CN115093239B - 一种兼具疏水和防火性能的纸及制备方法 - Google Patents

一种兼具疏水和防火性能的纸及制备方法 Download PDF

Info

Publication number
CN115093239B
CN115093239B CN202210626812.1A CN202210626812A CN115093239B CN 115093239 B CN115093239 B CN 115093239B CN 202210626812 A CN202210626812 A CN 202210626812A CN 115093239 B CN115093239 B CN 115093239B
Authority
CN
China
Prior art keywords
paper
hydrophobic
silicon nitride
powder
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210626812.1A
Other languages
English (en)
Other versions
CN115093239A (zh
Inventor
张磊磊
刘叶叶
李贺军
宋强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210626812.1A priority Critical patent/CN115093239B/zh
Publication of CN115093239A publication Critical patent/CN115093239A/zh
Application granted granted Critical
Publication of CN115093239B publication Critical patent/CN115093239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/84Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

本发明涉及一种兼具疏水和防火性能的纸及制备方法,材料及组分配比为:聚硅氮烷与二甲苯体积比为1﹕2‑1﹕4,聚硅氮烷与二茂铁质量比为8﹕1‑10﹕1。通过高温热处理一步法制备出独立式、自支撑、高柔韧性的氮化硅纳米线纸,氮化硅纳米线通过交缠构建了三维网络结构,再通过对氮化硅纳米线纸表面改性形成聚二甲基硅氧烷外壳,制备出兼具疏水和防火性能的纸。本发明制备的纸具有防水、耐火、环境友好、生物相容性好等优点。本发明制备的兼具疏水和防火性能的纸最高可以承受1800秒不燃烧,比背景技术的耐火时间提高了600秒;其五,本发明制备的兼具疏水和防火性能的纸具有良好的柔韧性,可用于书写用纸张、自清洁装饰墙纸等领域。

Description

一种兼具疏水和防火性能的纸及制备方法
技术领域
本发明属于造纸技术领域,涉及一种兼具疏水和防火性能的纸及制备方法。
背景技术
纸作为传递信息的载体自古至今发挥着巨大作用。常用的传统纸由有机材料制成,不仅容易在火中燃烧,而且易受水的损害,因此有必要研究和开发兼具耐火和疏水性能的纸。
相对于有机材料,多数无机陶瓷纳米线材料表现出优异的耐高温性能。氮化硅陶瓷纳米线因具有高机械模量、高抗热震性、高温稳定性和优异的柔韧性而备受关注。此外,氮化硅陶瓷纳米线具有良好的生物相容性和无毒性,可用于整形外科和牙科。因此,氮化硅纳米线是构建纸张以实现防火性能的最完美候选者之一。为了使制备的防火纸具有防水性能,需要对氮化硅纳米线进行表面改性处理。
低表面能物质修饰氮化硅纳米线以赋予纸张疏水表面被认为是实现疏水性能的有效方法之一。例如,文献“Wen,G.;Guo,Z.G.Nonflammable Superhydrophobic Paperwith Biomimetic Layered Structure Exhibiting Boiling-water Resistance andRepairable Properties for Emulsion Separation[J].J.Mater.Chem.A 2018,6,7042.”报道了一种以低表面能材料改性羟基磷灰石纳米线的疏水纸。张磊磊等报道了一种耐火1200秒的生物基耐火纸及制备方法(授权公告号CN110713381B),尽管制备的耐火纸可以实现在酒精灯火焰测试条件下,经过1200秒测试后不燃烧并保持其初始形状没有明显变化,但是所制备的耐火纸并不具备疏水性。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种兼具疏水和防火性能的纸及制备方法,
技术方案
一种兼具疏水和防火性能的纸,其特征在于材料及组分配比为:聚硅氮烷与二甲苯体积比为1﹕2-1﹕4,聚硅氮烷与二茂铁质量比为8﹕1-10﹕1。
一种所述兼具疏水和防火性能的纸的制备方法,其特征在于步骤如下:
步骤1:将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合,其中聚硅氮烷与二甲苯体积比为1:2-1:4,聚硅氮烷与二茂铁质量比为8:1-10:1;
步骤2:将混合后的溶液置于空气中放置5-8天,凝固得到固体粉末;
步骤3:将固体粉末在玻璃研钵中研磨后,再筛成粉末;
步骤4:将粉末均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面;
步骤5:将步骤4盛有粉末的石墨纸置于真空管式炉中,在N2环境下,以5-7℃/min的升温速度升温至300-350℃,并保温120-150min,再以5-7℃/min的升温速度升温至1300-1450℃,保温150-180min,体系自然冷却后,通过机械法剥离石墨纸,得到氮化硅纳米线纸;
步骤6:将乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合;
步骤7:将步骤5得到的氮化硅纳米线纸在玻璃培养皿中浸入步骤6的溶液中30-40min,然后在100-120℃固化1-3h。
所述步骤3将固体粉末在玻璃研钵中研磨1-5h。
所述步骤5的溶液中乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联的质量比为100﹕10﹕1-50﹕10﹕1。
石墨纸作为生长耐火纸的基体,可以完全去除掉石墨纸,得到耐火纸,再对耐火纸进行表面改性得到新物质-疏水耐火纸。其中,表面改性采用聚二甲基硅烷新组分对耐火纸进行改性,改性后得到疏水耐火纸。
有益效果
本发明提出的一种兼具疏水和防火性能的纸及制备方法,通过高温热处理一步法制备出独立式、自支撑、高柔韧性的氮化硅纳米线纸,氮化硅纳米线通过交缠构建了三维网络结构,再通过对氮化硅纳米线纸表面改性形成聚二甲基硅氧烷外壳,制备出兼具疏水和防火性能的纸。本发明制备的纸具有防水、耐火、环境友好、生物相容性好等优点。
本发明的有益之处是,
其一,本发明采用聚二甲基硅氧烷对氮化硅纳米线的表面改性后,得到的兼具疏水和防火性能的纸具有特殊的核壳结构,表现为,氮化硅纳米线核表面涂覆聚二甲基硅氧烷壳,形成核壳纳米线;
其二,本发明制备的兼具疏水和防火性能的纸具有优异的疏水性,表现为:润湿角大于110°,常见的商业饮料在其表面不粘附;
其三,本发明制备的兼具疏水和防火性能的纸在经过化学腐蚀和热处理后,水滴接触角均大于110°,说明兼具疏水和防火性能的纸可以保持良好的防水性能;
其四,在酒精灯耐火测试条件下,本发明制备的兼具疏水和防火性能的纸最高可以承受1800秒不燃烧,比背景技术的耐火时间提高了600秒;其五,本发明制备的兼具疏水和防火性能的纸具有良好的柔韧性,可用于书写用纸张、自清洁装饰墙纸等领域。
附图说明
图1为水珠落在实施例1制备的未经表面改性的氮化硅纳米线纸表面(a)和本发明实施例2制备的兼具疏水和防火性能的纸表面(b)的数码照片;
图2为实施例1制备的未经表面改性的氮化硅纳米线纸的低倍数(a)和高倍数(b)扫描电子显微图;
图3为本发明实施例2制备的兼具疏水和防火性能的纸的低倍数(a)和高倍数(b)扫描电子显微图;
图4为实施例2所制备的兼具疏水和防火性能的纸的水接触角;
图5为商业饮料从实施例2制备的兼具疏水和防火性能的纸表面滚落而不湿润,商业饮料包括咖啡(a),矿泉水(b),牛奶(c);
图6为实施例2所制备的兼具疏水和防火性能的纸经过热处理(a,b)和化学腐蚀(c)后的润湿角;
图7中(a)和(b)分别为对普通植物纤维纸和实施例2制备的兼具疏水和防火性能的纸进行防水性能测试图、(c)和(d)分别为对普通植物纤维纸和实施例2制备的兼具疏水和防火性能的纸进行耐火性能测试图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
(1)将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合得到溶液A,其中聚硅氮烷/二甲苯体积比为1:2,聚硅氮烷/二茂铁质量比为9:1;
(2)将溶液A置于空气中放置5天后,得到凝固的固体B;
(3)将固体B在玻璃研钵中研磨3h后,再筛成粉末C;
(4)将粉末C均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面,得到样品D;
(5)将样品D置于真空管式炉中,在N2环境下,以5℃/min的升温速度升温至300℃,并保温120min,再以5℃/min的升温速度升温至1450℃,保温180min,体系自然冷却后,得到样品E。
如果没有本发明的表面改性所形成的核壳结构,氮化硅纳米线的表面光滑,且未经表面改性的氮化硅纸会被染色的水滴浸润,不具备疏水性能。只有完整的按照本发明的步骤,才能制备出兼具疏水和防火的纸。
实施例2:
(1)将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合得到溶液A,其中聚硅氮烷/二甲苯体积比为1:2,聚硅氮烷/二茂铁质量比为9:1;
(2)将溶液A置于空气中放置5天后,得到凝固的固体B;
(3)将固体B在玻璃研钵中研磨3h后,再筛成粉末C;
(4)将粉末C均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面,得到样品D;
(5)将样品D置于真空管式炉中,在N2环境下,以5℃/min的升温速度升温至300℃,并保温120min,再以5℃/min的升温速度升温至1450℃,保温180min,体系自然冷却后,得到样品E;
(6)将质量比为100:10:1的乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合得到溶液F;
(7)将样品E放入玻璃培养皿后,浸入溶液F中30min,然后在100℃固化2h,得到样品G。
实施例子2得到的样品具有核壳结构,其中以氮化硅纳米线为核,以聚二甲基硅氧烷为壳,且聚二甲基硅氧烷壳增加了氮化硅纳米线的表面粗糙度。所得到的具有核壳结构的样品表面润湿角大于110°,具有疏水性。另外,在酒精灯耐火测试条件下,此样品可以承受1800秒不燃烧。
实施例3:
(1)将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合得到溶液A,其中聚硅氮烷/二甲苯体积比为1:3,聚硅氮烷/二茂铁质量比为8:1;
(2)将溶液A置于空气中放置6天后,得到凝固的固体B;
(3)将固体B在玻璃研钵中研磨1h后,再筛成粉末C;
(4)将粉末C均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面,得到样品D;
(5)将样品D置于真空管式炉中,在N2环境下,以6℃/min的升温速度升温至300℃,并保温130min,再以6℃/min的升温速度升温至1300℃,保温150min,体系自然冷却后,得到样品E;
(6)将质量比为90:10:1的乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合得到溶液F;
(7)将样品E放入玻璃培养皿后,浸入溶液F中35min,然后在110℃固化1h,得到样品G。
实施例子3得到的样品具有核壳结构,其中以氮化硅纳米线为核,以聚二甲基硅氧烷为壳,且聚二甲基硅氧烷壳增加了氮化硅纳米线的表面粗糙度。所得到的具有核壳结构的样品表面润湿角大于105°,具有疏水性。另外,在酒精灯耐火测试条件下,样品可以承受1700秒不燃烧。
实施例4:
(1)将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合得到溶液A,其中聚硅氮烷/二甲苯体积比为1:3,聚硅氮烷/二茂铁质量比为9:1;
(2)将溶液A置于空气中放置7天后,得到凝固的固体B;
(3)将固体B在玻璃研钵中研磨3h后,再筛成粉末C;
(4)将粉末C均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面,得到样品D;
(5)将样品D置于真空管式炉中,在N2环境下,以7℃/min的升温速度升温至320℃,并保温140min,再以7℃/min的升温速度升温至1400℃,保温160min,体系自然冷却后,得到样品E;
(6)将质量比为70:10:1的乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合得到溶液F;
(7)将样品E放入玻璃培养皿后,浸入溶液F中35min,然后在120℃固化2h,得到样品G。
实施例子4得到的样品具有核壳结构,其中以氮化硅纳米线为核,以聚二甲基硅氧烷为壳,且聚二甲基硅氧烷壳增加了氮化硅纳米线的表面粗糙度。所得到的具有核壳结构的样品表面润湿角大于115°,具有疏水性。另外,在酒精灯耐火测试条件下,样品可以承受1750秒不燃烧。
实施例5:
(1)将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合得到溶液A,其中聚硅氮烷/二甲苯体积比为1:4,聚硅氮烷/二茂铁质量比为9:1;
(2)将溶液A置于空气中放置7天后,得到凝固的固体B;
(3)将固体B在玻璃研钵中研磨5h后,再筛成粉末C;
(4)将粉末C均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面,得到样品D;
(5)将样品D置于真空管式炉中,在N2环境下,以7℃/min的升温速度升温至350℃,并保温150min,再以7℃/min的升温速度升温至1450℃,保温170min,体系自然冷却后,得到样品E;
(6)将质量比为50:10:1的乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合得到溶液F;
(7)将样品E放入玻璃培养皿后,浸入溶液F中30min,然后在120℃固化2h,得到样品G。
实施例子5得到的样品具有核壳结构,其中以氮化硅纳米线为核,以聚二甲基硅氧烷为壳,且聚二甲基硅氧烷壳增加了氮化硅纳米线的表面粗糙度。所得到的具有核壳结构的样品表面润湿角大于110°,具有疏水性。另外,在酒精灯耐火测试条件下,样品可以承受1650秒不燃烧。
实施例6:
(1)将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合得到溶液A,其中聚硅氮烷/二甲苯体积比为1:4,聚硅氮烷/二茂铁质量比为10:1;
(2)将溶液A置于空气中放置8天后,得到凝固的固体B;
(3)将固体B在玻璃研钵中研磨5h后,再筛成粉末C;
(4)将粉末C均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面,得到样品D;
(5)将样品D置于真空管式炉中,在N2环境下,以6℃/min的升温速度升温至350℃,并保温150min,再以6℃/min的升温速度升温至1450℃,保温170min,体系自然冷却后,得到样品E;
(6)将质量比为50:10:1的乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合得到溶液F;
(7)将样品E放入玻璃培养皿后,浸入溶液F中40min,然后在120℃固化3h,得到样品G。
实施例子6得到的样品具有核壳结构,其中以氮化硅纳米线为核,以聚二甲基硅氧烷为壳,且聚二甲基硅氧烷壳增加了氮化硅纳米线的表面粗糙度。所得到的具有核壳结构的样品表面润湿角大于115°,具有疏水性。另外,在酒精灯耐火测试条件下,样品可以承受1650秒不燃烧。
图1为水珠落在实施例1制备的未经表面改性的氮化硅纸表面(a)和本发明实施例2制备的兼具疏水和防火性能的纸表面(b)的数码照片,从图1中可知未经改性前的氮化硅纸表面会被染色的水浸湿,而染色的水在兼具疏水和防火性能的纸表面呈球状,不会被浸湿,因此本发明的纸具有疏水性能。
图2为实施例1制备的未经表面改性的氮化硅纸的低倍数(a)和高倍数(b)扫描电子显微图。
图3为实施例2制备的兼具疏水和防火性能的纸的低倍数(a)和高倍数(b)扫描电子显微图。
图4为实施例2制备的兼具疏水和防火性能的纸的水接触角。从图4可知兼具疏水和防火性能的纸的接触角大于110°。
图5为商业饮料从实施例2制备的兼具疏水和防火性能的纸表面滚落而不湿润,商业饮料包括咖啡(a),矿泉水(b),牛奶(c),从图5的结果可知本发明所制备的兼具疏水和防火性能的纸对日常生活中常见的液体具有据液性。
图6为实施例2制备的兼具疏水和防火性能的纸在100℃处理不同时间(a),在不同温度下处理1小时(b)和在不同有机溶剂中浸泡1h(c)的水接触角测量结果。结果表明经过化学腐蚀和热处理后的兼具疏水和防火性能的纸的水滴接触角均大于110°,说明本发明的兼具疏水和防火性能的纸经过化学腐蚀和热处理后仍可以保持良好的防水功能。
图7中分别对(a)普通植物纤维纸和(b)实施例2制备的兼具疏水和防火性能的纸进行防水性能测试图,结果表明普通植物纤维纸吸附水,而本发明的兼具疏水和防火性能的纸由于其防水性不会吸附水。图7中(c)和(d)分别为对普通植物纤维纸和实施例2制备的兼具疏水和防火性能的纸进行耐火性能测试图。结果表明普通植物纤维纸极易燃烧,而本发明的兼具疏水和防火性能的纸具有良好的耐火性能。

Claims (2)

1.一种兼具疏水和防火性能的纸的制备方法,其特征在于步骤如下:
步骤1:将聚硅氮烷、二茂铁和二甲苯通过磁力搅拌器均匀混合,其中聚硅氮烷与二甲苯体积比为1:2-1:4,聚硅氮烷与二茂铁质量比为8:1-10:1;
步骤2:将混合后的溶液置于空气中放置5-8天,凝固得到固体粉末;
步骤3:将固体粉末在玻璃研钵中研磨后,再筛成粉末;
步骤4:将粉末均匀地铺在叠成U形的石墨纸上,并用另一个U形的石墨纸盖在上面;
步骤5:将步骤4盛有粉末的石墨纸置于真空管式炉中,在N2环境下,以5-7℃/min的升温速度升温至300-350℃,并保温120-150min,再以5-7℃/min的升温速度升温至1300-1450℃,保温150-180min,体系自然冷却后,通过机械法剥离石墨纸,得到氮化硅纳米线纸;
步骤6:将乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联剂通过磁力搅拌器均匀混合,所述乙酸乙酯、聚二甲基硅氧烷和硅氧烷偶联的质量比为100﹕10﹕1-50﹕10﹕1;
步骤7:将步骤5得到的氮化硅纳米线纸在玻璃培养皿中浸入步骤6的溶液中30-40min,然后在100-120℃固化1-3h。
2.根据权利要求1所述的方法,其特征在于:所述步骤3将固体粉末在玻璃研钵中研磨1-5h。
CN202210626812.1A 2022-06-05 2022-06-05 一种兼具疏水和防火性能的纸及制备方法 Active CN115093239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210626812.1A CN115093239B (zh) 2022-06-05 2022-06-05 一种兼具疏水和防火性能的纸及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210626812.1A CN115093239B (zh) 2022-06-05 2022-06-05 一种兼具疏水和防火性能的纸及制备方法

Publications (2)

Publication Number Publication Date
CN115093239A CN115093239A (zh) 2022-09-23
CN115093239B true CN115093239B (zh) 2023-03-31

Family

ID=83288626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210626812.1A Active CN115093239B (zh) 2022-06-05 2022-06-05 一种兼具疏水和防火性能的纸及制备方法

Country Status (1)

Country Link
CN (1) CN115093239B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132354A (en) * 1990-06-15 1992-07-21 Ethyl Corporation Silicon nitride precursor polymer
CN104926348B (zh) * 2015-06-10 2017-04-05 西北工业大学 一种在2D碳毡内部原位生长Si3N4纳米线的方法
CN106522015B (zh) * 2016-10-20 2018-05-08 中国科学院上海硅酸盐研究所 具有防水功能的羟基磷灰石超长纳米线耐火纸
CN107476129A (zh) * 2017-08-14 2017-12-15 中国科学院上海硅酸盐研究所 一种基于羟基磷灰石超长纳米线的耐高温耐火柔性导电纸及其应用
CN107574705B (zh) * 2017-10-30 2020-08-07 湖北大学 一种基于羟基磷灰石纳米线的防火耐磨可修复的超疏水纸的制备方法
CN108103846B (zh) * 2017-12-25 2020-07-14 中国科学院上海硅酸盐研究所 一种羟基磷灰石超长纳米线磁性耐火纸
CN108640700B (zh) * 2018-05-14 2021-04-02 西北工业大学 一种Si3N4纳米线的表面改性方法
CN110713381B (zh) * 2019-10-08 2022-03-15 西北工业大学 一种耐火1200秒的生物基耐火纸及制备方法
CN110606747B (zh) * 2019-10-16 2021-09-07 西北工业大学 一种各向同性陶瓷纳米线预制体的制备方法

Also Published As

Publication number Publication date
CN115093239A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Colombo et al. Ceramic foams from preceramic polymers
CN108641361B (zh) 一种纤维增强的有机硅气凝胶隔热复合材料及其制备方法
CN101948316B (zh) 陶瓷过滤支撑体的制备方法
US4446040A (en) Strong, heat stable, water repellent, expanded perlite/alkali metal silicate insulation material
JP2008508172A (ja) 多孔質セラミックスを得る方法
CN103739307B (zh) 一种砂岩类石质文物保护材料及制备和应用方法
EP3908562A1 (en) Ceramic foams, methods of making same, and uses thereof
CN109232850A (zh) 一种气凝胶改性耐热阻燃低导热系数硬质聚氨酯泡沫塑料及其制备方法
CN105859318A (zh) 短纤维-碳化硅纳米纤维增强碳化硅多孔陶瓷材料及其制备方法
CN106522015A (zh) 具有防水功能的羟基磷灰石超长纳米线耐火纸
WO2019216470A1 (ko) 펄라이트를 이용한 경량건축자재의 제조방법
CN102731050A (zh) 无机轻骨料防火保温隔热板及其制备方法
CN115477503B (zh) 一种再生环保型混凝土及其制备工艺
CN115093239B (zh) 一种兼具疏水和防火性能的纸及制备方法
CN112760024A (zh) 一种硅气凝胶复合隔热涂料及其制备方法及应用
CN111793401A (zh) 一种防水涂料及其制备方法
CN108863231A (zh) 一种防水透气柔性饰面砖及其制备方法
CN110713381B (zh) 一种耐火1200秒的生物基耐火纸及制备方法
KR20100012495A (ko) 방청성과 내진성능을 갖는 콘크리트 구조물 보수용 모르터조성물
Nangrejo et al. Silicon carbide–titanium carbide composite foams produced using a polymeric precursor
CN110938940B (zh) 一种超疏水纳米纤维膜的制备方法
CN112174671B (zh) 一种耐高温SiZrBOC五元陶瓷的制备方法
CN110863574A (zh) 一种利于使用的墙体保温系统
Pandis et al. Hybrid Polycaprolactone/Silica Porous Membranes Produced by Sol‐Gel
Gong et al. Preparation and characterization of a self‐crosslinking sodium alginate‐bioactive glass sponge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant