JP7102048B2 - チャネル領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド - Google Patents

チャネル領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド Download PDF

Info

Publication number
JP7102048B2
JP7102048B2 JP2018561262A JP2018561262A JP7102048B2 JP 7102048 B2 JP7102048 B2 JP 7102048B2 JP 2018561262 A JP2018561262 A JP 2018561262A JP 2018561262 A JP2018561262 A JP 2018561262A JP 7102048 B2 JP7102048 B2 JP 7102048B2
Authority
JP
Japan
Prior art keywords
region
channel region
cells
cell
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018561262A
Other languages
English (en)
Other versions
JP2019517149A (ja
Inventor
ボロトニコフ,アレクサンダー・ヴィクトロヴィッチ
ロゼー,ピーター・アルメルン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2019517149A publication Critical patent/JP2019517149A/ja
Application granted granted Critical
Publication of JP7102048B2 publication Critical patent/JP7102048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • H01L29/745Gate-turn-off devices with turn-off by field effect
    • H01L29/7455Gate-turn-off devices with turn-off by field effect produced by an insulated gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action

Description

本明細書に開示された主題は、電界トランジスタ(例えば、MOSFET、DMOSFET、UMOSFET、VMOSFET、トレンチMOSFETなど)、絶縁ゲートバイポーラトランジスタ(IGBT)、および絶縁ベースMOS制御サイリスター(IBMCT)を含む、炭化ケイ素(SiC)パワーデバイスなどの半導体パワーデバイスに関する。
本段落は、以下に記載および/または請求される本開示の様々な態様に関連する可能性がある技術の様々な態様を読者に紹介することが意図されている。本議論は、本開示の様々な態様についてのよりよい理解を促進するための背景情報を読者に提供するのに役立つと考えられる。したがって、これらの記述は、従来技術の承認としてではなく、この観点で読まれるべきであることを理解されたい。
電力変換デバイスは、負荷による消費のために電力をある形態から別の形態に変換するために、現代の電気システム全体にわたって広く使用されている。多くのパワーエレクトロニクスシステムは、サイリスター、ダイオード、および様々なタイプのトランジスタ(例えば、金属酸化物半導体電界効果トランジスタ(MOSFET)、絶縁ゲートバイポーラトランジスタ(IGBT)、および他の適切なトランジスタ)などの様々な半導体デバイスおよび部品を利用する。
特に、高周波、高電圧、および/または高電流用途に対して、炭化ケイ素(SiC)デバイスは、高温動作、導通およびスイッチング損失の低減、ならびに対応するシリコン(Si)デバイスよりも小さなダイサイズの点でいくつかの利点を提供することができる。しかしながら、SiCは、SiCデバイス製造中のより低いドーパント拡散、および動作中の(例えば、逆バイアス下での)SiCデバイス内部のより高い電界などの、Siに比べていくつかの技術的および設計上の課題も提示する。SiCデバイスのSiC部分は、これらのより高い電界に対して堅牢である場合があるが、酸化シリコン(SiO)誘電体層などの、SiCデバイスの他の部分は、これらのより高い電界の下で故障することがある。したがって、デバイス性能を実質的に低下させることなくデバイスの信頼性を向上させるために、高電界を低減させるSiCデバイス設計を開発することが望ましい。
米国特許第2015/053999号
本発明のこれらならびに他の特徴、態様および利点は、図面全体にわたって同様の記号が同様の部分を表す添付図面を参照して以下の詳細な説明を読むと、一層よく理解されるようになるであろう。
典型的なプレーナMOSFETデバイスの概略図である。 典型的なMOSFETデバイスの様々な領域に対する抵抗を示す概略図である。 ストライプセルレイアウトを有する典型的なMOSFETデバイス構造を含むSiC層の表面の上面図である。 いくつかの正方形半導体デバイスセルを含むSiC層の上面図である。 いくつかの千鳥状の正方形半導体デバイスセルを含むSiC層の上面図である。 いくつかの六角形半導体デバイスセルを含むSiC層の上面図である。 SiC層の部分、およびSiC層上に配置された誘電体層の部分の正規化された電界強度を表すグラフであり、SiC層の部分が、逆バイアス下でシールドされていない正方形デバイスセルの平行な部分間に配置されている。 SiC層の部分、およびSiC層上に配置された誘電体層の部分の正規化された電界強度を表すグラフであり、SiC層の部分が、逆バイアス下でシールドされていない正方形デバイスセルのウェル領域のコーナー間に配置されている。 SiC層の部分、およびSiC層上に配置された誘電体層の部分の正規化された電界強度を表すグラフであり、SiC層の部分が、本技法の実施形態による、チャネル領域拡張部および動作逆バイアスによってシールドされた正方形デバイスセルのウェル領域のコーナー間に配置されている。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの正方形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの正方形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの正方形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い矩形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い矩形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い矩形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い矩形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い矩形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い矩形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部の例を有するいくつかの細長い六角形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部およびソース領域拡張部の例を有するいくつかの正方形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部およびソース領域拡張部の例を有するいくつかの正方形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。 本技法の実施形態による、チャネル領域拡張部およびソース領域拡張部の例を有するいくつかの正方形SiCデバイスセルを含むデバイスレイアウトを有するSiC層の上面図である。
1つまたは複数の特定の実施形態について以下に記載する。これらの実施形態についての簡潔な記載を提供するために、実際の実施態様のすべての特徴が明細書に記載されているわけではない。すべてのエンジニアリングまたは設計プロジェクトと同様に、すべてのそのような実際の実施態様の開発では、システム関連およびビジネス関連の制約の遵守などの、開発者の特定の目標を達成するために、実施態様毎に異なる可能性がある実施態様に特有の決定を多数行わなければならないことを認識されたい。さらに、そのような開発努力は、複雑で時間がかかることがあるが、それにもかかわらず、本開示の利益を有する当業者にとっては設計、製作、および製造の日常的な仕事であることを認識されたい。
本開示の様々な実施形態の要素を紹介する場合、冠詞「1つの(a)」、「1つの(an)」、および「その(the)」は、要素の1つまたは複数があることを意味することが意図されている。用語「備える(comprising)」、「含む(including)」、および「有する(having)」は、包括的であり、列挙された要素以外のさらなる要素があってもよいことを意味することが意図されている。さらに、本開示の「一実施形態」または「実施形態」への言及は、列挙されたフィーチャも組み込むさらなる実施形態の存在を排除するものとして解釈されることが意図されていないことを理解されたい。本明細書に開示されたフィーチャの形状、位置、およびアラインメントは、簡単にするために、比較的理想的であるもの(例えば、正方形、矩形、および六角形のセル、ならびに完全に直線の整列したフィーチャを有するシールド領域)として図示および記載されていることを認識されよう。しかしながら、当業者には認識され得るように、プロセスのばらつきおよび技術的な限界により、結果として、理想的な形状とは言えないセルラー式設計または不規則なフィーチャとなることがあるが、これらは、それでもなお本技法の精神の範囲内にあり得る。そのため、フィーチャの形状、位置、またはアラインメントを記載するために本明細書で使用されるような用語「実質的に」は、当業者によって認識され得るように、理想的なまたは目標の形状、位置、およびアラインメント、ならびに半導体製作プロセスの変動に起因する不完全に実施された形状、位置、およびアラインメントを包含することを意味する。さらに、半導体デバイスセルは、本明細書では、半導体層の「表面に」、「表面内に」、「表面上に」、もしくは「表面に沿って」配置または製作されるとして記載されており、これは、半導体層のバルク内部に配置された部分、半導体層の表面に近接して配置された部分、半導体層の表面と同一面上に配置された部分、および/または半導体層の表面の上方もしくは上部に配置された部分を有する半導体デバイスセルを含むことが意図されている。
現代のパワーエレクトロニクスの不可欠な構築ブロックの1つは、電界効果トランジスタ(FET)デバイスである。例えば、図1Aは、プレーナnチャネル電界効果トランジスタ、すなわちDMOSFET、以降、MOSFETデバイス10の能動セルを示す。以下で論じる他のデバイスと同様に、MOSFETデバイス10のある特定の構成要素をより明瞭に示すために、一般的に理解されているある特定の設計要素(例えば、上部メタライゼーション、パッシベーション、エッジ終端など)は、省略されることがあることを認識されよう。
図1Aの図示されたMOSFETデバイス10は、第1の表面4および第2の表面6を有する半導体デバイス層2(例えば、エピタキシャルSiC層)を含む。半導体デバイス層2は、第1の導電型を有するドリフト領域16(例えば、n型ドリフト層16)と、ドリフト領域16に隣接し、第1の表面4に近接して配置された第2の導電型を有するウェル領域18(例えば、p-ウェル18)と、を含む。半導体デバイス層2は、ウェル領域18に隣接し、第1の表面4に近接した第1の導電型を有するソース領域20(例えば、n型ソース領域20)も含む。誘電体層24(ゲート絶縁層またはゲート誘電体層とも呼ばれる)は、半導体デバイス層2の第1の表面4の一部に配置され、ゲート電極26は、誘電体層24上に配置されている。半導体デバイス層2の第2の表面6は、基板層14(例えば、SiC基板層)であり、ドレインコンタクト12は、基板層14に沿ってデバイス10の底部に配置されている。
オン状態動作中に、適切なゲート電圧(例えば、MOSFETデバイス10のしきい電圧(VTH)以上)によって、チャネル領域28に反転層が形成され、ならびにキャリアの蓄積のために、接合電界効果トランジスタ(JFET)領域29において導電性経路が増強され得て、ドレインコンタクト12(すなわち、ドレイン電極)からソースコンタクト22(すなわち、ソース電極)に電流を流すことができる。本明細書で論じるMOSFETデバイスについては、チャネル領域28は、一般に、ゲート電極26およびゲート誘電体24の下に配置されたウェル領域18の上方部分として画定されることがあることを認識されたい。さらに、本手法は、以下では、SiC MOSFETデバイスの文脈で論じられることがあるが、本手法は、他のタイプの材料系(例えば、シリコン(Si)、ゲルマニウム(Ge)、アルミニウム窒化物(AlN)、窒化ガリウム(GaN)、ガリウム砒素(GaAs)、ダイヤモンド(C)、もしくは任意の他の適切なワイドバンドギャップ半導体)、ならびにnチャネルおよびpチャネル設計の両方を利用する他のタイプのデバイス構造(例えば、UMOSFET、VMOSFET、絶縁ゲートバイポーラトランジスタ(IGBT)、絶縁ベースMOS制御サイリスター(IBMCT)、もしくは任意の他の適切なFETおよび/またはMOSデバイス)に適用可能であり得ることを認識されたい。
図1Bは、図1AのSiCデバイス10の概略断面図である。図1Bに示すMOSFETデバイス10のソースコンタクト22は、一般に、ソース電極へのオーミック接続を提供し、ソース領域20の一部およびウェル領域18の一部の両方の上に配置されている。ソースコンタクト22は、一般に、MOSFETデバイス10のこれらの半導体部分と金属ソース電極との間に位置する1つまたは複数の金属層を含む金属インタフェースである。明瞭にするために、コンタクト22の下に配置されたMOSFETデバイス10のソース領域20(例えば、n+ソース領域20)の部分は、本明細書では、より具体的にMOSFETデバイス10のソースコンタクト領域42と呼ばれることがある。同様に、ウェル領域18の残りの部分よりも高レベルにドープされている場合があるMOSFETデバイス10のウェル領域18の一部は、本明細書では、より具体的にMOSFETデバイス10のボディ領域39(例えば、p+ボディ領域39)と呼ばれることがある。明瞭にするために、コンタクト22の下に配置された(例えば、コンタクト22によってカバーされ、コンタクト22に電気的に直接接続された)ボディ領域39の部分は、本明細書では、より具体的にMOSFETデバイス10のボディコンタクト領域44(例えば、p+ボディコンタクト領域44)と呼ばれることがある。
図1Bに示すように、MOSFETデバイス10の様々な領域はそれぞれ、関連付けられた抵抗と、これらの抵抗のそれぞれの和として表すことができるMOSFETデバイス10の全抵抗(例えば、オン抵抗Rds(オン))と、を有することができる。例えば、図1Bに示すように、MOSFETデバイス10のオン抵抗(Rds(オン))は、抵抗R30(例えば、ソース領域20の抵抗およびコンタクト22の抵抗)と、抵抗Rch32(例えば、図1Aに示す領域28の反転チャネルの抵抗)と、抵抗Racc34(例えば、ゲート酸化物24と、ウェル領域18間に位置するドリフト層16の部分との間の蓄積層の抵抗)と、抵抗RJFET36(例えば、ウェル領域18間の空乏化されていないネック領域の抵抗)と、抵抗Rdrift38(例えば、ドリフト層16周りの抵抗)と、抵抗Rsub40(例えば、基板層14周りの抵抗)との和として近似することができる。図1Bに示す抵抗は、網羅的であることは意図されておらず、他の抵抗(例えば、ドレインコンタクト抵抗、広がり抵抗など)が半導体デバイス10内部に潜在的に存在する可能性があることに留意されたい。
場合によっては、図1Bに示す1つまたは2つの抵抗成分が半導体デバイス10の導通損失を支配することがあり、これらの要因に対処することによって、Rds(オン)に著しく影響を与えることができる。例えば、ドリフト抵抗38、基板抵抗40、およびコンタクト抵抗30が(他の抵抗成分と比較して)それほど重要でないデバイス、例えば、低電圧デバイス、または低い反転層移動度を欠点として持つデバイス(例えば、SiCデバイス)などについては、チャネル抵抗(Rch32)がデバイスの導通損失のかなりの部分を占めることがある。さらなる例として、中電圧および高電圧デバイスでは、JFET領域の抵抗(RJFET36)が全導通損失のかなりの部分を占めることがある。
図2は、従来のストライプセルレイアウトを有するMOSFETデバイス構造41を含む半導体デバイス層2の上面図を示す。寸法に関して、従来のMOSFETデバイス構造41は、特定のチャネル長(Lch43)と、チャネル領域からオーミック領域までの長さ(Lch_to_ohm45)と、オーミック領域の幅(Wohm47)と、JFET領域の幅(WJFET49)と、を有するものとして記載することができる。図2に示す従来のストライプセルレイアウトは、良好な信頼性(例えば、長期間の高温性能)を提供するが、MOSFETデバイス構造41の比較的高いチャネル抵抗(Rch32)およびJFET抵抗(RJFET36)は、結果として、比較的高いRds(オン)をもたらし、これによってデバイスの電気的性能が低下する。
半導体デバイスに対するチャネル抵抗(Rch32)およびJFET抵抗(RJFET36)を低減させることができる1つのやり方は、セルラー式デバイス設計の使用によるものである。図3~図5は、異なる従来のセルラー式設計およびレイアウトを有する半導体デバイス層2の上面図を示す。これらの従来の設計は、以下で論じる本技法のシールドされたデバイスセルに対してシールドされていないものとして記載されることがある。図3~図5、ならびに以下で提示されるデバイスセルの上面図については、デバイスセルのある特定のフィーチャ(例えば、ゲートコンタクト26、誘電体層24、コンタクト22)は、半導体デバイス層2の表面の遮られない図を提供するために省略されていることを認識されよう。特に、図3は、整列したレイアウト51の正方形デバイスセル50を示し、一方、図4は、千鳥状のまたはオフセットされたレイアウト52の正方形セルラー式デバイスセル50を示す。図5は、整列したレイアウト55の六角形デバイスセル54を示す。一般に、図3~図5に示す図示されたセルラー式設計およびレイアウトは、図2に示すようなストライプセルレイアウトと比較して、チャネル抵抗(Rch32)およびJFET抵抗(RJFET36)の両方を低減させることによって、Rds(オン)を低減させることを可能にする。例えば、図3の正方形デバイスセル50は、同様のプロセス/技術限界寸法(例えば、同じLch43、Lch_to_ohm45、Wohm47、およびWJFET49)を仮定すると、図2のストライプデバイス41よりもおよそ20%低いRds(オン)を提供する。本明細書では、半導体表面2上の半導体デバイスの多数のデバイスセルのサブセットを表すいくつかのデバイスセルを用いてレイアウトが示されていることを認識されよう。
図3~図5では、図示する従来の正方形デバイスセル50および六角形デバイスセル54はそれぞれ、図1Bに示すように、ウェル領域18の一部分である各セルの中心65に配置されたボディコンタクト領域44を含む。ボディコンタクト領域44は、ソース領域20によって取り囲まれている。より具体的には、各セルのボディコンタクト領域44は、ソース領域20のソースコンタクト領域42によって取り囲まれてもよく、ソースコンタクト領域42のドーピングは、ソース領域20の残りの部分と同じであってもよい。各セルのソース領域20は、図1Aおよび図1Bに示すように、ウェル領域18の一部分でもあるチャネル領域28によって取り囲まれている。そして次に、チャネル領域28がJFET領域29によって取り囲まれている。一般に、JFET領域29の特定の一部分の幅は、JFET領域29のドーピング型(例えば、n型)と比較して反対のドーピング型(例えば、p型)を有する領域間の最短距離として画定される。各デバイスセルは、セルの周辺部の周りにJFET領域29を含むが、これらのJFET領域29は、簡単にするため、時として、総称して半導体デバイス層2のJFET領域29と呼ばれることがある。半導体デバイス層2、ソースコンタクト領域42を含むソース領域20、およびJFET領域29は、第1の導電型(例えば、n型)を有するが、ボディコンタクト領域44およびチャネル領域28を含むウェル領域18は、第2の導電型(例えば、p型)を有することも認識されよう。本明細書で使用されるように、(例えば、デバイスセルの境界の側面68に沿って、またはコーナー69で)2つのセルの境界のいずれかの部分が接触する場合、2つのデバイスセルは、隣り合うセルまたは隣接するセルと呼ばれることがある。そのため、図3の正方形デバイスセル50のそれぞれは、8つの隣り合うまたは隣接するセルを有するが、図4の千鳥状の正方形セル50のそれぞれ、および図5の六角形デバイスセル54のそれぞれは、6つの隣り合うまたは隣接するセルを有することを認識されよう。
図3~図5に示すセルラー式設計は、図2に示すようなストライプセルレイアウトに比べてRds(オン)をより低くすることができるが、そのようなセルラー式設計は、遮断状態下で隣り合うデバイスセルのウェル領域のコーナー間のJFET領域29の部分で実質的により高い電界を有する可能性があることが現在認識されている。SiC MOSデバイスについては、(図1および図2に示す)JFET領域29上に配置された誘電体層24(例えば、SiO)内の電界は、デバイスセルが逆バイアス下で動作する場合、Siデバイスと比べて10倍ほど高いことがある。SiCは、一般に、より高い電界に対して堅牢であるが、誘電体層24は、長期間の動作中に破壊を被ることがあり、結果として、SiCデバイスセル50および54に信頼性の問題をもたらす可能性がある。
特に、逆バイアス下のSiC MOSFETでは、図3~図5に示す隣り合うデバイスセル50および54のウェル領域のコーナー間のJFET領域29の最も広い部分に存在する電界は、JFET領域29の他の部分よりも実質的に高い。図3に示すように、デバイスセル50のチャネル領域28のコーナー間の対角線の距離60は、隣り合うデバイスセル50のチャネル領域28の平行な部分間の距離49(すなわち、WJFET,parallel49)よりも大きい。図6は、図3に示す矢印64に沿って配置されたシールドされていないデバイスセル50の部分に対する逆バイアス下での電界の強度を(任意単位(au)で)プロットしたグラフ70である。より具体的には、図6は、Vds=1200Vにおける例示的なシールドされていないデバイスセル50(すなわち、8×1015cm-3のエピドープされた11μm厚のドリフト層を有し、WJFET,parallel49が2.6μmである1200V SiC MOSFET正方形デバイスセル)について、図1AのJFET領域29内の電界を示す第1の曲線72を含み、(図1Aおよび図1Bに示すような)誘電体層24内の電界を示す第2の曲線74を含む。図6のグラフ70に示すように、デバイスセル50の中心65では(すなわち、x=0μmでは)、半導体デバイス層2内および誘電体層24内の両方の電界は低く、電界は、JFET領域29の中央で(すなわち、ほぼx=4.7μmで)最大電界強度に増加する。
図7Aは、逆バイアス下のシールドされていないSiCデバイスセル50の各部分に対する電界の強度を(任意単位(au)で)プロットしたグラフ80であり、各部分は図3に示す対角線の矢印66に沿って配置されている。図6と同様に、図7Aのグラフ80は、図6に示すような同じ寸法および条件を有する例示的な従来のSiCデバイスセル50について、半導体デバイス層2内の電界を示す第1の曲線82を含み、(図1Aおよび図1Bに示すような)半導体デバイス層2の上に配置された誘電体層24内の電界を示す第2の曲線84を含む。図7Aに示すように、従来のSiCデバイスセル50の中心では(すなわち、x=0μmでは)電界は低く、従来のデバイスセル50のコーナーを通って対角線状に移動すると、電界は、JFET領域29の中央で(すなわち、ほぼx=6.65μmで)ピーク電界強度に増加する。図6と図7を比較すると、例示的なシールドされていないSiC正方形セル50については、セルのコーナー間(すなわち、図3の矢印66に沿った距離60)のピークまたは最大の電界は、セル50の平行な部分間(すなわち、図3の矢印64に沿った距離49)のピークまたは最大の電界よりもおよそ20%高い。その結果、図7Aに示すように、誘電体層24内のピーク電界は、隣り合うデバイスセル50のウェル領域18のコーナー間(例えば、隣り合うセルが出会うコーナー69における、隣り合うデバイスセルのチャネル領域28のコーナー間)でより大きく、このことが、結果として、そのようなシールドされていないデバイスセル50に対する長期信頼性の問題をもたらす。
前述の事項を念頭において、本実施形態は、Rds(オン)を著しく増加させることなく、隣り合うデバイスセルのコーナー69が出会う位置におけるJFET領域29内の(ならびに図1Bに示すゲート誘電体層24内の)電界を低減させる、チャネル領域28の注入された拡張部の形態の1つまたは複数のシールド領域を組み込むセルラー式デバイス設計を対象とする。したがって、本明細書に開示されたデバイスのシールド領域は、注入拡張部と、隣り合うデバイスセルのウェル領域との間の距離が隣り合うデバイスセルのウェル領域の平行な部分間の距離以下となるように設計される。したがって、本設計は、JFET領域29のどの部分も、隣り合うデバイスセルのチャネル領域の平行な部分間のJFET領域29の幅(すなわちWJFET,parallel49)ほど広くないことを全体的に保証する。さらに、本設計は、同等の寸法(例えば、同じLch、Lch_to_ohm、Wohm)を有する従来のストライプデバイス(例えば、図2のストライプセルデバイス41)以上のチャネル領域幅および/またはJFET領域濃度を維持する。そのため、本明細書に開示されたシールドされたデバイスセルは、同等の寸法の従来のストライプデバイスセルに比べて優れた性能を提供し、一方で、同様の信頼性(例えば、長期間の高温安定性)を依然として提供する。さらに、本明細書に開示されたセルラー式設計のシールド領域は、デバイスセルの他のフィーチャと同時に注入されてもよく、そのため、製作の複雑さまたはコストを増加させない。
前述の事項を念頭において、本実施形態は、チャネル領域拡張部であるシールド領域を含むデバイスセル設計を対象とする。本明細書で使用されるような「拡張部」は、デバイスセルのフィーチャ(例えば、チャネル領域28)をその典型的な境界を超えて延出させた注入領域を一般に指す。特に、ある特定の開示されたデバイス設計およびレイアウトは、典型的には、デバイスセル当たり少なくとも1つのチャネル領域拡張部を含む。本明細書で使用されるように、「チャネル領域拡張部」は、複数のデバイスセルが出会うJFET領域29の一部へと外に向かって突き出る(図1Aおよび図1Bに示すようなウェル領域18の一部分である)デバイスセルのチャネル領域28の拡張部である。以下で論じるように、その場合、第1のデバイスセルのチャネル領域拡張部と、隣り合うデバイスセルのウェル領域との間の距離がJFET領域のこの部分の幅を画定するため、開示されたチャネル領域拡張部は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを保証し、前述の電界を抑制し、デバイスの信頼性を向上させ、局所的なドレイン誘起バリア低下(DIBL)を低減させる。
また、開示されたチャネル領域拡張部は、ウェル領域18を形成するために使用される同じ注入ステップを使用して形成されてもよく、そのため、チャネル領域拡張部は、ドーピング濃度および深さの点でウェル領域18と実質的に同じであってもよいことを認識されよう。さらに、開示されたチャネル領域拡張部は、特定の幅または最大の幅を有することができ、この幅は、一般に、ウェル注入処理中に画定される他のフィーチャの幅(例えば、ウェル領域18の幅)よりも小さい。ある特定の実施形態では、開示されたチャネル領域拡張部は、現在の注入技法を使用してフィーチャを画定するための実際に達成可能な下限値によって画定または限定される幅を有することができる。以下で論じるように、ある特定の実施形態では、デバイスセルのチャネル領域拡張部の幅は、デバイスセルのチャネル長の2倍より大きくてもよく(すなわち、>2Lch)、デバイスセルは、チャネル拡張部と同じ方向に延出するソース領域拡張部も含むことができる。本明細書で使用されるように、「ソース領域拡張部」は、チャネル拡張部と同じ方向に延出するデバイスセルのソース領域20の拡張部である。
図8~図27は、普通ならばJFET領域(すなわち、隣り合うデバイスセルのウェル領域間)の最も広い部分となるであろう部分に配置されて、JFET領域のこの部分の電界を低減させる少なくとも1つのチャネル拡張部を含む様々なレイアウトを有する半導体層2の実施形態の上面図を示す。より具体的には、図8~図10は、正方形デバイスセルの例示的なレイアウトを示し、図11~図16は、細長い矩形デバイスセルの例示的なレイアウトを示し、図17~図22は、六角形デバイスセルの例示的なレイアウトを示し、図23および図24は、細長い六角形デバイスセルの例示的なレイアウトを示し、図24~図27は、ソース領域拡張部も含む正方形デバイスセルの例示的なレイアウトを示し、各レイアウトが複数のチャネル領域拡張部を含む。図11~図16の細長い矩形デバイスセル、ならびに図23および図24の細長い六角形デバイスセルは、両方とも2014年6月24日に申請された同時係属中の米国特許出願第14/313,785号および第14/313,820号に記載された1つまたは複数の特徴を含むことができ、これらの特許出願は、すべての目的のためにその全体が参照により本明細書に組み込まれる。デバイスおよびレイアウトのいくつかの異なる例示的な実施形態が以下に提示されているが、これらは、単に例であることが意図されていることを認識されよう。そのため、他の実施形態では、本手法のチャネル領域拡張部は、本手法の効果を無効にすることなく、他の形状(例えば、正方形の、丸みを帯びた、湾曲した、幅が変化する、細長い、または歪んだ形状)を有してもよい。また、図8~図27に示す開示されたセルラー式レイアウトの実施形態のチャネルおよび/またはJFETの濃度は、一般に、図2に示すような同じ設計パラメータを有するストライプデバイスセルレイアウト41よりも大きいことを認識されよう。
前述の事項を念頭において、図8は、本技法の実施形態による、いくつかの正方形デバイスセル1092を含むデバイスレイアウト1090を示す。図示する正方形デバイスセル1092はそれぞれ、チャネル領域28をJFET領域29内へと延出させる単一のチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1092のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1092の領域間)の距離60がすべて、隣り合うセル1092のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。ある特定の実施形態では、チャネル領域拡張部1094の幅1096は、およそ1μm未満(例えば、およそ0.1μm~およそ1μm)またはおよそ0.5μm未満(例えば、およそ0.1μm~およそ0.5μm)であってもよい。さらに、図8に示すチャネル領域拡張部1094は、実質的に同じ方向に向いており、これは、チャネル領域拡張部1094が各セル1092の等価なコーナーから延出し、拡張方向が互いに実質的に平行であることを意味する。ある特定の実施形態では、チャネル領域拡張部1094は、図8に示すように、デバイスセルの対角線と整列していなくてもよく、または互いに平行な方向に向いていなくてもよいことを認識されよう。図7Bに関して以下に述べるように、矢印1098に沿って移動すると、開示されたチャネル領域拡張部は、図8に示す実施形態と同様に、電界の低下をもたらすことをさらに留意されたい。いくつかの図示する実施形態については、チャネル領域拡張部1094は、チャネル領域28のすべてのコーナーまたはすべての側面から延出しているわけではないことを認識されよう。
開示されたチャネル領域拡張部1094によって提供される改善を示すために、図7Bは、逆バイアス下での図8のSiCデバイスセル1092の実施形態の部分に対する電界の大きさを(図6および図7Aと同じ任意単位(au)で)プロットしたグラフ86であり、デバイスセル1092の特定の部分は、図8に示す対角線の矢印1098に沿って配置されている。図6および図7Aと同様に、図7Bのグラフ86は、図6および図7Aに表されたシールドされていないデバイスセルと同じ寸法を有する例示的なSiCデバイスセル1092について、(図1Aおよび図1Bに示すような)SiC層2内の電界を示す第1の曲線87を含み、SiC層2上に配置された誘電体層24内の電界を示す第2の曲線88を含む。図7Bに示すように、SiCデバイスセル1092の中心65では(すなわちx=0μmでは)、SiC層2内および誘電体層24内の電界は両方とも、低く、デバイスセル1092のコーナーを通って対角線状に移動すると、電界は、チャネル領域拡張部1094に(すなわち、ほぼx=5.75μmで)達する前に、ピーク電界強度に増加し(すなわち、ほぼx=5.5μmで)、その後電界の大きさが急激に低下する。曲線88によって示されるように、対応する低下が誘電体層24においても観察される。図7Aと図7Bを比較すると、図8のシールドされたSiCデバイスセル1092のウェル領域のコーナー間の(すなわち、矢印1098に沿った)ピークまたは最大の電界は、図3のシールドされていないSiC正方形セル50に対するコーナー間の(すなわち、矢印66に沿った)ピークまたは最大の電界よりもおよそ20%低い。その結果、図7Bに示すように、誘電体層24内のピーク電界は、隣り合うデバイスセル1092のウェル領域のコーナー間にあるJFET領域29の部分でより低く、結果として、これらのSiCデバイスセル1092に対する長期信頼性を改善することができる。
ある特定の実施形態では、デバイスセル1092のチャネル領域拡張部1094は、JFET領域29全体を通って延出して、隣り合うデバイスセル1092のチャネル領域拡張部1094とオーバラップすることができる。そのような設計は、効果的なシールドを提供するが、JFET濃度がわずかに低いため、結果として、チャネル領域拡張部1094が接続しない設計に比べてRds(オン)がわずかに高くなることも認識されよう。例えば、図9は、本技法の実施形態による、いくつかの正方形デバイスセル1092を含むデバイスレイアウト1100を示す。図9の正方形のデバイスセル1092はそれぞれ、チャネル領域28の2つの相対するコーナーからJFET領域29内へと延出して、2つの隣り合うデバイスセル1092のチャネル領域拡張部1094とオーバラップするチャネル領域拡張部1094を含む。さらに、図9に示すチャネル領域拡張部1094は、実質的に同じ方向に向いており、これは、チャネル領域拡張部1094が各セル1092の等価なコーナーから延出し、互いに対して実質的に平行な方向に向いていることを意味する。したがって、チャネル領域拡張部1094は、隣り合うデバイスセル1092のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1092の領域間)の距離60がすべて、隣り合うセル1092のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
開示されたチャネル領域拡張部は、例えば、正方形セルラー式デバイスの他のレイアウトと共に使用することもできる。図10は、本技法の実施形態による、いくつかの千鳥状の正方形デバイスセル1092を含むデバイスレイアウト1110を示す。図10のセル1092の正方形デバイスセル1092のそれぞれは、チャネル領域28の2つの相対する側面からJFET領域29内へと延出するチャネル領域拡張部1094を含む。チャネル領域拡張部1094は、隣り合うデバイスセル1092のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1092の領域間)の距離60がすべて、隣り合うセル1092のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
前述したように、本明細書に開示されたチャネル領域拡張部は、他のセル形状を有するセルラー式デバイスと共に使用することもできる。例えば、図11は、本技法の実施形態による、いくつかの細長い矩形デバイスセル1122を含むデバイスレイアウト1120を示す。図11の矩形デバイスセル1122のそれぞれは、チャネル領域28の2つの相対する側面からJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1122のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1122の領域間)の距離60がすべて、隣り合うセル1122のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図12は、本技法の実施形態による、いくつかの細長い矩形SiCデバイスセル1122を含むデバイスレイアウト1130を示す。図12の矩形デバイスセル1122のそれぞれは、チャネル領域28の2つの相対するコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1122のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1122の領域間)の距離60がすべて、隣り合うセル1122のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図13は、本技法の実施形態による、いくつかの細長い矩形デバイスセル1122を含むデバイスレイアウト1140を示す。図13の矩形デバイスセル1122のそれぞれは、チャネル領域28の1つのコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1122のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1122の領域間)の距離60がすべて、隣り合うセル1122のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図14は、本技法の実施形態による、いくつかの細長い矩形デバイスセル1122を含むデバイスレイアウト1150を示す。図14の矩形デバイスセル1122のそれぞれは、チャネル領域28をJFET領域29内へと延出させるチャネル領域拡張部1094を含む。より具体的には、図14の矩形デバイスセル1122は、チャネル領域28のコーナーから延出する第1のチャネル領域拡張部と、コーナーに隣接するチャネル領域28の側面を通って延出する第2のチャネル領域拡張部と、を有する。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1122のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1122の領域間)の距離60がすべて、隣り合うセル1122のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図15は、本技法の実施形態による、いくつかの細長い矩形デバイスセルを含むデバイスレイアウト1160を示す。図15の矩形デバイスセル1122のそれぞれは、チャネル領域28をJFET領域29内へと延出させて、2つの異なる隣り合うデバイスセル1122のチャネル拡張部1094とオーバラップする2つのチャネル領域拡張部1094を含む。より具体的には、図15に示すデバイスセル1122は、チャネル領域28のコーナーから延出する第1のチャネル拡張部1094と、コーナーに隣接するチャネル領域28の側面から延出する第2のチャネル拡張部1094と、を有する。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1122のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1122の領域間)の距離60がすべて、隣り合うセル1122のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図16は、本技法の実施形態による、いくつかの細長い矩形デバイスセル1122を含むデバイスレイアウト1170を示す。図16の矩形デバイスセル1122のそれぞれは、チャネル領域28の2つの相対するコーナーからJFET領域29内へと延出して、2つの異なる隣り合うデバイスセル1122のチャネル領域拡張部1094とオーバラップするチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1122のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1122の領域間)の距離60がすべて、隣り合うセル1122のウェル領域18の平行な部分間の距離49よりも小さいことを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
前述したように、本明細書に開示されたチャネル領域拡張部は、六角形形状を有するセルラー式デバイスと共に使用することもできる。例えば、図17は、本技法の実施形態による、いくつかの六角形SiCデバイスセル1182を含むデバイスレイアウト1180を示す。図17のデバイスセル1182のそれぞれは、チャネル領域28の2つの相対するコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1182のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1182の領域間)の距離60がすべて、隣り合うセル1182のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図18は、本技法の実施形態による、いくつかの六角形デバイスセル1182を含むデバイスレイアウト1190を示す。図18のデバイスセル1182のそれぞれは、チャネル領域28の2つの隣接するコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1182のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1182の領域間)の距離60がすべて、隣り合うセル1182のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図19は、本技法の実施形態による、いくつかの六角形デバイスセル1182を含むデバイスレイアウト1200を示す。図19のデバイスセル1182の一部は、チャネル領域28をJFET領域29内へと延出させるチャネル領域拡張部1094を含む。より具体的には、図19の図示するレイアウト1200は、それぞれがデバイスセル1182のウェル領域28の2対の相対するコーナー(2対の隣接するコーナー)から延出するチャネル領域拡張部1094を含む第1の列1202のデバイスセル1182を含み、これに、チャネル拡張部1094を含まない、隣り合うセル1182のチャネル領域拡張部1094によってシールドされた第2の列1204のデバイスセル1182が並行する。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1182のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1182の領域間)の距離60がすべて、隣り合うセル1182のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図20は、本技法の実施形態による、いくつかの六角形デバイスセル1182を含むデバイスレイアウト1210を示す。図20のデバイスセル1182のそれぞれは、チャネル領域28の2つのコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。より具体的には、図20の図示するレイアウト1210は、それぞれがセル1182のチャネル領域28の2つの(例えば、隣接しない、相対しない)コーナーから延出するチャネル領域拡張部1094を含む第1の列1212のデバイスセル1182を含み、これに、それぞれがセル1182のチャネル領域28の2つの(例えば、隣接しない、相対しない)コーナーから延出するチャネル領域拡張部1094を含む第2の列1214のデバイスセル1182が並行し、2つのコーナーが列1212および列1214列に対して等価である。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1182のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1182の領域間)の距離60がすべて、隣り合うセル1182のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図21は、本技法の実施形態による、いくつかの六角形デバイスセル1182を含むデバイスレイアウト1220を示す。図21のデバイスセル1182の一部は、チャネル領域28をJFET領域29内へと延出させるチャネル領域拡張部1094を含む。より具体的には、図21に示すデバイスセル1182の一部は、チャネル領域28のすべてのコーナーから延出するチャネル領域拡張部1094を含む。さらに、デバイスセル1182の残りは、それらのチャネル領域28から延出するチャネル拡張部1094を含まず、デバイスセル1182が出会うJFET領域29の部分が、隣り合うデバイスセル1182のチャネル領域拡張部1094によってシールドされている。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1182のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1182の領域間)の距離60がすべて、隣り合うセル1182のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。さらに、図21のデバイスレイアウト1220について、チャネル領域拡張部1094を含むデバイスセル1182は、チャネル領域拡張部1094を含まないデバイスセル1182によって分離されている(例えば、6つの側面で取り囲まれ、すべての側面で取り囲まれて隔離されている)。
図22は、本技法の実施形態による、いくつかの六角形デバイスセル1182を含むデバイスレイアウト1230を示す。図22のデバイスセル1182の一部は、チャネル領域28をJFET領域29内へと延出させるチャネル領域拡張部1094を含む。より具体的には、図22に示すデバイスセル1182の一部は、セル1182のチャネル領域28の2つの相対するコーナーから延出するチャネル領域拡張部1094を含む。デバイスセル1182の別の一部は、セル1182のチャネル領域28の2対の相対するコーナー(または2対の隣接するコーナー)から延出するチャネル領域拡張部1094を含む。デバイスセル1182のさらに別の一部は、チャネル拡張部1094を含まず、デバイスセル1182が出会うJFET領域の部分が、隣り合うデバイスセル1182のチャネル領域拡張部1094によってシールドされている。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1182のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1182の領域間)の距離60がすべて、隣り合うセル1182のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図23は、本技法の実施形態による、いくつかの細長い六角形デバイスセル1242を含むデバイスレイアウト1240を示す。図23のデバイスセル1242のそれぞれは、チャネル領域28の2つの隣接するコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1242のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1242の領域間)の距離60がすべて、隣り合うセル1242のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図24は、本技法の実施形態による、いくつかの細長い六角形デバイスセル1242を含むデバイスレイアウト1250を示す。図24のデバイスセル1242のそれぞれは、チャネル領域28の2つの相対するコーナーからJFET領域29内へと延出するチャネル領域拡張部1094を含む。そのため、チャネル領域拡張部1094は、隣り合うデバイスセル1242のウェル領域18とチャネル領域拡張部1094との間(例えば、第2の導電型を有する隣り合うデバイスセル1242の領域間)の距離60がすべて、隣り合うセル1242のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
前述したように、ある特定の実施形態では、デバイスセルのチャネル領域拡張部の幅は、デバイスセルのチャネル長43の2倍よりも大きくてもよい(すなわち、>2Lch)。そのような実施形態については、デバイスセルは、チャネル領域拡張部がデバイス動作中に導電性チャネルを形成することができるように、チャネル拡張部と同じ方向に延出するソース領域拡張部も含むことができる。図25~図27は、本技法の実施形態による、チャネル領域拡張部およびソース領域拡張部の両方を有するいくつかの例示的なデバイスセルを含むデバイスレイアウトの上面図である。これらのソース領域拡張部は、デバイスセルのソース領域20を形成するために使用される同じ注入ステップ中に注入されてもよいことを認識されよう。図25~図27の例示的なデバイスセルは、正方形デバイスセル(または修正された正方形デバイスセル)であるが、他の実施形態では、チャネル領域拡張部およびソース領域拡張部は、本開示による、他の形状(例えば、矩形、六角形、細長い六角形、不規則など)を有するデバイスセルと共に使用することができることも認識されよう。
図25は、本技法の実施形態による、いくつかのデバイスセル1262を含むデバイスレイアウト1260を示す。図25のデバイスセル1262のそれぞれは、チャネル領域28の1つのコーナーからJFET領域29内へと延出するチャネル領域拡張部1264を含む。チャネル領域拡張部1264の幅1096は、デバイスセル1262に対するチャネル長43の2倍よりも大きい。そのため、デバイスセル1262はそれぞれ、チャネル領域拡張部1264と同じ方向に延出するソース領域拡張部1266を含む。そのため、チャネル領域拡張部1264は、隣り合うデバイスセル1262のウェル領域18とチャネル領域拡張部1264との間(例えば、第2の導電型を有する隣り合うデバイスセル1262の領域間)の距離60がすべて、隣り合うセル1262のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
ある特定の実施形態では、チャネル領域拡張部と同様に、開示されたソース領域拡張部も隣り合うデバイスセルのソース領域拡張部に結合することができる。図26は、本技法の実施形態による、いくつかのデバイスセル1262を含むデバイスレイアウト1270を示す。図26のデバイスセル1262のそれぞれは、チャネル領域28をJFET領域29内へと延出させて、2つの異なる隣り合うセル1262のチャネル領域拡張部1264とオーバラップするチャネル領域拡張部1264を含む。さらに、図26に示すデバイスセル1262については、チャネル領域拡張部1264の幅1096は、チャネル長43の2倍よりも大きい。デバイスセル1262はそれぞれ、チャネル領域拡張部1264と同じ方向に延出して、2つの隣り合うセル1262のソース領域拡張部1266とオーバラップするソース領域拡張部1266を含む。そのため、チャネル領域拡張部1264は、隣り合うデバイスセル1262のウェル領域18とチャネル領域拡張部1264との間(例えば、第2の導電型を有する隣り合うデバイスセル1262の領域間)の距離60がすべて、隣り合うセル1262のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1094は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
図27は、本技法の実施形態による、いくつかのデバイスセル1282を含むデバイスレイアウト1280を示す。図27のデバイスセル1282のそれぞれは、チャネル領域28の2つの相対する側面からJFET領域29内へと延出するチャネル領域拡張部1284を含む。さらに、チャネル領域拡張部1284の少なくとも1つの最大幅1096は、デバイスセル1282に対するチャネル長43の2倍よりも大きく、そのため、デバイスセル1282はそれぞれ、チャネル拡張部1284と同じ方向に延出するソース領域拡張部1286を含む。そのため、チャネル領域拡張部1284は、隣り合うデバイスセル1282のウェル領域18とチャネル領域拡張部1284との間(例えば、第2の導電型を有する隣り合うデバイスセル1282の領域間)の距離60がすべて、隣り合うセル1282のウェル領域18の平行な部分間の距離49以下であることを全体的に保証する。言いかえれば、チャネル領域拡張部1284は、JFET領域29のどの部分もWJFET,parallel49ほど広くないことを全体的に保証する。
本開示の技術的な効果は、Rds(オン)を著しく増加させることなく、複数のデバイスセルが出会うJFET領域の部分の電界を低減させるチャネル領域拡張部の形態の、1つまたは複数のシールド領域を組み込むセルラー式デバイス設計を含む。開示されたチャネル領域拡張部は、同等の寸法の従来のストライプデバイスセル以上のチャネル領域幅および/またはJFET領域濃度を維持しながら、セルのウェル領域コーナーと、隣り合うデバイスセルのウェル領域との間の距離をセルのウェル領域の平行な部分間の距離以下にするように設計されている。したがって、本明細書に開示されたシールドされたセルラー式デバイスセルは、同等の寸法の従来のストライプデバイスセルに比べて優れた性能を提供し、一方で同様の信頼性(例えば、長期間の高温安定性、DIBLの低減)を依然として提供する。さらに、本明細書に開示されたセルラー式設計のチャネル領域拡張部は、デバイスセルのウェル領域と共に注入されてもよく、そのため、製作の複雑さまたはコストを増加させない。
2 半導体デバイス層
4 第1の表面
6 第2の表面
10 半導体デバイス
12 ドレインコンタクト
14 基板層
16 ドリフト層
18 ウェル領域
20 ソース領域
22 ソースコンタクト
24 誘電体層
26 ゲート電極
28 チャネル領域
29 JFET領域
30 コンタクト抵抗
38 ドリフト抵抗
39 ボディ領域
40 基板抵抗
41 ストライプセルデバイス
42 ソースコンタクト領域
43 チャネル長
45 チャネル領域からオーミック領域までの長さ
44 ボディコンタクト領域
47 オーミック領域の幅
49 JFET領域の幅
50 正方形デバイスセル
51 レイアウト
52 レイアウト
54 六角形デバイスセル
55 レイアウト
60 距離
64 矢印
65 中心
66 矢印
68 側面
69 コーナー
70 グラフ
72 第1の曲線
74 第2の曲線
80 グラフ
82 第1の曲線
84 第2の曲線
86 グラフ
87 第1の曲線
88 第2の曲線
88 曲線
1090 デバイスレイアウト
1092 正方形デバイスセル
1094 チャネル領域拡張部
1096 幅
1098 矢印
1100 デバイスレイアウト
1110 デバイスレイアウト
1120 デバイスレイアウト
1122 矩形デバイスセル
1130 デバイスレイアウト
1140 デバイスレイアウト
1150 デバイスレイアウト
1160 デバイスレイアウト
1170 デバイスレイアウト
1180 デバイスレイアウト
1182 六角形デバイスセル
1190 デバイスレイアウト
1200 デバイスレイアウト
1202 第1の列
1204 第2の列
1210 デバイスレイアウト
1212 第1の列
1214 第2の列
1220 デバイスレイアウト
1230 デバイスレイアウト
1240 デバイスレイアウト
1242 六角形デバイスセル
1250 デバイスレイアウト
1260 デバイスレイアウト
1262 デバイスセル
1264 チャネル領域拡張部
1266 ソース領域拡張部
1270 デバイスレイアウト
1280 デバイスレイアウト
1282 デバイスセル
1284 チャネル領域拡張部
1286 ソース領域拡張部

Claims (17)

  1. 第1の導電型を有する半導体デバイス層(2)内に少なくとも部分的に配置された複数のデバイスセル(1092、1122、1182、1242、1262、1282)であって、前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)のそれぞれが、
    前記デバイスセル(1092、1122、1182、1242、1262、1282)の中心の近くに配置された第2の導電型を有するボディ領域(39)と、
    前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記ボディ領域(39)に隣接して配置された前記第1の導電型を有するソース領域(20)と、
    前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記ソース領域(20)に隣接して配置された前記第2の導電型を有するチャネル領域(28)と、
    前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域(28)に隣接して配置された前記第1の導電型を有するJFET領域(29)であり、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域(28)と、前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)のうちの隣り合うデバイスセルのチャネル領域(28)の平行な部分との間に平行なJFET幅(49)を有する、JFET領域(29)と、
    を備える、
    複数のデバイスセル(1092、1122、1182、1242、1262、1282)を備え、
    前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)のうちの少なくとも1つのデバイスセルが、前記少なくとも1つのデバイスセルのチャネル領域拡張部(1094、1264、1284)と前記第2の導電型を有する前記隣り合うデバイスセルのチャネル領域(28)との間の距離(60)が前記平行なJFET幅(49)以下となるように、前記少なくとも1つのデバイスセルの前記チャネル領域(28)から外に向かって前記JFET領域(29)内へと延出する前記第2の導電型を有するチャネル領域拡張部(1094、1264、1284)を備え、
    前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)が前記少なくとも1つのデバイスセルの前記チャネル領域(28)の長さ(Lch)(43)の2倍よりも大きい幅(1096)を有し、前記少なくとも1つのデバイスセルが前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)と同じ方向に前記デバイスセルの前記ソース領域(20)から延出するソース領域拡張部(1266、1286)を備える、
    デバイス。
  2. 前記半導体デバイス層(2)が炭化ケイ素(SiC)半導体デバイス層である、請求項1記載のデバイス。
  3. 前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)と前記第2の導電型を有する前記隣り合うデバイスセルの前記チャネル領域(28)との間の前記距離(60)が前記平行なJFET幅(49)よりも小さい、請求項1記載のデバイス。
  4. 前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)がおよそ0.1μm~およそμmの幅(1096)を有する、請求項1記載のデバイス。
  5. 前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)の前記幅(1096)がおよそ0.1μm~およそ0.5μmである、請求項4記載のデバイス。
  6. 前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)のうちの少なくとも2つのデバイスセルがそれぞれのチャネル領域拡張部(1094、1264、1284)を含み、前記少なくとも2つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)が互いに向かって延出し、互いにオーバラップする、請求項1記載のデバイス。
  7. 前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)のうちの少なくとも2つのデバイスセルがそれぞれのチャネル領域拡張部(1094、1264、1284)およびそれぞれのソース領域拡張部(1266、1286)を含み、前記少なくとも2つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)が互いに向かって延出し、互いにオーバラップする、請求項1記載のデバイス。
  8. 前記少なくとも2つのデバイスセルの前記ソース領域拡張部(1266、1286)も互いに向かって延出し、互いにオーバラップする、請求項7記載のデバイス。
  9. 前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)が前記少なくとも1つのデバイスセルの前記チャネル領域(28)のすべてのコーナー(69)を通っては延出しない、請求項1記載のデバイス。
  10. 前記チャネル領域拡張部(1094、1264、1284)が可変幅(1096)を有する、請求項1記載のデバイス。
  11. 前記少なくとも1つのデバイスセルに隣接して配置された前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)の1つまたは複数のデバイスセルがそれぞれのチャネル領域拡張部(1094、1264、1284)を含まず、1つまたは複数のデバイスセルのJFET領域(29)の最も広い部分が前記少なくとも1つの隣接するデバイスセルの前記チャネル領域拡張部(1094、1264、1284)によってシールドされている、請求項1記載のデバイス。
  12. 前記少なくとも1つのデバイスセルの前記チャネル領域拡張部(1094、1264、1284)が前記デバイスセルの前記チャネル領域(28)の少なくとも1つのコーナー(69)および少なくとも1つの側面(68)から延出する、請求項1記載のデバイス。
  13. 前記複数のデバイスセル(1092、1122、1182、1242、1262、1282)のそれぞれが実質的に正方形、六角形、細長い矩形形状、または細長い六角形形状を有する、請求項1記載のデバイス。
  14. 電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT)、または絶縁ベースMOS制御サイリスター(IBMCT)である、請求項1記載のデバイス。
  15. デバイスセル(1092、1122、1182、1242、1262、1282)を製造する方法であって、
    第1の導電型を有する半導体層に、前記第1の導電型を有するソース領域(20)を注入するステップと、
    前記半導体層に、第2の導電型を有するウェル領域(18)を注入して、前記ソース領域(20)に隣接してチャネル領域(28)を形成するステップと、
    前記半導体層に、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域(28)からJFET領域(29)内へと延出する前記第2の導電型を有するチャネル領域拡張部(1094、1264、1284)を注入するステップであって、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域拡張部(1094、1264、1284)と、前記第2の導電型を有する隣り合うデバイスセル(1092、1122、1182、1242、1262、1282)の一部との間の距離(60)が、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域(28)の平行な部分と前記隣り合うデバイスセル(1092、1122、1182、1242、1262、1282)のチャネル領域(28)との間の距離以下である、ステップと、を含み、
    前記ウェル領域(18)を注入するステップが、前記チャネル領域(28)の長さ(Lch)(43)の2倍以上である前記チャネル領域拡張部(1094、1264、1284)の幅(1096)を画定するステップを含み、前記ソース領域(20)から前記チャネル領域拡張部(1094、1264、1284)と同じ方向に延出する前記第1の導電型を有するソース領域拡張部(1266、1286)を注入するステップを含み、
    前記ソース領域拡張部(1266、1286)が前記ソース領域(20)と同時に注入される、デバイスセル(1092、1122、1182、1242、1262、1282)を製造する方法。
  16. デバイスセル(1092、1122、1182、1242、1262、1282)を製造する方法であって、
    第1の導電型を有する半導体層に、前記第1の導電型を有するソース領域(20)を注入するステップと、
    前記半導体層に、第2の導電型を有するウェル領域(18)を注入して、前記ソース領域(20)に隣接してチャネル領域(28)を形成するステップと、
    前記半導体層に、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域(28)からJFET領域(29)内へと延出する前記第2の導電型を有するチャネル領域拡張部(1094、1264、1284)を注入するステップであって、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域拡張部(1094、1264、1284)と、前記第2の導電型を有する隣り合うデバイスセル(1092、1122、1182、1242、1262、1282)の一部との間の距離(60)が、前記デバイスセル(1092、1122、1182、1242、1262、1282)の前記チャネル領域(28)の平行な部分と前記隣り合うデバイスセル(1092、1122、1182、1242、1262、1282)のチャネル領域(28)との間の距離以下である、ステップと、を含み、
    前記ウェル領域(18)を注入するステップが、前記チャネル領域(28)の長さ(Lch)(43)の2倍以上である前記チャネル領域拡張部(1094、1264、1284)の幅(1096)を画定するステップを含み、前記ソース領域(20)から前記チャネル領域拡張部(1094、1264、1284)と同じ方向に延出する前記第1の導電型を有するソース領域拡張部(1266、1286)を注入するステップを含み、
    前記ソース領域(20)が前記ウェル領域(18)の後に注入される、デバイスセル(1092、1122、1182、1242、1262、1282)を製造する方法。
  17. 前記ウェル領域(18)が前記チャネル領域拡張部(1094、1264、1284)と同時に注入される、請求項15又は16記載の方法。
JP2018561262A 2016-05-23 2017-05-23 チャネル領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド Active JP7102048B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662340396P 2016-05-23 2016-05-23
US62/340,396 2016-05-23
US15/595,717 US10056457B2 (en) 2016-05-23 2017-05-15 Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells using channel region extensions
US15/595,717 2017-05-15
PCT/US2017/033956 WO2017205348A1 (en) 2016-05-23 2017-05-23 Electric field shielding in silicon carbide metal-oxide-semiconductor (mos) device cells using channel region extensions

Publications (2)

Publication Number Publication Date
JP2019517149A JP2019517149A (ja) 2019-06-20
JP7102048B2 true JP7102048B2 (ja) 2022-07-19

Family

ID=60329597

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2018561261A Active JP7023866B2 (ja) 2016-05-23 2017-05-23 最適化層を有する炭化ケイ素金属-酸化物-半導体(mos)デバイスにおける電界シールディング
JP2018561262A Active JP7102048B2 (ja) 2016-05-23 2017-05-23 チャネル領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
JP2018561260A Active JP7080536B2 (ja) 2016-05-23 2017-05-23 炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
JP2018561263A Pending JP2019517150A (ja) 2016-05-23 2017-05-23 ボディ領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
JP2022105834A Active JP7466938B2 (ja) 2016-05-23 2022-06-30 ボディ領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018561261A Active JP7023866B2 (ja) 2016-05-23 2017-05-23 最適化層を有する炭化ケイ素金属-酸化物-半導体(mos)デバイスにおける電界シールディング

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018561260A Active JP7080536B2 (ja) 2016-05-23 2017-05-23 炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
JP2018561263A Pending JP2019517150A (ja) 2016-05-23 2017-05-23 ボディ領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
JP2022105834A Active JP7466938B2 (ja) 2016-05-23 2022-06-30 ボディ領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド

Country Status (5)

Country Link
US (5) US10096681B2 (ja)
EP (4) EP3465765A1 (ja)
JP (5) JP7023866B2 (ja)
CN (4) CN109155337B (ja)
WO (4) WO2017205346A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096681B2 (en) 2016-05-23 2018-10-09 General Electric Company Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells
US11075295B2 (en) 2018-07-13 2021-07-27 Cree, Inc. Wide bandgap semiconductor device
CN108899318B (zh) * 2018-08-30 2024-01-26 无锡摩斯法特电子有限公司 一种增加vdmos沟道密度的蛇形布图结构和布图方法
US10957791B2 (en) * 2019-03-08 2021-03-23 Infineon Technologies Americas Corp. Power device with low gate charge and low figure of merit
US11031461B2 (en) * 2019-08-25 2021-06-08 Genesic Semiconductor Inc. Manufacture of robust, high-performance devices
CN112234095B (zh) * 2020-09-30 2023-07-18 济南星火技术发展有限公司 含有增强元胞设计的功率mosfet器件
CN112599524B (zh) * 2020-12-18 2022-09-20 浙江大学杭州国际科创中心 一种具有增强可靠性的碳化硅功率mosfet器件
US11367775B1 (en) * 2020-12-21 2022-06-21 Infineon Technologies Ag Shielding structure for SiC devices
US11616123B2 (en) * 2021-02-12 2023-03-28 Alpha And Omega Semiconductor International Lp Enhancement on-state power semiconductor device characteristics utilizing new cell geometries
CN113161409A (zh) * 2021-02-26 2021-07-23 西安微电子技术研究所 一种碳化硅mos晶体管及其制备方法
US11302776B1 (en) * 2021-05-31 2022-04-12 Genesic Semiconductor Inc. Method and manufacture of robust, high-performance devices
CN113555282B (zh) * 2021-06-15 2023-08-08 扬州国扬电子有限公司 Mos控制晶闸管的制造方法及mos控制晶闸管
CN115588695B (zh) * 2022-12-09 2023-05-16 无锡先瞳半导体科技有限公司 屏蔽栅场效应晶体管
CN116190446B (zh) * 2022-12-20 2023-12-08 瑶芯微电子科技(上海)有限公司 高可靠性的碳化硅基mosfet器件及其制作方法
CN116110937B (zh) * 2022-12-20 2023-10-20 瑶芯微电子科技(上海)有限公司 碳化硅基mosfet器件及制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161420A1 (ja) 2012-04-24 2013-10-31 富士電機株式会社 縦型高耐圧半導体装置およびその製造方法
WO2016084131A1 (ja) 2014-11-25 2016-06-02 株式会社日立製作所 半導体装置および電力変換装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991123B2 (ja) * 1996-08-21 1999-12-20 日本電気株式会社 半導体装置
EP0865085A1 (en) * 1997-03-11 1998-09-16 STMicroelectronics S.r.l. Insulated gate bipolar transistor with high dynamic ruggedness
JP2000077663A (ja) * 1998-09-02 2000-03-14 Mitsubishi Electric Corp 電界効果型半導体装置
US6351009B1 (en) 1999-03-01 2002-02-26 Fairchild Semiconductor Corporation MOS-gated device having a buried gate and process for forming same
US20010001494A1 (en) 1999-04-01 2001-05-24 Christopher B. Kocon Power trench mos-gated device and process for forming same
JP3906105B2 (ja) 2002-03-29 2007-04-18 株式会社東芝 半導体装置
JP2004104003A (ja) * 2002-09-12 2004-04-02 Renesas Technology Corp 半導体素子
EP1420457B1 (en) 2002-11-14 2012-01-11 STMicroelectronics Srl Manufacturing method of an insulated gate power semiconductor device with Schottky diode
US6864519B2 (en) 2002-11-26 2005-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS SRAM cell configured using multiple-gate transistors
US7221010B2 (en) * 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
US20050012143A1 (en) 2003-06-24 2005-01-20 Hideaki Tanaka Semiconductor device and method of manufacturing the same
DE102004009602B4 (de) 2004-02-27 2009-09-17 Infineon Technologies Ag Trench-Transistor
JP4990140B2 (ja) 2004-08-31 2012-08-01 フリースケール セミコンダクター インコーポレイテッド パワー半導体デバイス
JP4986408B2 (ja) 2005-04-22 2012-07-25 ローム株式会社 半導体装置およびその製造方法
US7385248B2 (en) 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
US8421148B2 (en) 2007-09-14 2013-04-16 Cree, Inc. Grid-UMOSFET with electric field shielding of gate oxide
JP4800286B2 (ja) * 2007-10-16 2011-10-26 Okiセミコンダクタ株式会社 半導体装置とその製造方法
EP2058854B1 (en) 2007-11-07 2014-12-03 Acreo Swedish ICT AB A semiconductor device
US7795691B2 (en) 2008-01-25 2010-09-14 Cree, Inc. Semiconductor transistor with P type re-grown channel layer
US8704295B1 (en) 2008-02-14 2014-04-22 Maxpower Semiconductor, Inc. Schottky and MOSFET+Schottky structures, devices, and methods
WO2010065428A2 (en) 2008-12-01 2010-06-10 Maxpower Semiconductor Inc. Mos-gated power devices, methods, and integrated circuits
US8212321B2 (en) 2009-10-30 2012-07-03 Freescale Semiconductor, Inc. Semiconductor device with feedback control
US8610130B2 (en) 2009-10-30 2013-12-17 Cree, Inc. Monolithic high voltage switching devices
CN102334176A (zh) * 2009-12-16 2012-01-25 住友电气工业株式会社 碳化硅衬底
WO2011135995A1 (ja) * 2010-04-26 2011-11-03 三菱電機株式会社 半導体装置
JP2011003919A (ja) * 2010-08-23 2011-01-06 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US8643067B2 (en) 2011-09-30 2014-02-04 Maxim Integrated Products, Inc. Strapped dual-gate VDMOS device
JP5677330B2 (ja) * 2012-01-20 2015-02-25 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
US8866253B2 (en) * 2012-01-31 2014-10-21 Infineon Technologies Dresden Gmbh Semiconductor arrangement with active drift zone
US8785278B2 (en) 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
JP5597217B2 (ja) * 2012-02-29 2014-10-01 株式会社東芝 半導体装置及びその製造方法
US20130313570A1 (en) 2012-05-24 2013-11-28 Microsemi Corporation Monolithically integrated sic mosfet and schottky barrier diode
US8674440B2 (en) 2012-07-31 2014-03-18 Io Semiconductor Inc. Power device integration on a common substrate
CN202816955U (zh) 2012-09-14 2013-03-20 哈尔滨工程大学 一种分裂栅型沟槽功率mos器件
US9530844B2 (en) * 2012-12-28 2016-12-27 Cree, Inc. Transistor structures having reduced electrical field at the gate oxide and methods for making same
JP5981859B2 (ja) 2013-02-15 2016-08-31 株式会社豊田中央研究所 ダイオード及びダイオードを内蔵する半導体装置
US9515137B2 (en) 2013-02-21 2016-12-06 Infineon Technologies Austria Ag Super junction semiconductor device with a nominal breakdown voltage in a cell area
JP5907097B2 (ja) * 2013-03-18 2016-04-20 三菱電機株式会社 半導体装置
US9799734B2 (en) * 2013-06-17 2017-10-24 Hitachi, Ltd. Semiconductor device and manufacturing method for same, as well as power conversion device
US10062749B2 (en) * 2013-06-18 2018-08-28 Monolith Semiconductor Inc. High voltage semiconductor devices and methods of making the devices
DE112014003637B4 (de) 2013-08-08 2023-07-27 Fuji Electric Co., Ltd. Hochspannungs-Halbleitervorrichtung und Herstellungsverfahren derselben
JP6197995B2 (ja) * 2013-08-23 2017-09-20 富士電機株式会社 ワイドバンドギャップ絶縁ゲート型半導体装置
JP6282088B2 (ja) * 2013-11-13 2018-02-21 三菱電機株式会社 半導体装置及びその製造方法
US10211304B2 (en) 2013-12-04 2019-02-19 General Electric Company Semiconductor device having gate trench in JFET region
CN103840007B (zh) 2014-03-10 2017-04-19 北京中科新微特科技开发股份有限公司 一种屏蔽栅结构的vdmos晶体管
DE102014003637A1 (de) 2014-03-14 2015-09-17 Sciknowtec Gmbh Kontaktloses Bedienelement
US10361266B2 (en) * 2014-06-09 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
US10192958B2 (en) 2014-06-24 2019-01-29 General Electric Company Cellular layout for semiconductor devices
US10199465B2 (en) * 2014-06-24 2019-02-05 General Electric Company Cellular layout for semiconductor devices
JP2016058530A (ja) * 2014-09-09 2016-04-21 住友電気工業株式会社 炭化珪素半導体装置の製造方法
US10096681B2 (en) 2016-05-23 2018-10-09 General Electric Company Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells
US10541300B2 (en) 2016-05-26 2020-01-21 General Electric Company Semiconductor device and method of making thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161420A1 (ja) 2012-04-24 2013-10-31 富士電機株式会社 縦型高耐圧半導体装置およびその製造方法
WO2016084131A1 (ja) 2014-11-25 2016-06-02 株式会社日立製作所 半導体装置および電力変換装置

Also Published As

Publication number Publication date
CN109155336B (zh) 2021-10-29
WO2017205437A1 (en) 2017-11-30
CN109155329B (zh) 2022-01-04
US20170338313A1 (en) 2017-11-23
US20170338300A1 (en) 2017-11-23
US20200258985A1 (en) 2020-08-13
WO2017205346A1 (en) 2017-11-30
JP7466938B2 (ja) 2024-04-15
CN109155338A (zh) 2019-01-04
CN109155338B (zh) 2022-12-13
US10600871B2 (en) 2020-03-24
WO2017205348A1 (en) 2017-11-30
EP3465766B1 (en) 2022-07-27
JP2022136098A (ja) 2022-09-15
WO2017205347A1 (en) 2017-11-30
CN109155337A (zh) 2019-01-04
JP7080536B2 (ja) 2022-06-06
EP3465761B1 (en) 2022-11-09
EP3465766A1 (en) 2019-04-10
JP7023866B2 (ja) 2022-02-22
JP2019517149A (ja) 2019-06-20
JP2019517150A (ja) 2019-06-20
US10096681B2 (en) 2018-10-09
US10937870B2 (en) 2021-03-02
US20170338314A1 (en) 2017-11-23
CN109155337B (zh) 2022-05-03
EP3465765A1 (en) 2019-04-10
CN109155336A (zh) 2019-01-04
CN109155329A (zh) 2019-01-04
EP3465764A1 (en) 2019-04-10
US10388737B2 (en) 2019-08-20
US20170338303A1 (en) 2017-11-23
EP3465761A1 (en) 2019-04-10
JP2019517148A (ja) 2019-06-20
US10056457B2 (en) 2018-08-21
EP3465764B1 (en) 2022-08-17
JP2019519916A (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
JP7102048B2 (ja) チャネル領域拡張部を用いた炭化ケイ素金属酸化物半導体(mos)デバイスセルにおける電界シールド
US8441046B2 (en) Topside structures for an insulated gate bipolar transistor (IGBT) device to achieve improved device performances
US8492771B2 (en) Heterojunction semiconductor device and method
CA2894143C (en) Cellular layout for semiconductor devices
US10199465B2 (en) Cellular layout for semiconductor devices
US9502498B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7102048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150