CN110518065A - 低功耗高可靠性的沟槽型碳化硅mosfet器件 - Google Patents

低功耗高可靠性的沟槽型碳化硅mosfet器件 Download PDF

Info

Publication number
CN110518065A
CN110518065A CN201910844900.7A CN201910844900A CN110518065A CN 110518065 A CN110518065 A CN 110518065A CN 201910844900 A CN201910844900 A CN 201910844900A CN 110518065 A CN110518065 A CN 110518065A
Authority
CN
China
Prior art keywords
contact zone
area
type
epitaxy layer
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910844900.7A
Other languages
English (en)
Other versions
CN110518065B (zh
Inventor
李轩
徐晓杰
黄伟
陈致宇
邓小川
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910844900.7A priority Critical patent/CN110518065B/zh
Publication of CN110518065A publication Critical patent/CN110518065A/zh
Application granted granted Critical
Publication of CN110518065B publication Critical patent/CN110518065B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Abstract

本发明提供一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,包括:N型衬底、N型外延层、第一P‑body区、第一P+接触区、第一N+接触区、第二P‑body区、第二P+接触区、第二N+接触区、氧化层、槽栅、金属电极、漏极;本发明提出的SiC MOSFET器件通过4沟道并联显著减小导通电阻,通过第二P‑body对栅槽的包裹及保护,既增强了器件的氧化层可靠性,又屏蔽了部分栅漏电容使得器件开关损耗减小;当器件发生短路时,第一P‑body区与第二P‑body区形成的JFET区夹断,降低了器件的饱和电流,提高了其短路能力。

Description

低功耗高可靠性的沟槽型碳化硅MOSFET器件
技术领域
本发明属于功率半导体器件技术领域,具体是一种低功耗高可靠性的沟槽型碳化硅MOSFET器件。
背景技术
作为第三代宽禁带半导体材料的代表之一,碳化硅(Silicon Carbide)材料具有禁带宽度大(3.26eV),临界电场高(3×106V/cm)、载流子饱和漂移速度高(2×107cm/s)、热导率高(490W/Mk)、热稳定性好等优点,是制备高压电力电子器件绝佳的材料,在大功率、高温、高压及抗辐照电力电子领域有广阔的应用前景。
MOSFET是碳化硅功率器件中应用最广泛的一种栅控型器件结构。由于碳化硅MOSFET是以单极输运工作机理为特点的器件,只有电子或空穴中的一种载流子导电,没有电荷存储效应,因此相比双极性器件有着更低的开关损耗和更高的频率特性,再加上其低的导通电阻以及优良的高温特性使碳化硅MOSFET成为新一代极具竞争力的低损耗功率器件。目前已经商业化的碳化硅MOSFET主要有两类结构:槽栅型和平面型。平面型由于工艺精度限制,导通电阻较大且集成度较低。槽型碳化硅MOSFET利用槽栅有效地提高了沟道密度,是下一代碳化硅MOSFET重要的发展方向。
碳化硅槽栅MOSFET在反向工作时,通过N-漂移区中形成的耗尽区来承受较高的反向偏压,由于碳化硅材料高的临界击穿电场,漂移区槽栅底部的位置在临近击穿时会达到很高的电场。由于氧化层的介电常数小于碳化硅材料,因此其电场强度大约是碳化硅的2.8倍,再加上曲率效应使得氧化层拐角聚集极高的电场,长时间工作在高电场下会导致栅氧化层发生退化,可靠性下降。为了降低器件反向工作时氧化层的电场强度,提高氧化层的可靠性,一种常见的解决方案是在沟槽氧化层底部引入P+屏蔽层来削弱槽栅氧化层的电场强度。位于槽栅底部的P+屏蔽层虽然可以使槽栅底部及拐角处的氧化层得到较强保护,但槽侧壁的氧化层在阻断状态仍会受到高电场的潜在挑战,因此P+屏蔽层的引入无法完全解决槽栅氧化层受高电场冲击的可靠性问题。
由于当前碳化硅材料与栅氧介质较差的界面态导致了过低的沟道迁移率,槽栅型碳化硅MOSFET导通特性和理论极限相比还有较大的距离。由于槽栅型碳化硅MOSFET栅漏电容较大,其开关损耗较高。同时,由于其电流饱和电流较高,其短路能力较弱。
发明内容
本发明的目的是提出一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,通过第一、二P-body对槽栅的包裹和保护,增强了整个槽中氧化层尤其是侧面栅氧的可靠性,屏蔽了部分栅漏电容降低了器件的开关损耗。由于第一、二P-body区对沟道末端电场的屏蔽作用,器件的沟道可以缩短,4个这样的短沟道并联使得器件沟道电阻大大降低。当器件发生短路时,器件处于高压大电流状态,此时通过第一P-body区与第二P-body区形成的JFET区以及第二P-body区之间形成的JFET区夹断使器件电流提前饱和,提高了器件的短路能力,进一步提升了器件的可靠性。
为实现上述发明目的,本发明技术方案如下:
一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,包括:N型衬底11、位于N型衬底11上方的N型外延层10、位于N型外延层10上方的第二P-body区9、位于第二P-body区9内部的第二P+接触区7和第二N+接触区8、位于第二P+接触区7和第二N+接触区8上方的源电极1、位于第二N+接触区8上方的栅介质6和栅介质6内部的槽栅2、位于栅介质6之间的第一P-body区5、位于第一P-body区5上方的两个第一N+接触区4、两个第一N+接触区4之间的第一P+接触区3、位于第一P+接触区3和第一N+接触区4上方的源电极1、位于器件下方且与N型衬底11形成欧姆接触的漏极12;源电极1与第一P+接触区3、第一N+接触区4、第二P+接触区7、第二N+接触区8欧姆接触。
作为优选方式,所述槽栅2与栅介质6为倒L形,所述倒L形包括水平段、以及水平段下方连接的垂直段,第一P-body区5与两侧栅介质6间设有N型外延层10,所述槽栅2与栅介质6的水平段位于第一N+接触区4、第一P-body区5及N型外延层10上方,槽栅2与第一N+接触区4、第一P-body区5、N型外延层10之间都设有栅介质6。
作为优选方式,栅介质6之间设有2个第一P-body区5,两个第一N+接触区4之间设有两个第一P+接触区3,两个第一P+接触区3之间以及两个第一P-body区5之间都设有N型外延层10,N型外延层10与源电极1形成肖特基接触。
作为优选方式,第二P-body区9的左右两侧为N型外延层10,N型外延层10与源电极1形成肖特基接触。
作为优选方式,所述第一P-body区5与两侧栅介质6间为N型外延层10,第一N+接触区4、第一P-body区5及N型外延层10,三者都与源电极1之间设有栅介质6。
作为优选方式,所述栅介质为SiO2
作为优选方式,所述器件中各掺杂类型相应变为相反的掺杂,即P型掺杂变为N型掺杂的同时N型掺杂变为P型掺杂。
器件所用材料为SiC材料,也可为其他半导体材料。
本发明的有益效果为:1:本发明提出的SiC MOSFET器件通过4沟道并联显著减小导通电阻;2:通过第二P-body对栅槽的包裹及保护,增强了器件的氧化层可靠性,屏蔽部分栅漏电容从而降低器件开关损耗。3:当器件发生短路时,第一P-body区与第二P-body区形成的JFET区夹断,降低饱和电流,提高了器件的短路能力。
附图说明
图1为传统SiC槽栅MOSFET器件结构图;
图2为本发明实施例1的器件结构图;
图3为本发明实施例2的器件结构图;
图4为本发明实施例3的器件结构图;
图5为本发明实施例4的器件结构图;
图6为本发明实施例5的器件结构图;
1为源电极、2为槽栅、3为第一P+接触区、4为第一N+接触区、5为第一P-body区、6为栅介质、7为第二P+接触区、8为第二N+接触区、9为第二P-body区、10为N型外延层、11为N型衬底、12为漏极、13为P+屏蔽层。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
如图2所示,本实施例的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,包括:N型衬底11、位于N型衬底11上方的N型外延层10、位于N型外延层10上方的第二P-body区9、位于第二P-body区9内部的第二P+接触区7和第二N+接触区8、位于第二P+接触区7和第二N+接触区8上方的源电极1、位于第二N+接触区8上方的栅介质6和栅介质6内部的槽栅2、位于栅介质6之间的第一P-body区5、位于第一P-body区5上方的两个第一N+接触区4、两个第一N+接触区4之间的第一P+接触区3、位于第一P+接触区3和第一N+接触区4上方的源电极1、位于器件下方且与N型衬底11形成欧姆接触的漏极12;源电极1与第一P+接触区3、第一N+接触区4、第二P+接触区7、第二N+接触区8欧姆接触。
本例的工作原理为:
当器件工作在反向阻断状态时,由于第一P-body区5、第二P-body区9对栅氧化层的包裹和保护,不仅使器件栅介质6中电场显著降低,使器件栅介质具有极高的可靠性,而且降低了第二N+接触区8上方的第二P-body区9以及第一N+接触区4下方的第一P-body区5穿通击穿的可能性,从而使得第二N+接触区8上方的第二P-body区9及第一P-body区5可以做的很薄而减小器件沟道的长度;当器件工作在导通状态时,接正偏压的槽栅2会在第一P-body区5、第二P-body区9与栅介质6界面感应出导电沟道,4条短沟道并联导电,极大地降低了器件的导通电阻;当器件切换开关状态时,由于第一P-body区5、第二P-body区9的屏蔽作用,器件的栅漏电容极大地减小,从而减小了器件的开关时间,进而降低了器件的开关损耗;当器件发生短路时,漏极电压较大,此时两个第二P-body区9之间的JFET区以及第一P-body5与第二P-body9间的JFET区会夹断从而降低器件的饱和电流,提高了器件的短路能力,进一步了增强器件的可靠性。
实施例2
如图3所示,本实施例的器件结构和实施例1的区别在于:所述槽栅2与栅介质6为倒L形,所述倒L形包括水平段、以及水平段下方连接的垂直段,第一P-body区5与两侧栅介质6间设有N型外延层10,所述槽栅2与栅介质6的水平段位于第一N+接触区4、第一P-body区5及N型外延层10上方,槽栅2与第一N+接触区4、第一P-body区5、N型外延层10之间都设有栅介质6。
实施例3
如图4所示,栅介质6之间设有2个第一P-body区5,两个第一N+接触区4之间设有两个第一P+接触区3,两个第一P+接触区3之间以及两个第一P-body区5之间都设有N型外延层10,N型外延层10与源电极1形成肖特基接触。这样做的好处是:提高了器件第三象限的性能。
实施例4
如图5所示,本实施例和实施例1的区别在于:第二P-body区9的左右两侧为N型外延层10,N型外延层10与源电极1形成肖特基接触。这样做的好处是:提高了器件第三象限的性能。
实施例5
如图6所示,本实施例和实施例1的区别在于:所述第一P-body区5与两侧栅介质6间为N型外延层10,第一N+接触区4、第一P-body区5及N型外延层10,三者都与源电极1之间设有栅介质6。这样做的好处是:提高了器件第三象限的性能。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于包括:N型衬底(11)、位于N型衬底(11)上方的N型外延层(10)、位于N型外延层(10)上方的第二P-body区(9)、位于第二P-body区(9)内部的第二P+接触区(7)和第二N+接触区(8)、位于第二P+接触区(7)和第二N+接触区(8)上方的源电极(1)、位于第二N+接触区(8)上方的栅介质(6)和栅介质(6)内部的槽栅(2)、位于栅介质(6)之间的第一P-body区(5)、位于第一P-body区(5)上方的两个第一N+接触区(4)、两个第一N+接触区(4)之间的第一P+接触区(3)、位于第一P+接触区(3)和第一N+接触区(4)上方的源电极(1)、位于器件下方且与N型衬底(11)形成欧姆接触的漏极(12);源电极(1)与第一P+接触区(3)、第一N+接触区(4)、第二P+接触区(7)、第二N+接触区(8)欧姆接触。
2.根据权利要求1所述的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于:所述槽栅(2)与栅介质(6)为倒L形,所述倒L形包括水平段、以及水平段下方连接的垂直段,第一P-body区(5)与两侧栅介质(6)间设有N型外延层(10),所述槽栅(2)与栅介质(6)的水平段位于第一N+接触区(4)、第一P-body区(5)及N型外延层(10)上方,槽栅(2)与第一N+接触区(4)、第一P-body区(5)、N型外延层(10)之间都设有栅介质(6)。
3.根据权利要求1所述的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于:栅介质(6)之间设有2个第一P-body区(5),两个第一N+接触区(4)之间设有两个第一P+接触区(3),两个第一P+接触区(3)之间以及两个第一P-body区(5)之间都设有N型外延层(10),N型外延层(10)与源电极(1)形成肖特基接触。
4.根据权利要求1所述的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于:第二P-body区(9)的左右两侧为N型外延层(10),N型外延层(10)与源电极(1)形成肖特基接触。
5.根据权利要求1所述的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于:所述第一P-body区(5)与两侧栅介质(6)间为N型外延层(10),第一N+接触区(4)、第一P-body区(5)及N型外延层(10),三者都与源电极(1)之间设有栅介质(6)。
6.根据权利要求1~5任意一项所述的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于:所述栅介质(6)为SiO2
7.根据权利要求1~5任意一项所述的一种低功耗高可靠性的沟槽型碳化硅MOSFET器件,其特征在于:所述器件中各掺杂类型相应变为相反的掺杂,即P型掺杂变为N型掺杂的同时N型掺杂变为P型掺杂。
CN201910844900.7A 2019-09-07 2019-09-07 低功耗高可靠性的沟槽型碳化硅mosfet器件 Active CN110518065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910844900.7A CN110518065B (zh) 2019-09-07 2019-09-07 低功耗高可靠性的沟槽型碳化硅mosfet器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910844900.7A CN110518065B (zh) 2019-09-07 2019-09-07 低功耗高可靠性的沟槽型碳化硅mosfet器件

Publications (2)

Publication Number Publication Date
CN110518065A true CN110518065A (zh) 2019-11-29
CN110518065B CN110518065B (zh) 2021-07-02

Family

ID=68631422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910844900.7A Active CN110518065B (zh) 2019-09-07 2019-09-07 低功耗高可靠性的沟槽型碳化硅mosfet器件

Country Status (1)

Country Link
CN (1) CN110518065B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403474A (zh) * 2020-03-23 2020-07-10 电子科技大学 一种集成肖特基二极管的双沟道碳化硅mosfet器件
CN111969053A (zh) * 2020-08-27 2020-11-20 电子科技大学 低导通压降二极管器件及制备方法
CN112768532A (zh) * 2021-02-23 2021-05-07 湖南大学 一种单片集成续流二极管的SiC MOSFET器件及其制备方法
CN113540083A (zh) * 2020-07-17 2021-10-22 成都芯源系统有限公司 一种场效应晶体管器件及其控制方法
CN114843332A (zh) * 2022-04-27 2022-08-02 电子科技大学 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN116230774A (zh) * 2023-05-04 2023-06-06 南京第三代半导体技术创新中心有限公司 一种非对称碳化硅槽栅mosfet及其制造方法
CN116995099A (zh) * 2023-09-08 2023-11-03 南京第三代半导体技术创新中心有限公司 一种电压钳位型碳化硅槽栅mosfet器件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285647A1 (en) * 2007-01-29 2010-11-11 Fuji Electric Systems Co., Ltd. Insulated gate silicon carbide semiconductor device and method for manufacturing the same
CN107681001A (zh) * 2017-07-24 2018-02-09 中国电子科技集团公司第五十五研究所 一种碳化硅开关器件及制作方法
CN108615766A (zh) * 2016-12-13 2018-10-02 现代自动车株式会社 半导体器件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100285647A1 (en) * 2007-01-29 2010-11-11 Fuji Electric Systems Co., Ltd. Insulated gate silicon carbide semiconductor device and method for manufacturing the same
CN108615766A (zh) * 2016-12-13 2018-10-02 现代自动车株式会社 半导体器件及其制造方法
CN107681001A (zh) * 2017-07-24 2018-02-09 中国电子科技集团公司第五十五研究所 一种碳化硅开关器件及制作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403474A (zh) * 2020-03-23 2020-07-10 电子科技大学 一种集成肖特基二极管的双沟道碳化硅mosfet器件
CN113540083A (zh) * 2020-07-17 2021-10-22 成都芯源系统有限公司 一种场效应晶体管器件及其控制方法
CN113540083B (zh) * 2020-07-17 2023-09-05 成都芯源系统有限公司 一种场效应晶体管器件及其控制方法
CN111969053A (zh) * 2020-08-27 2020-11-20 电子科技大学 低导通压降二极管器件及制备方法
CN112768532A (zh) * 2021-02-23 2021-05-07 湖南大学 一种单片集成续流二极管的SiC MOSFET器件及其制备方法
CN114843332A (zh) * 2022-04-27 2022-08-02 电子科技大学 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN114843332B (zh) * 2022-04-27 2023-04-25 电子科技大学 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN116230774A (zh) * 2023-05-04 2023-06-06 南京第三代半导体技术创新中心有限公司 一种非对称碳化硅槽栅mosfet及其制造方法
CN116995099A (zh) * 2023-09-08 2023-11-03 南京第三代半导体技术创新中心有限公司 一种电压钳位型碳化硅槽栅mosfet器件及其制造方法
CN116995099B (zh) * 2023-09-08 2024-02-06 南京第三代半导体技术创新中心有限公司 一种电压钳位型碳化硅槽栅mosfet器件及其制造方法

Also Published As

Publication number Publication date
CN110518065B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN110518065A (zh) 低功耗高可靠性的沟槽型碳化硅mosfet器件
JP7102048B2 (ja) チャネル領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
CN113130627B (zh) 一种集成沟道二极管的碳化硅鳍状栅mosfet
CN102969355B (zh) 一种soi基pmosfet功率器件
CN108899370A (zh) 集成电阻区的vdmos器件
CN109244136A (zh) 槽底肖特基接触SiC MOSFET器件
CN109244137A (zh) 一种高可靠性SiC MOSFET器件
CN103050540A (zh) 使用高介电常数槽结构的低比导通电阻的横向功率器件
CN107658340A (zh) 一种双沟槽的低导通电阻、小栅电荷的碳化硅mosfet器件与制备方法
CN109166926A (zh) 一种屏蔽栅功率器件
CN109256427A (zh) 一种集成肖特基二极管的SiC MOSFET器件
CN109920839A (zh) P+屏蔽层电位可调碳化硅mosfet器件及制备方法
CN109103257A (zh) 高可靠性深沟槽功率mos器件
CN108198857A (zh) 一种集成凸块状肖特基二极管的碳化硅mosfet器件元胞结构
CN109904220A (zh) 槽栅型碳化硅mosfet器件及制备方法
CN112201687A (zh) 一种npn三明治栅结构的沟槽mosfet器件
CN109768090A (zh) 一种具有内嵌异质结二极管自保护的碳化硅槽型场氧功率mos器件
CN111933711B (zh) 一种集成sbd的超结mosfet
CN114843332B (zh) 低功耗高可靠性半包沟槽栅mosfet器件及制备方法
CN114725206B (zh) 一种基于低介电常数介质的SiCVDMOSFET器件
CN107731912B (zh) 一种低导通电阻、小栅电荷的双沟槽碳化硅igbt器件与制备方法
CN109244138A (zh) 具有良好第三象限性能的SiC MOSFET器件
CN212967710U (zh) 一种npn三明治栅结构的沟槽mosfet器件
CN107482062A (zh) 一种低导通电阻、小栅电荷的碳化硅mosfet器件与制备方法
CN208548354U (zh) 集成电阻区的vdmos器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant