CN112768532A - 一种单片集成续流二极管的SiC MOSFET器件及其制备方法 - Google Patents

一种单片集成续流二极管的SiC MOSFET器件及其制备方法 Download PDF

Info

Publication number
CN112768532A
CN112768532A CN202110201364.6A CN202110201364A CN112768532A CN 112768532 A CN112768532 A CN 112768532A CN 202110201364 A CN202110201364 A CN 202110201364A CN 112768532 A CN112768532 A CN 112768532A
Authority
CN
China
Prior art keywords
region
diode
contact
sic mosfet
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110201364.6A
Other languages
English (en)
Inventor
王俊
梁世维
俞恒裕
余康华
王雨薇
刘航志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202110201364.6A priority Critical patent/CN112768532A/zh
Publication of CN112768532A publication Critical patent/CN112768532A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种单片集成续流二极管的SiC MOSFET器件及其制备方法。本发明通过在基本的SiC MOSFET结构上进行适当改良,在不增加工艺复杂度的基础上单片集成续流二极管,使得器件在第三象限工作的开启电压降低,反向特性得到改善,有效避免其体二极管长期工作而导致器件双极性退化问题,提高SiC MOSFET器件的可靠性。本发明极大改善了电容特性和门极电荷,有利于提高SiC MOSFET的动态工作性能。同时本发明利用JBS二极管的原理,通过两个P‑base形成耗尽区,对二极管界面起到电场屏蔽保护作用,防止器件击穿电压下降。

Description

一种单片集成续流二极管的SiC MOSFET器件及其制备方法
技术领域
本发明属于半导体技术领域,具体为一种单片集成续流二极管的SiC MOSFET器件及其制备方法。
背景技术
电力电子器件作为电力电子电路的基础,对其发展起着关键性的作用。随着传统硅基器件逐渐达到其性能的极限,新一代半导体如SiC、GaN等器件快速发展,相比传统硅材料而言,碳化硅材料具有以下显著的优势:1.高热导率(Si的3.3倍);2.高临界击穿电场(Si的10倍);3.高电子饱和漂移速度(Si的2.5倍);4.抗辐照和化学稳定性好。其中,SiCMOSFET因其导通电阻低,热稳定性好,开关速度快,阻断电压高,是目前发展最迅速的功率半导体器件之一。随着产品要求的逐渐提升,SiC MOSFET的性能要求也越来越高。
传统SiC MOSFET,如图1所示,内存在一个由第二P-base区5、N-漂移区3、N+衬底2构成的PIN二极管。当SiC MOSFET工作在第一象限即正向导通时,如图2所示,第二P-base区5反型形成N沟道,形成从源极到漏极的电子流,即漏极到源极的电流。当SiC MOSFET关断时由PIN二极管导通续流,如图3所示,PIN二极管在导通时会产生较大的导通压降从而增大损耗,此外,长时间的电应力等条件会使二极管发生双极性退化从而降低器件的可靠性,故应避免PIN二极管的导通。为了解决上述问题,可以通过在SiC MOSFET体外反并联一个二极管,如图4所示,形成与PIN二极管并联的结构。图5所示为SiC MOSFET工作在第一象限即正向导通时,如图6所示,当SiC MOSFET关断时由反并联的体外二极管续流,体外二极管的电流以一个或多个沟道从阳极11流向阴极14,虽然体外二极管提供了一个低阻通道,但仍有一小部分电流从SiC MOSFET的集成二极管流过。体外反并联一个二极管这一方法不仅会增大芯片面积,使系统成本增加,还会因为SiC MOSFET与二极管的芯片级连接,引入额外的杂散参数,影响系统的可靠性。
发明内容
为解决上述技术问题,本发明提出了一种单片集成续流二极管的SiC MOSFET器件及其制备方法。本发明采用的技术方案如下:
一种单片集成续流二极管的SiC MOSFET器件,包括元胞结构,所述元胞结构包括漏极金属、N+衬底、N-漂移区和N型外延层;所述N型外延层区设置在二极管接触区与所述N-漂移区之间,所述二极管接触区与金属源极相连;所述二极管接触区使得其与所述N型外延层形成特定势垒高度;
所述元胞结构的N型外延层区上表面对称设置有两个第一P-base区,每个第一P-base区内还设置有第一P+区且两个第一P-base区内的第一P+区对称设置,第一P+区表面设置金属源极;
所述元胞结构多晶硅栅极区域下方对称设置有两个第二P-base区,每个第二P-base区内设置有第二P+区和第二N+区且两个第二P-base区内的第二P+区相互对称,以及两个第二P-base区内的第二N+区相互对称;所述第二P+区和第二N+区均与金属源极相连;
所述N-漂移区和金属源极之间设置栅极结构,所述栅极结构包括多晶硅栅极和栅氧,并且所述栅氧分别位于所述多晶硅栅极与N外延层、第二P-base区、第二N+区、金属源极第一P+区、第一P-base区之间;
所述漏极金属、N+衬底、N-漂移区、N外延层、金属源极、二极管接触区使得在SiCMOSFET器件内形成续流二极管。
优选的,所述二极管接触区可以为肖特基接触金属或异质结接触材料。
优选的,所述第一P+区采用第一N+区替换。
一种制备单片集成续流二极管的SiC MOSFET器件的方法,包括:
S1:淀积掩膜层并通过光刻确定台面结构位置;
S2:刻蚀形成一个台面结构,再淀积掩膜层并通过光刻转移器件图形至晶圆上;
S3:通过高能离子注入形成高掺杂的N外延层、P-base区、N+区和P+区,以及,利用高温退火激活注入离子;
S4:通过热氧化形成栅氧,将台面区域的栅氧刻蚀,形成二极管结构;
S5:淀积多晶硅,形成栅极结构,再淀积二极管接触所需物质形成二极管结构;
S6:通过热氧化形成栅氧,使氧化层包住栅极多晶硅,并在除栅极多晶硅外侧氧化层以外的其他区域露出SiC表面;
S7:淀积接触金属,采用高温退火在SiC表面电极位置形成欧姆接触;
优选的,采用高温退火在SiC表面电极位置形成欧姆接触时使得续流二极管的阳极与MOSFET的源极共用同一金属;
优选的,在采用高温退火在SiC表面电极位置形成欧姆接触之前进行如下操作:将源极和漏极的接触图形化,剥离光刻胶去除多余金属。
优选的,在步骤S3中,采用外延方式形成N外延层。
优选的,若二极管接触区和栅极结构为同种物质,则同时形成栅极结构和二极管接触区。
相对于现有技术,本发明的有益成果在于:本发明通过在SiC MOSFET中集成续流二极管,使得开启电压降低,反向特性得到改善,避免其体二极管触发导通而引起的双极性退化问题,提高SiC MOSFET器件的可靠性。同时此结构在电容特性和门极电荷上也得到了极大的改善,有利于提高SiC MOSFET的动态工作性能。同时此结构利用JBS二极管的原理,通过两个P-base形成耗尽区,对二极管界面起到电场屏蔽保护作用,防止器件击穿电压下降。
附图说明
图1为传统平面栅MOSFET的结构示意图;
图2为传统平面栅MOSFET正向导通时的结构示意图;
图3为传统平面栅MOSFET关断续流时的结构示意图;
图4为体外反并联一个二极管的传统平面栅MOSFET的结构示意图;
图5为体外反并联一个二极管的传统平面栅MOSFET在正向导通时的结构示意图;
图6为体外反并联一个二极管的传统平面栅MOSFET在关断续流时的结构示意图;
图7为本发明所提出的一种单片集成续流二极管的SiC MOSFET结构立体示意图;
图8为本发明所提出的一种单片集成续流二极管的SiC MOSFET结构剖面示意图;
图9为本发明所提出的一种单片集成续流二极管的SiC MOSFET正向导通时的结构剖面示意图;
图10为本发明所提出的一种单片集成续流二极管的SiC MOSFET关断续流时的结构剖面示意图;
图11为本发明的反向恢复特性图;
图12为本发明的实验效果I-V曲线对比图;
图13为本发明实验效果C-V曲线对比图;
图14为本发明实验效果Vgs-Qg曲线对比图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。
本实施例的半导体器件以碳化硅MOSFET为例进行描述,但是该技术也同样适用于其他宽禁带半导体器件,例如氮化镓器件。
如图7-10所示,本实施例提供的单片集成续流二极管的SiC MOSFET器件,自下而上依次设置的漏极金属1、N+衬底2、N-漂移区3、N外延层4;所述N-漂移区3的表面设置有续流二极管结构;所述N外延层4的表面上方二极管接触界面处的两侧各设置一个第一P-base区13;所述元胞结构栅极区8下方各设置一个第二P-base区5;所述元胞结构栅极区8下方的第二P-base区5的表面设置有金属源极10;所述单片集成续流二极管的阳极与金属源极10连接;所述半个元胞结构内二极管接触区11下侧第一P-base区13与第二P-base区5之间设置有栅极结构;所述栅极结构位于金属源极10和N外延层4之间;所述元胞结构两侧的第二P-base区5中具有第二N+区7;所述元胞结构栅极区8下方的第二P-base区5中有第二N+区7的外侧还具有第二P+区6;所述第二P+区6和第二N+区7的引出端均与金属源极10相连。
所述集成续流二极管结构包含二极管接触区11和N外延层4;所述N外延层4上设置有二极管接触区11;所述二极管接触区11底部与N-漂移区3之间有N外延层4和两个第一P-base区13,其中N外延层4被夹在两个第二P-base区5中间;所述二极管接触区11和N外延层4形成具有特定势垒高度的接触界面;所述二极管接触区11的引出端与金属源极10相连;所述的第一P-base区13上具有第一P+区12,第一P+区12的引出端也与金属源极10相连,形成类似JBS结构。所述的集成续流二极管由金属源极10、二极管接触区11、第一P+区12、第一P-base区13、N外延层4、N-漂移区3、N+衬底2和漏极金属1构成。
所述栅极结构包括多晶硅栅极8和栅氧9,所述多晶硅栅极8与金属源极10、第二P-base区5、第二N+区7、N外延层4之间设置有栅氧9。
其中,所述二极管接触区可以为可为肖特基接触金属(Ni、Ti、Au、Pt等金属或多种金属合金)或异质结接触材料(多晶硅、单晶硅、锗等半导体),可采用不同类型和特性的填充物质来调节续流二极管的势垒高度,从而形成最优的开启电压。
作为优选实施例,将第一P+区12采用第一N+区12替换,即图7-10中附图标记12所示区域设置为N+区。当替换为为N+区后,可以提高沟道密度,在原有的平面型沟道的基础上又增加了一个沟槽型沟道。所述沟槽型沟道由第一P-base区13反型所构成,形成平面沟道和沟槽型沟道,进一步降低导通电阻。
图9所示,沟道开通,续流二极管的电流路径关闭,同传统结构的正向工作。器件工作在第三象限即反向续流时,如图10所示,沟道关闭,由于续流二极管的开启电压远低于体二极管的开启电压,此时由续流二极管承担反向续流任务,电流从续流二极管流入漂移区。而当器件处于正向阻断时,由于在续流二极管两侧引入了两个P-base区,两个P-base区形成耗尽区将异质结下方的JFET区域夹断,起到电场屏蔽保护作用,提高器件耐压能力。同时在第一P-base区13上设置有P+区12,极大的增大了PN二极管的有效面积,提高器件在浪涌电流下的能力。在具体SiC MOSFET栅极结构和续流二极管结构的相对位置关系和数量比例可以根据实际需要在版图中进行不同设计。
如图11-14的实验结果图所示,由于单片集成续流二极管承担反向续流任务,集成续流二极管的SiC MOSFET反向恢复特性明显优于传统SiC MOSFET;且集成续流二极管的SiC MOSFET的反向开启电压明显低于传统SiC MOSFET。由于结构上的优势,采用将多晶硅门极分裂开,减小漏-栅跨越的长度,从而减小了反向转移电容。门极电荷特性对比图显示门极电荷也大大降低。因此整体优化了器件的FOM值,在提高反向续流特性的同时也优化了正向MOSFET的基本特性。
一种单片集成续流二极管的SiC MOSFET器件的制备方法,包括:
晶圆准备:对晶圆进行检查、清洗、干燥;
先淀积掩膜层并通过光刻确定台面结构位置,然后进行刻蚀形成一个台面结构,再淀积掩膜层并通过光刻转移器件图形至晶圆上,然后通过高能离子注入形成高掺杂的JFET区、P-base区、N+区和P+区,利用高温退火激活注入离子;
通过热氧化形成栅氧,之后通过刻蚀形成栅极结构,将栅极结构刻蚀成两部分,并在两个栅极之间的区域露出SiC表面;
淀积多晶硅,同时形成MOS结构和异质结结构;
再通过热氧化形成栅氧,使氧化层包住栅极多晶硅,并在除栅极多晶硅外侧氧化层以外的其他区域露出SiC表面;
淀积接触金属,并使源极、漏极的接触图形化,剥离光刻胶去除多余金属后,通过高温退火在SiC表面各电极位置形成欧姆接触;其中,异质结二极管的阳极与MOSFET的源极共用同一金属;
电极金属加厚和图形化,并采用PI胶进行表面保护。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实例的说明只是用于帮助理解本发明的方法及其核心思想。以上所述仅是本发明的优选实施方式,应当指出,由于文字表达的有限性,而客观上存在无限的具体结构,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进、润饰或变化,也可以将上述技术特征以适当的方式进行组合;这些改进润饰、变化或组合,或未经改进将发明的构思和技术方案直接应用于其它场合的,均应视为本发明的保护范围。

Claims (8)

1.一种单片集成续流二极管的SiC MOSFET器件,其特征在于,包括元胞结构,所述元胞结构包括漏极金属(1)、N+衬底(2)、N-漂移区(3)和N型外延层(4);所述N型外延层区(4)设置在二极管接触区(11)与所述N-漂移区(3)之间,所述二极管接触区(11)与金属源极(10)相连;所述二极管接触区(11)使得其与所述N型外延层(4)形成特定势垒高度;
所述元胞结构的N型外延层区(4)上表面对称设置有两个第一P-base区(13),每个第一P-base区(13)内还设置有第一P+区(12)且两个第一P-base区(13)内的第一P+区(12)对称设置,第一P+区(12)表面设置金属源极(10);
所述元胞结构多晶硅栅极区域(8)下方对称设置有两个第二P-base区(5),每个第二P-base区(5)内设置有第二P+区(6)和第二N+区(7)且两个第二P-base区(5)内的第二P+区(6)相互对称,以及两个第二P-base区(5)内的第二N+区(7)相互对称;所述第二P+区(6)和第二N+区(7)均与金属源极(10)相连;
所述N-漂移区(3)和金属源极(10)之间设置栅极结构,所述栅极结构包括多晶硅栅极(8)和栅氧(9),并且所述栅氧(9)分别位于所述多晶硅栅极(8)与N外延层(4)、第二P-base区(5)、第二N+区(7)、金属源极(10)第一P+区(12)、第一P-base区(13)之间;
所述漏极金属(1)、N+衬底(2)、N-漂移区(3)、N外延层(4)、金属源极(10)、二极管接触区(11)使得在SiC MOSFET器件内形成续流二极管。
2.根据权利要求1所述的SiC MOSFET器件,其特征在于,所述二极管接触区(11)可以为肖特基接触金属或异质结接触材料。
3.根据权利要求1或2所述的SiC MOSFET器件,其特征在于,所述第一P+区(12)采用第一N+区(12)替换。
4.一种制备权利要求1-3任一所述的SiC MOSFET器件的方法,包括:
S1:淀积掩膜层并通过光刻确定台面结构位置;
S2:刻蚀形成一个台面结构,再淀积掩膜层并通过光刻转移器件图形至晶圆上;
S3:通过高能离子注入形成高掺杂的N外延层、P-base区、N+区和P+区,以及,利用高温退火激活注入离子;
S4:通过热氧化形成栅氧,将台面区域的栅氧刻蚀,形成二极管结构;
S5:淀积多晶硅,形成栅极结构,再淀积二极管接触所需物质形成二极管结构;
S6:通过热氧化形成栅氧,使氧化层包住栅极多晶硅,并在除栅极多晶硅外侧氧化层以外的其他区域露出SiC表面;
S7:淀积接触金属,采用高温退火在SiC表面电极位置形成欧姆接触。
5.根据权利要求4所述的方法,其特征在于,采用高温退火在SiC表面电极位置形成欧姆接触时使得续流二极管的阳极与MOSFET的源极共用同一金属。
6.根据权利要求5所述的方法,其特征在于,在采用高温退火在SiC表面电极位置形成欧姆接触之前进行如下操作:将源极和漏极的接触图形化,剥离光刻胶去除多余金属。
7.根据权利要求4-6任一所述的方法,其特征在于,在步骤S3中,采用外延方式形成N外延层。
8.根据权利要求7所述的方法,其特征在于,若二极管接触区和栅极结构为同种物质,则同时形成栅极结构和二极管接触区。
CN202110201364.6A 2021-02-23 2021-02-23 一种单片集成续流二极管的SiC MOSFET器件及其制备方法 Pending CN112768532A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110201364.6A CN112768532A (zh) 2021-02-23 2021-02-23 一种单片集成续流二极管的SiC MOSFET器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110201364.6A CN112768532A (zh) 2021-02-23 2021-02-23 一种单片集成续流二极管的SiC MOSFET器件及其制备方法

Publications (1)

Publication Number Publication Date
CN112768532A true CN112768532A (zh) 2021-05-07

Family

ID=75704011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110201364.6A Pending CN112768532A (zh) 2021-02-23 2021-02-23 一种单片集成续流二极管的SiC MOSFET器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112768532A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551586A (zh) * 2022-04-27 2022-05-27 成都蓉矽半导体有限公司 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN117727792A (zh) * 2024-02-08 2024-03-19 深圳天狼芯半导体有限公司 超结碳化硅晶体管的结构、制造方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019309A1 (en) * 2016-07-15 2018-01-18 Global Power Technologies Group, Inc. Semiconductor device based on wideband gap semiconductor materials
WO2018033034A1 (en) * 2016-08-17 2018-02-22 The Hong Kong University Of Science And Technology Semiconductor device with hybrid channel configuration
US20180090600A1 (en) * 2016-09-28 2018-03-29 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method of the same
CN108807505A (zh) * 2018-08-28 2018-11-13 电子科技大学 一种碳化硅mosfet器件及其制造方法
CN110518065A (zh) * 2019-09-07 2019-11-29 电子科技大学 低功耗高可靠性的沟槽型碳化硅mosfet器件
CN111223937A (zh) * 2020-01-17 2020-06-02 电子科技大学 一种具有集成续流二极管的GaN纵向场效应晶体管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019309A1 (en) * 2016-07-15 2018-01-18 Global Power Technologies Group, Inc. Semiconductor device based on wideband gap semiconductor materials
WO2018033034A1 (en) * 2016-08-17 2018-02-22 The Hong Kong University Of Science And Technology Semiconductor device with hybrid channel configuration
US20180090600A1 (en) * 2016-09-28 2018-03-29 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method of the same
CN108807505A (zh) * 2018-08-28 2018-11-13 电子科技大学 一种碳化硅mosfet器件及其制造方法
CN110518065A (zh) * 2019-09-07 2019-11-29 电子科技大学 低功耗高可靠性的沟槽型碳化硅mosfet器件
CN111223937A (zh) * 2020-01-17 2020-06-02 电子科技大学 一种具有集成续流二极管的GaN纵向场效应晶体管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, JIAJUN 等: "Performance Comparison of Traditional and JBS Integrated SiC MOSFETs in Si/SiC Hybrid Switch", 《2019 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551586A (zh) * 2022-04-27 2022-05-27 成都蓉矽半导体有限公司 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN117727792A (zh) * 2024-02-08 2024-03-19 深圳天狼芯半导体有限公司 超结碳化硅晶体管的结构、制造方法及电子设备
CN117727792B (zh) * 2024-02-08 2024-05-07 深圳天狼芯半导体有限公司 超结碳化硅晶体管的结构、制造方法及电子设备

Similar Documents

Publication Publication Date Title
JP6667893B2 (ja) 半導体装置および半導体装置の製造方法
US9252211B2 (en) Semiconductor device and manufacturing method thereof
KR101562879B1 (ko) 반도체 장치
JP5520215B2 (ja) 改良された電力用スイッチングトランジスター
CN103681866B (zh) 场效应半导体器件及其制造方法
US6693322B2 (en) Semiconductor construction with buried island region and contact region
US8816355B2 (en) Semiconductor device
US20130087803A1 (en) Monolithically integrated hemt and schottky diode
US20180358463A1 (en) Semiconductor device and method of manufacturing a semiconductor device
US9608092B2 (en) Method of manufacturing a semiconductor device having a rectifying junction at the side wall of a trench
KR20110134486A (ko) 실리콘 카바이드 바이폴라 접합 트랜지스터
JP6641488B2 (ja) 半導体装置
EP1033756A2 (en) Semiconductor device having a lightly doped layer and power converter comprising the same
CN106783851A (zh) 集成肖特基二极管的SiCJFET器件及其制作方法
CN112420694B (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
CN112768532A (zh) 一种单片集成续流二极管的SiC MOSFET器件及其制备方法
CN115579397A (zh) 双级沟槽栅碳化硅mosfet及其制备方法
JP4948784B2 (ja) 半導体装置及びその製造方法
CN117497601B (zh) 平面型碳化硅晶体管的结构、制造方法及电子设备
JP5406508B2 (ja) 横型sbd半導体装置
CN117476774B (zh) 垂直型碳化硅晶体管的结构、制造方法及电子设备
JP7172216B2 (ja) 半導体装置および半導体回路装置
KR102088181B1 (ko) 반도체 트랜지스터 및 그 제조 방법
CN113421927A (zh) 一种逆导SiC MOSFET器件及其制造方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210507

RJ01 Rejection of invention patent application after publication