从SiC基体中脱粘并桥连的SiC纳米线。
实施例2
本实施例制备了密度为0.9g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,具体步骤如下:
1)以密度为10mg/cm3的SiC纳米线气凝胶为原料,在部分热压模具中,在10MPa的压力下,升温至1300℃保温2h,得到具有层状结构的SiC纳米线网络,其密度为200mg/cm3
2)采用化学气相沉积法在层状SiC纳米线网络的纳米线表面沉积厚度为50nm的PyC层;
3)将沉积PyC层的层状SiC纳米线网络在液态超支化聚碳硅烷中真空浸渍2h后,在烘箱中以150℃固化交联2h,再放入管式炉中,在氩气的保护下,以5℃/min升温至1100℃裂解2h;
4)循环进行步骤3)共1次,得到密度为0.9g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,孔隙率为72%,SiC纳米线的体积分数为6.25%。
本实施例制得的SiC纳米线网络增强层状多孔SiC陶瓷的性能试验结果如下:
参见图10,为实施例2制得的SiC纳米线网络增强层状多孔SiC陶瓷的压缩实验应力应变曲线。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,在密度为0.9g/cm3、孔隙率为72%时,压缩强度为33.63MPa,弯曲强度为44.56MPa。
实施例3
本实施例制备了密度为1.8g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,具体步骤如下:
1)以密度为30mg/cm3的SiC纳米线气凝胶为原料,在部分热压模具中,在15MPa的压力下,升温至1300℃保温2h,得到具有层状结构的SiC纳米线网络,其密度为600mg/cm3
2)采用化学气相沉积法在层状SiC纳米线网络的纳米线表面沉积厚度为150nm的PyC层;
3)将沉积PyC层的层状SiC纳米线网络在液态超支化聚碳硅烷中真空浸渍2h后,在烘箱中以150℃固化交联2h,再放入管式炉中,在氩气的保护下,以5℃/min升温至1100℃裂解2h;
4)循环进行步骤3)共5次,得到密度为1.8g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,孔隙率为43%,SiC纳米线的体积分数为18.75%。
本实施例制得的SiC纳米线网络增强层状多孔SiC陶瓷的性能试验结果如下:
参见图11,为实施例3制得的SiC纳米线网络增强层状多孔SiC陶瓷的压缩实验应力应变曲线。从图中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,在密度为1.8g/cm3、孔隙率为43%时,压缩强度为220.51MPa,弯曲强度为208.57MPa。
实施例4
本实施例制备了密度为1.3g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,具体步骤如下:
1)以密度为15mg/cm3的SiC纳米线气凝胶为原料,在部分热压模具中,在10MPa的压力下,升温至1300℃保温2h,得到具有层状结构的SiC纳米线网络,其密度为400mg/cm3
2)采用化学气相沉积法在层状SiC纳米线网络的纳米线表面沉积厚度为100nm的PyC层;
3)将沉积PyC层的层状SiC纳米线网络在液态超支化聚碳硅烷中真空浸渍2h后,在烘箱中以150℃固化交联2h,再放入管式炉中,在氩气的保护下,以5℃/min升温至1100℃裂解2h;
4)循环进行步骤3)共2次,得到密度为1.3g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,孔隙率为59%,SiC纳米线的体积分数为12.5%。
实施例5
本实施例制备了密度为1.6g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,具体步骤如下:
1)以密度为15mg/cm3的SiC纳米线气凝胶为原料,在部分热压模具中,在10MPa的压力下,升温至1300℃保温2h,得到具有层状结构的SiC纳米线网络,其密度为400mg/cm3
2)采用化学气相沉积法在层状SiC纳米线网络的纳米线表面沉积厚度为100nm的PyC层;
3)将沉积PyC层的层状SiC纳米线网络在液态超支化聚碳硅烷中真空浸渍2h后,在烘箱中以150℃固化交联2h,再放入管式炉中,在氩气的保护下,以5℃/min升温至1100℃裂解2h;
4)循环进行步骤3)共3次,得到密度为1.6g/cm3的SiC纳米线网络增强层状多孔SiC陶瓷,孔隙率为50%,SiC纳米线的体积分数为12.5%。
此外,本发明上述实施例1~5制得的SiC纳米线网络增强层状多孔SiC陶瓷的性能试验结果如下表1所示:
表1
Figure BDA0003595020520000101
Figure BDA0003595020520000111
从表1中可以看出,采用本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,随着浸渍裂解循环次数的增加,密度逐渐增大,气孔率逐渐减小,压缩强度和弯曲强度越来越大。
综上所述,本发明以SiC纳米线气凝胶所提供的三维网络结构为骨架及增强体,能够确保SiC纳米线能在陶瓷基体中的均匀分布,通过基体与增强相间界面层的构筑,进一步优化了多孔陶瓷的强/韧力学性能,并且该工艺对设备要求低,制备效率高,能够制备形状和气孔率可控的多孔SiC陶瓷材料,易于实现工业规模化生产。经本发明方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,可实现对多孔陶瓷在微纳多尺度的增韧,适合用于高温隔热、航空航天、生物医疗和能源化工等诸多领域。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,包括以下步骤:
1)将SiC纳米线气凝胶通过热压处理,制得具有层状结构的SiC纳米线网络;
2)对具有层状结构的SiC纳米线网络进行界面修饰处理,沉积获得界面层;
3)使用陶瓷前驱体为原料,对经过步骤2)处理的沉积有界面层的层状结构的SiC纳米线网络进行若干次真空浸渍-交联固化-高温裂解处理,制得SiC纳米线网络增强层状多孔SiC陶瓷。
