CN116444293A - 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用 - Google Patents

一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN116444293A
CN116444293A CN202310441726.8A CN202310441726A CN116444293A CN 116444293 A CN116444293 A CN 116444293A CN 202310441726 A CN202310441726 A CN 202310441726A CN 116444293 A CN116444293 A CN 116444293A
Authority
CN
China
Prior art keywords
electromagnetic shielding
porous ceramic
silicon carbide
strength porous
shielding effectiveness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310441726.8A
Other languages
English (en)
Inventor
王红洁
张吉军
庄磊
卢德
苏磊
牛敏
彭康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310441726.8A priority Critical patent/CN116444293A/zh
Publication of CN116444293A publication Critical patent/CN116444293A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用,属于复合材料的制备领域。该方法以具有三维网络结构的碳化硅纳米线气凝胶为基体,以甲基三氯硅烷和甲烷为前驱体,通过化学气相渗透法在纳米线表面依次交替沉积碳化硅层和碳层。经该方法制得的多孔陶瓷在保证三维网络多孔结构的同时,可实现多孔陶瓷力学性能的大幅提高,在低相对密度3.13%~31.25%时,压缩强度为1.1~45.9MPa,比压缩强度为1.0~4.6*104N·m/kg,且表现出“伪塑性”,承受载荷破坏时不会突然脆断,大大提高了可靠性;同时,这种层替结构的多孔陶瓷在8.2~12.4GHz波段的电磁屏蔽效能为42.8dB,展现出优异的电磁屏蔽性能;有望应用于极端环境做电磁屏蔽材料。

Description

一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和 应用
技术领域
本发明属于多孔陶瓷屏蔽效能结构功能一体化材料领域,具体涉及一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用。
背景技术
随着电磁科技的飞速发展,电子产品已广泛应用于各行各业,给人们的生活带来了极大的便利。但是电子产品释放的电磁波无处不在,带来的电磁污染问题不容忽视,电磁辐射不仅会使电子设备难以可靠运行,还会对生态环境造成危害,对人体及动植物的健康也会带来极大的伤害。而电磁屏蔽材料可借助电形式损耗和涡流形式损耗阻止或减少电磁能量的传输,因此电磁屏蔽材料在电磁防护领域发挥着越来越重要的作用。目前,金属材料做电磁屏蔽材料已得到广泛应用,如采用金属外壳、金属网等结构,通过材料接地和密闭空腔的方式,将电磁波反射和吸收损耗。但是,金属材料存在密度较高、抗腐蚀性差、高温稳定性差以及可加工性能低等固有缺陷,极大地限制了其在医学领域、军事领域、空天领域的应用发展。因此,制备具有高效电磁屏蔽性能、还兼具轻质高强、易加工、抗腐蚀等特性的电磁屏蔽材料是一个迫切的需求,但仍然是一个挑战。
碳化硅材料,作为一种传统的介电型吸波剂,由于其具有可以调谐的介电性能以及高强度、高硬度、耐磨、耐腐蚀、抗氧化等特点,得到了广泛的关注,特别是碳化硅多孔材料,还同时兼具低体积密度和高比表面积等优良特性,更是成为众多领域研究的热点材料。但是,传统的制备碳化硅多孔陶瓷的方法,如颗粒堆积烧结法、直接发泡法、复制模板法和模板牺牲法等具有各自的优势,但同时都存在着共同的问题,比如当孔隙率较高时,强度太低,难以作为结构材料应用;当强度高时,孔隙率过低,密度较大,难以满足轻量化的现代需求;此外,其韧性差、易脆断、可靠性不足的问题更是成为致命缺点。因此,在保持较低密度的同时,实现强度的大幅提高有着重要意义。
碳材料由于具有密度低、强度高、结构稳定、导电导热性好等许多优异的性能,在电磁屏蔽领域展现出了巨大的应用潜力。碳的掺入可以提高碳化硅多孔陶瓷的导电性,优化材料的阻抗匹配,提高电磁波损耗。但是,现有的冷冻干燥法等掺碳方法难以实现碳在纳米线上的均匀涂覆,且原料易团聚,从而无法制备出具有优异电磁屏蔽性能、轻质高强的结构-功能一体化的多孔陶瓷材料。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用,以解决现有的方法无法实现碳在纳米线均匀涂覆,且原料易团聚,无法制备出具有优异电磁屏蔽性能且轻质高强的电磁屏蔽材料的技术难题。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种具有电磁屏蔽效能的轻质高强多孔陶瓷,该具有电磁屏蔽效能的轻质高强多孔陶瓷为由碳化硅纳米线气凝胶相互缠绕搭接而成的多孔网络陶瓷结构,在碳化硅纳米线气凝胶表面交替包覆碳化硅层和碳层,形成的节点为碳化硅/碳双相层替材料。
优选地,所述碳化硅层或碳层的厚度为50~1500nm,碳化硅纳米线气凝胶的直径为300~3600nm。
优选地,该具有电磁屏蔽效能的轻质高强多孔陶瓷在8.2~12.4GHz波段的电磁屏蔽效能达到42.8dB。
优选地,该具有电磁屏蔽效能的轻质高强多孔陶瓷的压缩强度为1.1~45.9MPa,比压缩强度为1.0~4.6*104N·m/kg。
优选地,该具有电磁屏蔽效能的轻质高强多孔陶瓷的体积密度为100~1000mg/cm3,相对密度为3%~31.25%。
本发明还公开了上述的具有电磁屏蔽效能的轻质高强多孔陶瓷的制备方法,包括以下步骤:
1)以碳化硅纳米线气凝胶为基体,通过化学气相渗透法在基体表面沉积一层碳化硅;
2)在沉积的碳化硅表面再次利用化学气相渗透法沉积一层碳;
3)重复步骤1)~2),获得具有碳化硅层/碳层交替沉积的具有电磁屏蔽效能的轻质高强多孔陶瓷。
优选地,步骤1)中,化学气相渗透法的参数条件为:
将基体置于化学气相渗透炉中,于惰性气氛中,在900~1300℃的温度下,将氢气和甲基三氯硅烷通入化学气相渗透炉内;其中,控制氩气的流量为30~1000sccm;甲基三氯硅烷的流量为0.05~0.8g/min;氢气的流量为30~1000sccm;反应时间为2~60h。
优选地,步骤2)中,化学气相渗透法的参数条件为:
于惰性气氛中,在900℃~1300℃的温度下,将甲烷通入化学气相渗透炉内;其中,控制氩气的流量为20~1200sccm;甲烷的流量为20~1200sccm;反应时间为2~60h。
优选地,重复步骤1)~2)处理1~8次。
本发明还公开了上述的具有电磁屏蔽效能的轻质高强多孔陶瓷在制备电磁屏蔽材料中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明公开的具有电磁屏蔽效能的轻质高强多孔陶瓷,是由碳化硅纳米线交替包覆多晶碳化硅层和碳层组成的三维网络结构。一方面,碳化硅具有高强度、高硬度、耐磨、耐腐蚀等特性,具有可协调的介电性能,可作为损耗介质,实现微波衰减;而碳具有低密度、高强度的特点,且其内部含有大量的自由电子,具有优异的导电性,使得吸收损耗和反射损耗大幅提高;另一方面,碳化硅层/碳层之间的界面层也是电磁波的反射界面,可实现强烈的反射损耗,而层替结构使得损耗次数增多,损耗效果大幅提高;并且多孔网络结构可提高电磁波反射损耗的路径,提升电磁损耗。同时,碳化硅和碳交替层与碳化硅气凝胶纳米线形成同轴结构,可强化碳化硅气凝胶中原本的节点,在保证三维网络多孔结构的同时有利于大幅提高多孔陶瓷的强度。实验证明,本发明的这种层替结构的多孔陶瓷在8.2~12.4GHz的电磁屏蔽效能为42.8dB;同时在低相对密度3.13%~31.25%时,可达到压缩强度为1.1~45.9MPa,比压缩强度为1.0~4.6*104N·m/kg的高力学性能。通过“硬层”碳化硅层和“软层”碳层交替包覆的同轴结构的多级界面拔出脱粘消耗能量,还可提高材料的韧性,使得材料能够承受一定的载荷而不会突然脆断,同时具有高的损伤容限,进而整体上表现出“伪塑性”,大大提高了可靠性,有望应用于极端环境做电磁屏蔽材料,实现相关领域“瓶颈”难题的突破。
本发明公开的具有电磁屏蔽效能的轻质高强多孔陶瓷的制备方法,通过化学气相渗透法实现,工艺简单,制备温度相对较低,通过气体分子扩散进入基体内部,以逐层沉积的方式使纳米线均匀变粗,内部残余应力小,对基体损伤小,有效的保持了气凝胶纳米线本身的三维网状结构,实现近净尺寸成型,同时可实现对材料进行微观成分设计、易于各种复杂异形件的均匀沉积,且不会发生原料团聚的现象,使得制备的多孔陶瓷材料在具有优异的电磁屏蔽效能的同时,还可以在密度增幅不大的前提下,实现力学性能的大幅提高。
附图说明
图1为本发明制备具有电磁屏蔽效能的轻质高强多孔陶瓷的方法流程图;
图2为碳化硅层和碳层交替2次所得具有电磁屏蔽效能的轻质高强多孔陶瓷的XRD图;
图3为碳化硅层和碳层交替2次所得具有电磁屏蔽效能的轻质高强多孔陶瓷的SEM照片;
图4为碳化硅层和碳层交替2次所得具有电磁屏蔽效能的轻质高强多孔陶瓷的电磁屏蔽效能图;;
图5为不同密度的具有电磁屏蔽效能的轻质高强多孔陶瓷压缩应力-应变曲线;其中,(a)密度为200mg/cm3;(b)600mg/cm3;(c)密度为1000mg/cm3
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
图1为本发明具有电磁屏蔽效能的轻质高强多孔陶瓷的制备流程工艺图,包括以下步骤:
步骤1,采用中国发明专利CN109627006A公开的碳化硅纳米线气凝胶为基体;
步骤2,以甲基三氯硅烷为前驱体,通过化学气相渗透法,在气凝胶纳米线表面沉积一层碳化硅;
步骤3,以甲烷为前驱体,通过化学气相渗透法,在沉积的碳化硅层表面沉积一层碳层;
步骤4,循环重复步骤2和步骤3,获得碳化硅层/碳层交替沉积的具有电磁屏蔽效能的轻质高强多孔陶瓷。
优选地,在步骤1中,所选基体的初始密度为5~50mg/cm3
优选地,在步骤2中,所述化学气相渗透法制备碳化硅层的具体工艺为:将基体置于化学气相渗透炉中,于保护气体氩气氛围中在900℃~1300℃的温度下将氢气和前驱体甲基三氯硅烷通入炉内,其中氩气的流量为30~1000sccm;控制前驱体的流量为0.05~0.8g/min;氢气的流量为30~1000sccm;反应时间为2~60h。
优选地,在步骤3中,所述化学气相渗透法制备碳层的具体工艺为:将已沉积有碳化硅层的基体置于化学气相渗透炉中,于惰性气体氩气氛围中在900℃~1300℃的温度下,将甲烷通入炉内,其中氩气的流量为20~1200sccm;控制甲烷的流量为20~1200sccm;反应时间为2~60h。
优选地,步骤4中,将一层碳化硅层和一层碳层视为交替一次,所述的交替沉积次数为1~8次。其中,一次交替得到一层碳化硅层和一层碳层。
实施例1
本实施例制备了密度为200mg/cm3的具有电磁屏蔽效能的轻质高强多孔陶瓷,具体步骤如下:
1)采用中国发明专利CN109627006A公开的碳化硅纳米线气凝胶为基体,其初始密度为20mg/cm3
2)将20mg/cm3的基体置于化学气相渗透炉中,于保护气体氩气氛围中在950℃的温度下将氢气和前驱体甲基三氯硅烷通入炉内,其中氩气的流量为150sccm;控制前驱体的流量为0.1g/min;氢气的流量为150sccm;反应时间为5h,在气凝胶纳米线表面沉积一层碳化硅;
3)将已沉积有一层碳化硅层的陶瓷置于化学气相渗透炉中,于惰性气体氩气氛围中在950℃的温度下,将甲烷通入炉内,控制氩气的流量为150sccm;控制甲烷的流量为150sccm;反应时间为5h,在沉积的碳化硅层表面沉积一层碳层;
所得的具有电磁屏蔽效能的轻质高强多孔陶瓷只拥有一层碳化硅层和一层碳层,体密度为200mg/cm3;相对密度为6.25%;如图5中(a)所示,压缩强度为2.3MPa,此时,样品的密度较低,沉积的碳化硅含量和碳含量较少,导致纳米线新形成的节点数量较少及节点强度较低,整体力学性能表现为网络骨架的支撑破坏,应力-应变曲线呈现小幅锯齿状上升趋势;比强度为1.2*104N·m/kg。
实施例2
本实施例制备了密度为600mg/cm3的具有电磁屏蔽效能的轻质高强多孔陶瓷,具体步骤如下:
1)采用中国发明专利CN109627006A公开的碳化硅纳米线气凝胶为基体,其初始密度为20mg/cm3
2)将20mg/cm3的基体置于化学气相渗透炉中,于保护气体氩气氛围中在1050℃的温度下将氢气和前驱体甲基三氯硅烷通入炉内,其中氩气的流量为300sccm;控制前驱体的流量为0.4g/min;氢气的流量为300sccm;反应时间为5h,在气凝胶纳米线表面沉积一层碳化硅;
3)将已沉积有一层碳化硅层的陶瓷置于化学气相渗透炉中,于惰性气体氩气氛围中在1050℃的温度下,将甲烷通入炉内,控制氩气的流量为300sccm;控制甲烷的流量为300sccm;反应时间为5h,在沉积的碳化硅层表面沉积一层碳层;
4)循环重复步骤2和步骤3各一次,获得碳化硅层和碳层交替2次的具有电磁屏蔽效能的轻质高强多孔陶瓷。
图2为实施例所得具有电磁屏蔽效能的轻质高强多孔陶瓷的XRD图,从图2中可以明显的看出在35.739°、60.144°和71.971°出现的β-碳化硅衍射峰,同时,在26.603°也出现了明显的碳峰,综合说明所得具有电磁屏蔽效能的轻质高强多孔陶瓷的两相组分。图3为本实施例所得具有电磁屏蔽效能的轻质高强多孔陶瓷的SEM照片,其中,相对较亮的颜色对应的物质为碳化硅,较暗的颜色对应的物质为碳,从图中可以看出,纳米线表面首先包覆了一层碳化硅,随后包覆了碳层,紧接着是碳化硅层,最后是碳层,得到了预期的2次碳化硅层和碳层交替的结构。图4为实施例所得具有电磁屏蔽效能的轻质高强多孔陶瓷的电磁屏蔽效能图,可以看出,其具有优良的电磁屏蔽性能,在8.2~12.4GHz波段的电磁屏蔽效能为42.8dB。图5中(b)为实施例所得的具有电磁屏蔽效能的轻质高强多孔陶瓷压缩应力-应变曲线,压缩强度为21.5MPa,此时,沉积量增多,在纳米线接触处或距离较近的地方形成的节点数量增多,同时,节点强度增大,由于节点能够很好地传递载荷,使得压力达到最大时,应力-应变曲线表现为锯齿状,此时材料密度适中,未出现封孔现象,应力集中可以在孔隙中及时得到释放,骨架结构开始逐层连续渐进破坏;比强度为3.6*104N·m/kg。
实施例3
本实施例制备了密度为1000mg/cm3的具有电磁屏蔽效能的轻质高强多孔陶瓷,具体步骤如下:
1)采用中国发明专利CN109627006A公开的碳化硅纳米线气凝胶为基体,其初始密度为20mg/cm3
2)将20mg/cm3的基体置于化学气相渗透炉中,于保护气体氩气氛围中在1150℃的温度下将氢气和前驱体甲基三氯硅烷通入炉内,其中氩气的流量为600sccm;控制前驱体的流量为0.8g/min;氢气的流量为600sccm;反应时间为5h,在气凝胶纳米线表面沉积一层碳化硅;
3)将已沉积有一层碳化硅层的陶瓷置于化学气相渗透炉中,于惰性气体氩气氛围中在1150℃的温度下,将甲烷通入炉内,控制氩气的流量为600sccm;控制甲烷的流量为600sccm;反应时间为5h,在沉积的碳化硅层表面沉积一层碳层;
4)循环重复步骤2和步骤3三次,获得碳化硅层和碳层交替4次的具有电磁屏蔽效能的轻质高强多孔陶瓷。
所得的具有电磁屏蔽效能的轻质高强多孔陶瓷拥有4层碳化硅层和4层碳层,体密度为1000mg/cm3;相对密度为31.25%;如图5中(c)所示,压缩强度为45.9MPa,此时,沉积量较多,样品表层已经逐渐形成致密涂层,这使得试样表层在达到压力承受的极限时而发生破坏,随后由于内部未致密,表现为承载应力的下降,使得应力-应变曲线表现出骤降后又呈锯齿状;比强度为4.6*104N·m/kg。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种具有电磁屏蔽效能的轻质高强多孔陶瓷,其特征在于,该具有电磁屏蔽效能的轻质高强多孔陶瓷为由碳化硅纳米线气凝胶相互缠绕搭接而成的多孔网络陶瓷结构,在碳化硅纳米线气凝胶表面交替包覆碳化硅层和碳层,形成的节点为碳化硅/碳双相层替材料。
2.根据权利要求1所述的具有电磁屏蔽效能的轻质高强多孔陶瓷,其特征在于,所述碳化硅层或碳层的厚度为50~1500nm,碳化硅纳米线气凝胶的直径为300~3600nm。
3.根据权利要求1所述的具有电磁屏蔽效能的轻质高强多孔陶瓷,其特征在于,该具有电磁屏蔽效能的轻质高强多孔陶瓷在8.2~12.4GHz波段的电磁屏蔽效能达到42.8dB。
4.根据权利要求1所述的具有电磁屏蔽效能的轻质高强多孔陶瓷,其特征在于,该具有电磁屏蔽效能的轻质高强多孔陶瓷的压缩强度为1.1~45.9MPa,比压缩强度为1.0~4.6*104N·m/kg。
5.根据权利要求1所述的具有电磁屏蔽效能的轻质高强多孔陶瓷,其特征在于,该具有电磁屏蔽效能的轻质高强多孔陶瓷的体积密度为100~1000mg/cm3,相对密度为3%~31.25%。
6.权利要求1~5中任意一项所述的具有电磁屏蔽效能的轻质高强多孔陶瓷的制备方法,其特征在于,包括以下步骤:
1)以碳化硅纳米线气凝胶为基体,通过化学气相渗透法在基体表面沉积一层碳化硅;
2)在沉积的碳化硅表面再次利用化学气相渗透法沉积一层碳;
3)重复步骤1)~2),获得具有碳化硅层/碳层交替沉积的具有电磁屏蔽效能的轻质高强多孔陶瓷。
7.根据权利要求6所述的具有电磁屏蔽效能的轻质高强多孔陶瓷的制备方法,其特征在于,步骤1)中,化学气相渗透法的参数条件为:
将基体置于化学气相渗透炉中,于惰性气氛中,在900~1300℃的温度下,将氢气和甲基三氯硅烷通入化学气相渗透炉内;其中,控制氩气的流量为30~1000sccm;甲基三氯硅烷的流量为0.05~0.8g/min;氢气的流量为30~1000sccm;反应时间为2~60h。
8.根据权利要求6所述的具有电磁屏蔽效能的轻质高强多孔陶瓷的制备方法,其特征在于,步骤2)中,化学气相渗透法的参数条件为:
于惰性气氛中,在900℃~1300℃的温度下,将甲烷通入化学气相渗透炉内;其中,控制氩气的流量为20~1200sccm;甲烷的流量为20~1200sccm;反应时间为2~60h。
9.根据权利要求6所述的具有电磁屏蔽效能的轻质高强多孔陶瓷的制备方法,其特征在于,重复步骤1)~2)处理1~8次。
10.权利要求1~5中任意一项所述的具有电磁屏蔽效能的轻质高强多孔陶瓷在制备电磁屏蔽材料中应用。
CN202310441726.8A 2023-04-23 2023-04-23 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用 Pending CN116444293A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310441726.8A CN116444293A (zh) 2023-04-23 2023-04-23 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310441726.8A CN116444293A (zh) 2023-04-23 2023-04-23 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116444293A true CN116444293A (zh) 2023-07-18

Family

ID=87130034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310441726.8A Pending CN116444293A (zh) 2023-04-23 2023-04-23 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116444293A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250428A1 (en) * 2010-02-07 2011-10-13 Aerogel Technologies, Llc Preparation of cross-linked aerogels and derivatives thereof
CN107540400A (zh) * 2017-09-26 2018-01-05 苏州宏久航空防热材料科技有限公司 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN111943705A (zh) * 2020-08-28 2020-11-17 陕西科技大学 一种石墨烯/热解碳/碳化硅电磁屏蔽复合材料及其制备方法
CN113046718A (zh) * 2021-03-09 2021-06-29 西北工业大学 一种碳化硅纳米隔热吸波复合材料及其制备方法
CN113773098A (zh) * 2020-06-09 2021-12-10 中国科学院上海硅酸盐研究所 一种高电磁波屏蔽碳化硅陶瓷基复合材料及其制备方法
CN114195539A (zh) * 2021-12-29 2022-03-18 王云 一种SiC/PyC纳米线增强Al2O3耐高温吸波陶瓷及其制备方法
CN114276163A (zh) * 2022-01-25 2022-04-05 西安交通大学 一种耐高温的轻质高强多孔陶瓷及其制备方法
CN114315395A (zh) * 2021-10-20 2022-04-12 中国航发沈阳黎明航空发动机有限责任公司 SiCf/SiC复合材料的SiC纳米线增韧PyC/SiC复合界面及其制备方法
CN114702328A (zh) * 2022-04-13 2022-07-05 西安交通大学 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250428A1 (en) * 2010-02-07 2011-10-13 Aerogel Technologies, Llc Preparation of cross-linked aerogels and derivatives thereof
CN107540400A (zh) * 2017-09-26 2018-01-05 苏州宏久航空防热材料科技有限公司 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN113773098A (zh) * 2020-06-09 2021-12-10 中国科学院上海硅酸盐研究所 一种高电磁波屏蔽碳化硅陶瓷基复合材料及其制备方法
CN111943705A (zh) * 2020-08-28 2020-11-17 陕西科技大学 一种石墨烯/热解碳/碳化硅电磁屏蔽复合材料及其制备方法
CN113046718A (zh) * 2021-03-09 2021-06-29 西北工业大学 一种碳化硅纳米隔热吸波复合材料及其制备方法
CN114315395A (zh) * 2021-10-20 2022-04-12 中国航发沈阳黎明航空发动机有限责任公司 SiCf/SiC复合材料的SiC纳米线增韧PyC/SiC复合界面及其制备方法
CN114195539A (zh) * 2021-12-29 2022-03-18 王云 一种SiC/PyC纳米线增强Al2O3耐高温吸波陶瓷及其制备方法
CN114276163A (zh) * 2022-01-25 2022-04-05 西安交通大学 一种耐高温的轻质高强多孔陶瓷及其制备方法
CN114702328A (zh) * 2022-04-13 2022-07-05 西安交通大学 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE LU, ET AL.: ""Strong, superelastic and multifunctional SiC@ pyrolytic carbon nanofibers aerogels"", 《CARBON》, no. 192, pages 219 - 226 *

Similar Documents

Publication Publication Date Title
Ye et al. Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity
CN113046718B (zh) 一种碳化硅纳米隔热吸波复合材料及其制备方法
Ye et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment
CN111170761B (zh) 一种碳化硅@金属氧化物吸波泡沫及其制备方法
CN111592377B (zh) 一种电磁屏蔽泡沫复合材料及其制备方法和用途
CN101319325A (zh) 一种微螺旋碳镍合金材料的制备方法
Wang et al. Metal organic framework-derived hierarchical 0D/1D CoPC/CNTs architecture interlaminated in 2D MXene layers for superior absorption of electromagnetic waves
Duan et al. Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis
Guo et al. Preparation and in situ reduction of Ni/SiCxOy catalysts supported on porous SiC ceramic for ethanol steam reforming
Ye et al. Microwave absorption properties of Ni/C@ SiC composites prepared by precursor impregnation and pyrolysis processes
Du et al. Fe3C/Fe@ N-doped porous carbon composites with excellent microwave absorption properties
CN112300529A (zh) 一种金属化多孔导电聚合物复合材料及其制备方法和应用
CN111943705B (zh) 一种石墨烯/热解碳/碳化硅电磁屏蔽复合材料及其制备方法
CN107417277B (zh) 一种多孔碳材料隔热与抗氧化协同制备的方法
CN116444293A (zh) 一种具有电磁屏蔽效能的轻质高强多孔陶瓷及其制备方法和应用
CN115538155A (zh) 一种碳化硅纤维复合电磁吸波材料及其制备方法
Guo et al. Heterogeneous interface engineering of N–doped carbon onion nanotube chains toward prominent microwave absorption
CN112210766A (zh) 具有电磁屏蔽性能的碳纳米管泡沫材料及其制备方法与应用
CN113708085B (zh) 一种纳米多孔碳包覆磁性纳米粒子复合物的制备方法
CN109650933B (zh) 一种多孔Co3O4/Al2SiO5低密度吸波型复相陶瓷及其制备方法
CN112875685A (zh) 一种基于木质素原位生成的石墨烯及其制备方法
CN115849948B (zh) 一种Fe3O4/SiCnw/Si3N4复合吸波陶瓷及其制备方法
CN116639996B (zh) 一种具有双向周期孔结构吸波Si-C-N复相陶瓷及其制备方法
CN114956830B (zh) 氮化硼包覆碳纳米管增强的聚合物转化陶瓷基吸波材料及制备方法
Hong et al. Fabrication of a dense La0. 2Sr0. 8CoO3− δ/CoO composite membrane by utilizing the electroless cobalt plating technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination