CN111403474A - 一种集成肖特基二极管的双沟道碳化硅mosfet器件 - Google Patents

一种集成肖特基二极管的双沟道碳化硅mosfet器件 Download PDF

Info

Publication number
CN111403474A
CN111403474A CN202010205715.6A CN202010205715A CN111403474A CN 111403474 A CN111403474 A CN 111403474A CN 202010205715 A CN202010205715 A CN 202010205715A CN 111403474 A CN111403474 A CN 111403474A
Authority
CN
China
Prior art keywords
region
base region
heavily doped
type heavily
deep groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010205715.6A
Other languages
English (en)
Inventor
易波
伍争
赵青
张千
向勇
石文坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010205715.6A priority Critical patent/CN111403474A/zh
Publication of CN111403474A publication Critical patent/CN111403474A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于功率半导体技术领域,具体提供一种集成肖特基二极管的双沟道碳化硅MOSFET器件,采用双沟道设计,形成两个接地的电场屏蔽区保护中间的肖特基二极管,使得肖特基结处电位能够被屏蔽的很低,从而降低泄露电流,提高击穿电压;同时,进一步降低肖特基势垒高度而不至于使得泄漏电流明显增大,进而降低肖特基二极管反向导通压降。此外,通过引入第一深槽内的平面沟道,一方面增加了沟道密度、降低了比导通电阻,另一方面通过将浮空电场屏蔽区接地、更好地起到屏蔽肖特基结电势的效果、从而降低肖特基势垒高度、降低反向导通压降,并且接地的电场屏蔽区能够消除浮空电场屏蔽区带来的动态电阻增大、弥勒电容增大的不良影响。

Description

一种集成肖特基二极管的双沟道碳化硅MOSFET器件
技术领域
本发明属于功率半导体技术领域,涉及功率半导体器件,具体为一种集成肖特基二极管的双沟道碳化硅MOSFET器件
背景技术
半导体功率器件是电力电子技术的核心元器件,通常电力电子系统要求功率器件具有低导通压降和高速开关等特性。碳化硅(SiC)材料因其临界击穿电场强度是硅的10倍,导热系数是硅的3倍,因而SiC MOSFET不管在功率密度、开关速度、损耗以及散热等方面都比硅基器件具有显著优势。通常,在MOSFET的应用中需要反并联一个快恢复续流二极管;然而,碳化硅的禁带宽度决定了其MOSFET自身反并联的PN结二极管固有导通压降约为3V,导通损耗过高;所以,在SiC MOSFET的应用中往往是将一个SiC肖特基二极管(SchottkyBarrier Diode:SBD)与其封装在一起构成一个功率模块;但是该方案将增加芯片成本、增大系统体积、引入寄生电感以及增大动态损耗等,所以,在同一芯片内集成低导通压降的反并联的快恢复二极管成为SiC MOSFET的一个重要方向。
传统的集成反并联肖特基二极管的SiC MOSFET结构都是将肖特基结制作在半导体表面或者深槽底部表面,同时需要在肖特基结的周围设置P型电场屏蔽层来抑制肖特基势垒降低效应,避免击穿电压下降;例如文献“C.T.Yen,et al.,“1700V/30A 4H-SiCMOSFET with low cut-in voltage embedded diode and room temperature boronimplanted terminatio n,”in Proc.ISPSD,2015,pp.265-268.”中公开的SiC MOSFET结构,其结构如图1所示;由于P-well通常结深较浅,屏蔽效果有限,所以肖特基势垒高度不宜过低,以免泄漏电流过大;但是,高的势垒高度将导致反向导通电阻增加。为了进一步提高电场屏蔽效果,文献“X.Li,et al.“SiC Trench MOSFET With Integrated Self-Assembled Three-Level Protection Sc hottky Barrier Diode,”IEEE Trans.ElectronDevices,vo.65,no.1,2018,pp.347–351.”中提出一种栅氧下具有浮空电场屏蔽区的SiCMOSFET,如图2所示;但是,浮空的P型电场屏蔽层将增加器件的动态电阻,增大弥勒电容,从而增大损耗,降低系统效率。
基于此,本发明提供一种新的集成肖特基二极管的双沟道碳化硅MOSFET器件。
发明内容
本发明的目的在于针对上述技术问题,提供一种集成肖特基二极管的双沟道碳化硅MOSFET器件,该器件在具有低的导通电阻、低泄漏电流、低弥勒电容以及低的反向导通电压。
为了实现上述目的,本发明采用的技术方案如下:
一种集成肖特基二极管的双沟道碳化硅MOSFET器件,包括:
N型重掺杂半导体衬底2,位于N型重掺杂半导体衬底2下的漏极金属1,位于N型重掺杂半导体衬底2上的N型耐压区3,以及位于N型耐压区3上的有源区;其特征在于,
所述有源区表面设置有第一深槽与第二深槽;所述第一深槽底部半导体内设置有第一基区5-1,所述第二深槽底部半导体内设置有第三基区5-3,所述第一深槽与第二深槽之间半导体内设置有第二基区5-2及位于第二基区5-2下方的N型半导体区4、且N型半导体区4位于第一基区5-1与第三基区5-3之间;
所述第一深槽的侧壁设置有垂直栅氧化层11-1,所述第一深槽的底部设置有水平栅氧化层11-2,所述第一深槽内设置有多晶硅栅8;所述水平栅氧化层11-2与多晶硅栅8的底面相接触,所述垂直栅氧化层11-1与多晶硅栅8的一侧相接触,所述多晶硅栅8的另一侧及顶面由钝化层9包覆;
所述第一基区5-1内设置有作为源极欧姆接触的第一基区内N型重掺杂欧姆接触区6-1与第一基区内P型重掺杂欧姆接触区7-1,所述第一基区内N型重掺杂欧姆接触区6-1与水平栅氧化层11-1相接触,且第一基区内N型重掺杂欧姆接触区6-1与第一基区内P型重掺杂欧姆接触区7-1上覆盖有源极金属10;
所述第二基区5-2内设置有作为源极欧姆接触的第二基区内N型重掺杂欧姆接触区6-2与第二基区内P型重掺杂欧姆接触区7-2,所述第二基区内N型重掺杂欧姆接触区6-2与垂直栅氧化层11-2相接触,且第二基区内N型重掺杂欧姆接触区6-2与第二基区内P型重掺杂欧姆接触区7-2上、以及第二深槽的侧壁与底部均覆盖有源极金属10。
进一步的,所述的N型半导体区4与源极金属10形成N型肖特基二极管。
当多晶硅栅8的栅极电压高于阈值电压时,能够同时在第一基区5-1中形成平面沟道,第二基区5-2中形成垂直沟道。
本发明的有益效果在于:
本发明提供一种集成肖特基二极管的双沟道碳化硅MOSFET器件,采用双沟道设计,形成两个接地的电场屏蔽区保护中间的肖特基二极管,使得肖特基结处电位能够被屏蔽的很低,从而降低泄露电流,提高击穿电压;同时,进一步降低肖特基势垒高度而不至于使得泄漏电流明显增大,进而降低肖特基二极管反向导通压降。此外,通过引入第一深槽内的平面沟道,一方面增加了沟道密度、降低了比导通电阻,另一方面,通过将浮空电场屏蔽区接地、更好地起到屏蔽肖特基结电势的效果、从而降低肖特基势垒高度、降低反向导通压降,并且接地的电场屏蔽区能够消除浮空电场屏蔽区带来的动态电阻增大、弥勒电容增大的不良影响。
附图说明
图1为传统的集成反并联肖特基二极管的SiC MOSFET器件结构示意图。
图2为现有栅氧下具有浮空电场屏蔽区的SiC MOSFET器件结构示意图。
图3为本发明实施例1提供的一种集成肖特基二极管的双沟道SiC MOSFET器件结构示意图;
图中,1为漏极金属,2为N+型半导体衬底,3为耐压区,4为N型半导体区,5-1、5-2、5-3为P型半导体基区,6-1、6-2为N型重掺杂欧姆接触区,7-1、7-2为P型重掺杂欧姆接触区,8为多晶硅栅区,9为钝化层,10为源极金属,11-1、11-2为栅氧化层。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种集成肖特基二极管的双沟道碳化硅MOSFET器件,其结构如图3所示,具体包括:
N型重掺杂半导体衬底2,位于N型重掺杂半导体衬底2下设置的漏极金属1,位于N型重掺杂半导体衬底2上的N型耐压区3,以及位于N型耐压区3上的有源区;所述有源区用于设置MOSFET的沟道区域以及肖特基二极管区;
所述有源区表面设置有两个深槽,分别为第一深槽和第二深槽;所述第一深槽底部半导体内设置有第一基区5-1,所述第二深槽底部半导体内设置有第三基区5-3,所述第一深槽与第二深槽之间的半导体内设置有第二基区5-2及位于第二基区5-2下方的N型半导体区4、且所述N型半导体区4位于第一基区5-1与第三基区5-3之间;
所述第一深槽的侧壁设置有垂直栅氧化层11-1、用于构成垂直沟道,所述第一深槽的底部设置有水平栅氧化层11-2、用于构成水平沟道,所述第一深槽内设置有多晶硅栅8;所述水平栅氧化层11-2与多晶硅栅8的底面相接触,所述垂直栅氧化层11-1与多晶硅栅8的一侧相接触,所述多晶硅栅8的另一侧及顶面由钝化层9包覆;
所述第一基区5-1内设置有作为源极欧姆接触的第一基区内N型重掺杂欧姆接触区6-1与第一基区内P型重掺杂欧姆接触区7-1,所述N型重掺杂欧姆接触区6-1与水平栅氧化层11-1相接触,所述N型重掺杂欧姆接触区6-1与P型重掺杂欧姆接触区7-1上覆盖有源极金属10;
所述第二基区5-2内设置有作为源极欧姆接触的第二基区内N型重掺杂欧姆接触区6-2与第二基区内P型重掺杂欧姆接触区7-2,所述N型重掺杂欧姆接触区6-2与垂直栅氧化层11-2相接触,所述N型重掺杂欧姆接触区6-2与P型重掺杂欧姆接触区7-2上、以及第二深槽的侧壁与底部均覆盖有源极金属10。
从工作原理上讲:上述集成肖特基二极管的双沟道碳化硅MOSFET器件中,所述第二深槽侧壁的源极金属10与N型半导体区接触形成肖特基二极管,所述第二深槽底部的第三基区5-3和源极金属10接触,同时所述第一基区5-1和源极金属10通过第一基区内P型重掺杂欧姆接触区7-1接地,从而形成两个接地的电场屏蔽区,保护中间的肖特基二极管;由于电场屏蔽区接地,在漏极电压升高时,电场屏蔽区不会像浮空电场屏蔽区那样电位升高,从而肖特基结处电位能够被屏蔽的很低,从而降低泄露电流,提高击穿电压;并且,能够进一步降低肖特基势垒高度而不至于使得泄漏电流明显增大,进而降低肖特基二极管反向导通压降。此外,通过在传统结构中浮空的第一基区5-1处设计平面沟道,一方面提高沟道密度,降低比导通电阻;另一方面,平面沟道的引入使得传统结构中浮空的电场屏蔽区通过第一基区内P型重掺杂欧姆接触区7-1接地,从而两个电场屏蔽区均接地,有效避免浮空电场屏蔽区带来的动态电阻增大、弥勒电容增大的不良效应,降低损耗,提高效率。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (3)

1.一种集成肖特基二极管的双沟道碳化硅MOSFET器件,包括:
N型重掺杂半导体衬底2,位于N型重掺杂半导体衬底2下的漏极金属1,位于N型重掺杂半导体衬底2上的N型耐压区3,以及位于N型耐压区3上的有源区;其特征在于,
所述有源区表面设置有第一深槽与第二深槽;所述第一深槽底部半导体内设置有第一基区5-1,所述第二深槽底部半导体内设置有第三基区5-3,所述第一深槽与第二深槽之间半导体内设置有第二基区5-2及位于第二基区5-2下方的N型半导体区4、且N型半导体区4位于第一基区5-1与第三基区5-3之间;
所述第一深槽的侧壁设置有垂直栅氧化层11-1,所述第一深槽的底部设置有水平栅氧化层11-2,所述第一深槽内设置有多晶硅栅8;所述水平栅氧化层11-2与多晶硅栅8的底面相接触,所述垂直栅氧化层11-1与多晶硅栅8的一侧相接触,所述多晶硅栅8的另一侧及顶面由钝化层9包覆;
所述第一基区5-1内设置有作为源极欧姆接触的第一基区内N型重掺杂欧姆接触区6-1与第一基区内P型重掺杂欧姆接触区7-1,所述第一基区内N型重掺杂欧姆接触区6-1与水平栅氧化层11-1相接触,且第一基区内N型重掺杂欧姆接触区6-1与第一基区内P型重掺杂欧姆接触区7-1上覆盖有源极金属10;
所述第二基区5-2内设置有作为源极欧姆接触的第二基区内N型重掺杂欧姆接触区6-2与第二基区内P型重掺杂欧姆接触区7-2,所述第二基区内N型重掺杂欧姆接触区6-2与垂直栅氧化层11-2相接触,且第二基区内N型重掺杂欧姆接触区6-2与第二基区内P型重掺杂欧姆接触区7-2上、以及第二深槽的侧壁与底部均覆盖有源极金属10。
2.按权利要求1所述集成肖特基二极管的双沟道碳化硅MOSFET器件,其特征在于,所述的N型半导体区4与源极金属10形成N型肖特基二极管。
3.按权利要求1所述集成肖特基二极管的双沟道碳化硅MOSFET器件,其特征在于,当多晶硅栅8的栅极电压高于阈值电压时,能够同时在第一基区5-1中形成平面沟道,第二基区5-2中形成垂直沟道。
CN202010205715.6A 2020-03-23 2020-03-23 一种集成肖特基二极管的双沟道碳化硅mosfet器件 Pending CN111403474A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010205715.6A CN111403474A (zh) 2020-03-23 2020-03-23 一种集成肖特基二极管的双沟道碳化硅mosfet器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010205715.6A CN111403474A (zh) 2020-03-23 2020-03-23 一种集成肖特基二极管的双沟道碳化硅mosfet器件

Publications (1)

Publication Number Publication Date
CN111403474A true CN111403474A (zh) 2020-07-10

Family

ID=71431062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010205715.6A Pending CN111403474A (zh) 2020-03-23 2020-03-23 一种集成肖特基二极管的双沟道碳化硅mosfet器件

Country Status (1)

Country Link
CN (1) CN111403474A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933711A (zh) * 2020-08-18 2020-11-13 电子科技大学 一种集成sbd的超结mosfet
CN114141884A (zh) * 2021-12-14 2022-03-04 上海集成电路制造创新中心有限公司 可重构肖特基二极管
CN117253905A (zh) * 2023-11-13 2023-12-19 深圳天狼芯半导体有限公司 一种具有浮岛结构的SiC器件及制备方法
CN118136672A (zh) * 2024-04-30 2024-06-04 河北博威集成电路有限公司 集成sbd的碳化硅mosfet器件及其制备方法
WO2024183928A1 (en) * 2023-03-09 2024-09-12 Huawei Digital Power Technologies Co., Ltd. Trench-gate planar-gate semiconductor device with monolithically integrated schottky barrier diode and junction schottky barrier diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693569A (en) * 1995-01-26 1997-12-02 Fuji Electric Co., Ltd. Method of forming silicon carbide trench mosfet with a schottky electrode
CN108615766A (zh) * 2016-12-13 2018-10-02 现代自动车株式会社 半导体器件及其制造方法
CN108962977A (zh) * 2018-07-12 2018-12-07 中国科学院半导体研究所 一种集成SBD的碳化硅沟槽型MOSFETs及其制备方法
CN110518065A (zh) * 2019-09-07 2019-11-29 电子科技大学 低功耗高可靠性的沟槽型碳化硅mosfet器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693569A (en) * 1995-01-26 1997-12-02 Fuji Electric Co., Ltd. Method of forming silicon carbide trench mosfet with a schottky electrode
CN108615766A (zh) * 2016-12-13 2018-10-02 现代自动车株式会社 半导体器件及其制造方法
CN108962977A (zh) * 2018-07-12 2018-12-07 中国科学院半导体研究所 一种集成SBD的碳化硅沟槽型MOSFETs及其制备方法
CN110518065A (zh) * 2019-09-07 2019-11-29 电子科技大学 低功耗高可靠性的沟槽型碳化硅mosfet器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BO YI, HAO HU, JIA LIN, JUNJI CHENG, ET AL.: "SiC trench MOSFET with integrated side-wall Schottky barrier diode having P+ electric field shield", 《IEICE ELECTRONICS EXPRESS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933711A (zh) * 2020-08-18 2020-11-13 电子科技大学 一种集成sbd的超结mosfet
CN114141884A (zh) * 2021-12-14 2022-03-04 上海集成电路制造创新中心有限公司 可重构肖特基二极管
WO2024183928A1 (en) * 2023-03-09 2024-09-12 Huawei Digital Power Technologies Co., Ltd. Trench-gate planar-gate semiconductor device with monolithically integrated schottky barrier diode and junction schottky barrier diode
CN117253905A (zh) * 2023-11-13 2023-12-19 深圳天狼芯半导体有限公司 一种具有浮岛结构的SiC器件及制备方法
CN118136672A (zh) * 2024-04-30 2024-06-04 河北博威集成电路有限公司 集成sbd的碳化硅mosfet器件及其制备方法

Similar Documents

Publication Publication Date Title
Baliga Fundamentals of power semiconductor devices
CN111403474A (zh) 一种集成肖特基二极管的双沟道碳化硅mosfet器件
US10600871B2 (en) Electric field shielding in silicon carbide metal-oxide-semiconductor (MOS) device cells using body region extensions
CN113130627B (zh) 一种集成沟道二极管的碳化硅鳍状栅mosfet
CN104299997B (zh) 电荷补偿半导体器件
US20220406896A1 (en) Cellular structure of silicon carbide mosfet device, and silicon carbide mosfet device
CN113224164B (zh) 一种超结mos器件
CN109888007B (zh) 具有二极管钳位载流子存储层的soi ligbt器件
CN112687744B (zh) 平面型碳化硅逆阻mosfet器件及其制备方法
CN112420694B (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
WO2014105371A1 (en) Transistor structures and methods for making the same
CN112687743B (zh) 沟槽型碳化硅逆阻mosfet器件及其制备方法
CN109768090A (zh) 一种具有内嵌异质结二极管自保护的碳化硅槽型场氧功率mos器件
Nakamura et al. Novel developments towards increased SiC power device and module efficiency
CN109103257A (zh) 高可靠性深沟槽功率mos器件
CN114927561A (zh) 一种碳化硅mosfet器件
CN105993076A (zh) 一种双向mos型器件及其制造方法
CN115528090A (zh) 一种双沟槽SiC MOSFET器件
CN112687745B (zh) 碳化硅沟槽mosfet器件及制备方法
CN111933711B (zh) 一种集成sbd的超结mosfet
CN111403385B (zh) 一种具有内嵌肖特基二极管的rc-ligbt器件
Iwamuro SiC power device design and fabrication
CN116153992B (zh) 一种逆导型绝缘栅双极型晶体管
CN203179900U (zh) 一种快恢复二极管frd芯片
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200710

RJ01 Rejection of invention patent application after publication