2.根据权利要求1所述的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,步骤1)中,所用SiC纳米线气凝胶具有由SiC纳米线构建的三维网络微观结构,密度为2~50mg/cm3,直径为20~500nm,组成相为β-SiC。
3.根据权利要求1所述的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,步骤1)中,热压处理是在1000~1500℃下,8~20MPa的压力下,保温处理0.5~3h。
4.根据权利要求1所述的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,步骤1)制得的具有层状结构的SiC纳米线网络由平行排列的SiC纳米线层组成,密度为200~1000mg/cm3;SiC纳米线层是由SiC纳米线相互搭接所构成的网络。
5.根据权利要求1所述的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,步骤2)中,采用化学气相渗透法或化学气相沉积法进行界面修饰,获得的界面层为热解碳界面层、SiC界面层或氮化硼界面层。
6.根据权利要求1所述的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,步骤2)中,界面层的厚度为30~150nm。
7.根据权利要求1所述的SiC纳米线网络增强层状多孔SiC陶瓷的制备方法,其特征在于,步骤3)中,陶瓷前驱体采用聚碳硅烷或液态超支化聚碳硅烷;真空浸渍处理是在真空压力容器中,将聚碳硅烷的二甲苯溶液或液态超支化聚碳硅烷浸渗入沉积有界面层的层状SiC纳米线网络中,抽真空浸渍2-4h;交联固化处理是在惰性气氛下,于80℃~200℃,处理1~5h;高温裂解处理是在800℃~1500℃下,处理1~4h;
真空浸渍-交联固化-高温裂解次数为1~5次。
8.采用权利要求1~7中任意一项所述的制备方法制得的SiC纳米线网络增强层状多孔SiC陶瓷,其特征在于,该SiC纳米线网络增强层状多孔SiC陶瓷由层状SiC纳米线网络、界面层和SiC陶瓷基体组成。
9.根据权利要求8所述的SiC纳米线网络增强层状多孔SiC陶瓷,其特征在于,该SiC纳米线网络增强层状多孔SiC陶瓷的密度为0.9~1.8g/cm3,孔隙率为43%~72%,SiC纳米线的体积分数为6%~31%。
10.根据权利要求8所述的SiC纳米线网络增强层状多孔SiC陶瓷,其特征在于,该SiC纳米线网络增强层状多孔SiC陶瓷的弯曲强度为40~210MPa,压缩强度为30~220MPa。
CN202210386075.2A 2022-04-13 2022-04-13 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法 Active CN114702328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210386075.2A CN114702328B (zh) 2022-04-13 2022-04-13 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210386075.2A CN114702328B (zh) 2022-04-13 2022-04-13 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114702328A true CN114702328A (zh) 2022-07-05
CN114702328B CN114702328B (zh) 2023-05-02

Family

ID=82175550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210386075.2A Active CN114702328B (zh) 2022-04-13 2022-04-13 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114702328B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716759A (zh) * 2022-10-26 2023-02-28 南京工业大学 一种具有高柔韧性的多孔SiC纳米线薄膜及其制备方法
CN116444293A (zh) * 2023-04-23 2023-07-18 西安交通大学 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
CN104803685A (zh) * 2015-04-08 2015-07-29 西北工业大学 一种微纳米纤维/陶瓷基复合材料的制备方法
CN107188527A (zh) * 2017-06-19 2017-09-22 西安交通大学 一种由纳米线构筑的SiC弹性陶瓷及其制备方法
CN108117403A (zh) * 2017-12-13 2018-06-05 南京航空航天大学 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
US20180273431A1 (en) * 2016-04-21 2018-09-27 Florida State University Research Foundation, Inc. Ceramic composite materials and methods
CN108947554A (zh) * 2018-08-13 2018-12-07 南京航空航天大学 一种SiC纳米线增强SiC多孔陶瓷复合材料及其制备方法
CN109020628A (zh) * 2018-08-04 2018-12-18 南京航空航天大学 一种SiC纳米线增强多孔陶瓷复合材料及其制备方法
CN112341234A (zh) * 2020-11-24 2021-02-09 中国科学院金属研究所 一种低成本、高强度纤维增强纳米多孔炭复合材料的制备方法
CN113603500A (zh) * 2021-08-04 2021-11-05 西北工业大学 一种层状结构非氧化物陶瓷纳米线泡沫及制备方法
CN113999015A (zh) * 2021-11-10 2022-02-01 西安交通大学 一种轻质高强的弹性陶瓷及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112702A (ja) * 2003-10-10 2005-04-28 National Institute For Materials Science SiCナノワイヤーにより強化されたSiC複合材料
CN104803685A (zh) * 2015-04-08 2015-07-29 西北工业大学 一种微纳米纤维/陶瓷基复合材料的制备方法
US20180273431A1 (en) * 2016-04-21 2018-09-27 Florida State University Research Foundation, Inc. Ceramic composite materials and methods
CN107188527A (zh) * 2017-06-19 2017-09-22 西安交通大学 一种由纳米线构筑的SiC弹性陶瓷及其制备方法
CN108117403A (zh) * 2017-12-13 2018-06-05 南京航空航天大学 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN109020628A (zh) * 2018-08-04 2018-12-18 南京航空航天大学 一种SiC纳米线增强多孔陶瓷复合材料及其制备方法
CN108947554A (zh) * 2018-08-13 2018-12-07 南京航空航天大学 一种SiC纳米线增强SiC多孔陶瓷复合材料及其制备方法
CN112341234A (zh) * 2020-11-24 2021-02-09 中国科学院金属研究所 一种低成本、高强度纤维增强纳米多孔炭复合材料的制备方法
CN113603500A (zh) * 2021-08-04 2021-11-05 西北工业大学 一种层状结构非氧化物陶瓷纳米线泡沫及制备方法
CN113999015A (zh) * 2021-11-10 2022-02-01 西安交通大学 一种轻质高强的弹性陶瓷及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716759A (zh) * 2022-10-26 2023-02-28 南京工业大学 一种具有高柔韧性的多孔SiC纳米线薄膜及其制备方法
CN116444293A (zh) * 2023-04-23 2023-07-18 西安交通大学 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN114702328B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN110606747B (zh) 一种各向同性陶瓷纳米线预制体的制备方法
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
CN114702328B (zh) 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法
JP4106086B2 (ja) セラミックス基繊維複合材料
US20080143005A1 (en) Method of Producing Carbon Fiber Reinforced Ceramic Matrix Composites
KR101494116B1 (ko) SiC 세라믹 재료 및 SiC 세라믹 구조체 및 그 제조 방법
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
KR20100010023A (ko) 열구조적 복합물 재료 부재의 제조 방법, 및 그에 의해 얻어지는 부재
CN112341229B (zh) 一种梯度C/ZrC-SiC超高温陶瓷基复合材料及其制备方法
CN114315394B (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN112010653B (zh) 一种纤维增强硅硼氮复合材料及其制备方法
CN113754455B (zh) 多尺度增韧铺层结构吸波陶瓷基复合材料及其制备方法
CN114573357A (zh) 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN114716258B (zh) 一种碳纤维增强碳化硼复合材料的制备方法
JP4795600B2 (ja) 連続複合材共押出法、装置、および組成物
KR100307509B1 (ko) 세라믹 함유 탄소/탄소 복합재료 및 그의 제조 방법
CN113121253B (zh) 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法
KR100689636B1 (ko) 금속실리콘 용융침투 공정에 의한 탄소섬유 강화 탄화규소복합체 제조방법
KR100838825B1 (ko) 탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의제조방법
ZHENG et al. Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane
CN115124360A (zh) 一种碳纤维增韧陶瓷材料及其制备方法
JP3604438B2 (ja) 炭化珪素基繊維複合材料およびその製造方法
JP2002255664A (ja) C/c複合材及びその製造方法
Liang et al. Preparation and characterization of an all oxide ceramic matrix composite by a novel method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant