CN110366611B - 碳化硅基板的制造方法及碳化硅基板 - Google Patents

碳化硅基板的制造方法及碳化硅基板 Download PDF

Info

Publication number
CN110366611B
CN110366611B CN201880014716.3A CN201880014716A CN110366611B CN 110366611 B CN110366611 B CN 110366611B CN 201880014716 A CN201880014716 A CN 201880014716A CN 110366611 B CN110366611 B CN 110366611B
Authority
CN
China
Prior art keywords
silicon carbide
substrate
film
support substrate
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880014716.3A
Other languages
English (en)
Other versions
CN110366611A (zh
Inventor
长泽弘幸
久保田芳宏
秋山昌次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cusic Inc
Shin Etsu Chemical Co Ltd
Original Assignee
Cusic Inc
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cusic Inc, Shin Etsu Chemical Co Ltd filed Critical Cusic Inc
Publication of CN110366611A publication Critical patent/CN110366611A/zh
Application granted granted Critical
Publication of CN110366611B publication Critical patent/CN110366611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/22Sandwich processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明为碳化硅基板的制造方法,具有:准备在由碳、硅或碳化硅构成的母材基板1a的两面设置包含氧化硅、氮化硅、氮化碳化硅或硅化物的被覆层1b、1b并使该被覆层1b、1b表面成为平滑面的支承基板1的工序;在所述支承基板1的两面采用气相生长法或液相生长法形成多晶碳化硅的膜10的工序;将所述支承基板1中至少被覆层1b、1b以化学方式除去,在使被覆层1b、1b表面的平滑性反映于表面的状态下将多晶碳化硅的膜从该支承基板1分离,作为晶粒直径为10nm以上且10μm以下、至少一个主面的算术平均粗糙度Ra为0.3nm以下的碳化硅基板10a、10b得到该多晶碳化硅的膜的工序。由此实现表面平滑且平坦并且内部应力也减小的碳化硅基板。

Description

碳化硅基板的制造方法及碳化硅基板
技术领域
本发明涉及表面平滑且平坦的碳化硅基板的制造方法和碳化硅基板。
背景技术
作为用于半导体工艺的假晶片、纳米压印等的型材、反射镜、X射线光刻用的窗材、MEMS(Micro Electro Mechanical Systems)的主要基板,目前为止使用了单晶的Si基板,但由于机械强度、化学耐性不充分,耐热性不充分,因此用途受到限制。最近,作为在该用途中使用的基板,在关注耐热性、机械特性优异、也耐放射线的碳化硅基板。
对用于上述用途的基板,要求50μm以下的TTV(Total Thickness Variation)、算术平均粗糙度Ra低于1nm的程度的平滑性。
其中,在将单晶的碳化硅基板用于上述用途的情况下,单晶碳化硅基板的制造成本高,另外,如果经过热工序等,产生如下问题:结晶中的位错运动,基板变形。
另一方面,多晶的碳化硅基板能价格比较便宜地制作,并且包含大量的晶界,因此阻碍位错的运动,在经过了热工序后也抑制基板的变形。但是,如果要得到平滑的表面而对基板表面实施CMP(chemical-mechanical polishing),则产生损害表面的平滑性的问题。这是因为,在多晶的碳化硅基板中,不同的极性面、结晶方位面在表面混杂地露出,它们的研磨速度、蚀刻速度不同。
另外,最近也发现在价格便宜的多晶碳化硅基板上贴合单晶碳化硅薄膜来制造高性能的功率半导体的动向(例如参照日本特开2015-15401号公报(专利文献1))。
在直接接合法中必须使接合面的表面粗糙度非常小,但在该发明中通过对接合面进行改性而形成非晶质层,即使在表面粗糙度比直接接合法中所要求的接合面的表面粗糙度大的情况下认为也得到所期望的接合强度。但是,在该发明中,对基板表面照射氩的中性原子束将从表面到一定深度的结晶结构破坏而形成了非晶质层后,在贴合后实施1000℃以上的热处理,使非晶质层具有流动性,将接触面间的空间填埋,特殊的处理变得必要。因此,希望有能够采用直接接合法简便地制作将单晶碳化硅薄膜贴合于多晶碳化硅基板的层叠基板的、使接合面的表面粗糙度非常小的多晶碳化硅基板。
另外,关于碳化硅基板的平滑化、平坦化,公开了以下这样的技术。
在日本特开2015-211047号公报(专利文献2)中,提供了碳化硅基板的研磨方法,其中,将碳化硅基板的进行研磨的面隔着包含间隙形成材料、磨粒和电解质的电解液与导电性定盘相对配置,将上述碳化硅基板的表面作为阳极,将上述导电性定盘作为阴极,边使上述碳化硅基板的进行研磨的面的至少一部分与上述电解液接触边进行电解研磨。
另外,在日本特开2016-155697号公报(专利文献3)中,提供了碳化硅基板的平坦化处理方法,其中,使用稳压器,在二槽型溶液槽中的第一溶液槽中配置工作电极、对电极,在第二溶液槽中配置参比电极,在用盐桥对第一溶液槽和第二溶液槽控制电位的装置构成中,对于在第一溶液槽中浸渍配置的碳化硅基板的表面,采用工作电极中具备的可旋转的平坦催化剂电极对碳化硅基板表面进行研磨处理。
但是,担心加工工序变得复杂、由于电导率而使加工品质变化、在结晶缺陷的部位产生凹坑等问题。
在日本特开2008-230944号公报(专利文献4)中,记载了通过将包含结晶缺陷的不稳定位置、基板表面的研磨时产生的损伤层存在的单晶碳化硅基板在高真空环境中在1500℃以上且2300℃以下的温度下进行加热处理,从而将单晶碳化硅基板的表面及其附近碳化,形成碳化层,接下来,通过在硅的饱和蒸气压下对该单晶碳化硅基板进行加热处理,从而在碳化层的部分形成由无定形碳化硅构成的牺牲生长层,同时使该无定形碳化硅层升华,进行热蚀刻(第二工序),能够使不稳定位置自修复的平坦的单晶碳化硅表面露出,然后,通过进一步进行若干量的热蚀刻,从而能够得到非常平坦化(稳定化)的单晶碳化硅基板。但是,在该方法中,由于对碳化硅施加热应力,因此促进晶体内的缺陷的移动、扩张,担心得不到所期望的品质的问题。
在日本特开平11-147766号公报(专利文献5)中提供了碳化硅烧结体,其为由多晶构成的碳化硅烧结体,该烧结体的研磨面的表面粗糙度用采用接触式得到的中心线平均粗糙度(Ra)表示,为3nm以下。为了制造其,也公开了碳化硅烧结体的制造方法,其中,在具有0.7μm以下的平均粒径的碳化硅粉末中添加0.1~0.8重量%的作为烧结助剂的硼或其化合物、1~5重量%的碳,进行成型,将其在1900~2050℃的非活性气体气氛中常压烧结后,对其进一步在1000kg/cm2以上的压力下比烧结温度低的温度下进行热等静压(HIP)处理,将得到的HIP处理体的表面用具有2μm以下的平均粒径的金刚石磨粒研磨。但是,产生制造工序变得复杂、由于高温处理而使结晶的品质劣化、表面的粒径受到限制、硼作为杂质被带入等问题。
关于碳化硅基板的应力减小,也提供了几个结构、方法。
例如,在日本特开2013-216514号公报(专利文献6)中,公开了以包围被旋转提升的台座的同时从加热容器的内周壁面突出的方式具备第三绝热材料的碳化硅单晶制造装置。由此,能够将碳化硅单晶的外缘部的温度拉向第三绝热材料的温度,能够抑制碳化硅单晶的生长表面成为凹形状。因此,能够抑制在碳化硅单晶的晶体内部产生应力,防止由于结晶缺陷(位错)产生等而使品质劣化成为可能。但是,由于受到不小的因碳化硅晶体与绝热材料的配置、温度等而产生的应力的影响,因此为了减小应力,精密的形状和温度的控制变得必要。
另外,在日本特开平9-221395号公报(专利文献7)中,公开了碳化硅膜,其为在基体上所形成的多晶的碳化硅膜,其特征在于,该碳化硅膜经由在基体表面被覆的多晶薄膜而形成。但是,使在基体表面被覆的多晶薄膜的晶粒的取向成为各向同性并不容易,并且产生多晶的碳化硅膜表面的平滑性受到在基体表面被覆的多晶薄膜的表面粗糙度的影响的问题。
现有技术文献
专利文献
专利文献1:日本特开2015-15401号公报
专利文献2:日本特开2015-211047号公报
专利文献3:日本特开2016-155697号公报
专利文献4:日本特开2008-230944号公报
专利文献5:日本特开平11-147766号公报
专利文献6:日本特开2013-216514号公报
专利文献7:日本特开平9-221395号公报
专利文献8:日本特开平7-335562号公报
专利文献9:日本特开2016-18890号公报
非专利文献1:“在Si基板上的3C-SiC异质外延生长”长泽弘幸、八木邦明、日本结晶生长学会志、第24卷、第3期(1997)第270-286页
发明内容
发明要解决的课题
本发明鉴于上述实际情况而完成,目的在于提供表面平滑且平坦、并且也实现内部应力的减小的碳化硅基板的制造方法及碳化硅基板。
用于解决课题的手段
如果预先准备平滑的基板(母材基板),在该基板的两面沉积多晶的碳化硅,然后将母材基板除去,则能够期待与母材基板接触的多晶碳化硅的表面具有与母材基板表面同等的平滑性。例如,如果使用Si片作为母材基板,认为在与其接触的多晶碳化硅表面获得与Si片表面同等的表面粗糙度(例如算术平均粗糙度Ra<1nm)(Si片表面的复制)。另外,例如,如果准备硅基板,在其沉积碳化硅,然后通过蚀刻等将硅基板除去,则得到无支撑(freestanding)的(自支撑(self-standing)的)碳化硅基板,在与硅基板相接的面,期待得到具有与硅基板表面同等的平滑性的面。
另外,在日本特开平7-335562号公报(专利文献8)中,提供碳化硅的成膜方法,其特征在于,包括:在碳气氛中使单晶硅基板表面碳化而形成由单晶的碳化硅构成的表面碳化层的工序、将上述的表面碳化层从硅基板分离的工序、和将从硅基板分离的表面碳化层作为基板并采用硅的原料气体和碳的原料气体使碳化硅析出的工序。
但是,如非专利文献1(日本结晶生长学会志、第24卷、第3期(1997)第270-286页)中记载那样,在沉积碳化硅的高温环境下将Si片的表面蚀刻、热粗化或者碳化,损害当初的平滑性,结果也损害多晶碳化硅的表面的平滑性。因此,如图14中所示,在硅基板91上将碳化硅膜92沉积、形成之前,在硅基板91中产生蚀刻凹坑91p,其复制品被转印到无支撑的碳化硅基板(碳化硅膜92)的表面92f上,形成突起93,得不到所期待的平滑的表面。
如果准备由碳构成的母材基板,在该基板上沉积了多晶碳化硅后,将碳基板氧化而除去,则能够避免热粗化、碳化引起的平滑性的恶化。但是,根据碳基板的制造法、体积密度,担心在多晶的碳化硅的沉积中沉积气氛中的Si浸渍于碳制母材基板而带来变形的问题。
进而,也考虑使用碳化硅基板自身作为母材基板,但由于难以将多晶碳化硅表面研磨直至达到算术平均粗糙度Ra为1nm以下的平滑性,不存在选择性地将与母材基板同种的多晶碳化硅选择性地剥离而取出的手段,因此不能说是现实的方法。
除此以外,在使用了Si片、碳化硅基板作为母材基板的情况下,也包含如下问题:本来应为多晶碳化硅的沉积层非故意地也通过外延生长而形成,单晶化,变得容易变形。
另外,在日本特开2016-18890号公报(专利文献9)中提供碳化硅晶片的制造方法,其包括:准备在碳化硅基材的表面具有玻璃状碳层和在上述玻璃状碳层上具有CVD-碳化硅层的碳化硅复合基板和具有将氢离子注入了表面的离子注入层的单晶碳化硅基板的工序;将上述碳化硅复合基板的CVD-碳化硅层和上述单晶碳化硅基板的离子注入层贴合而得到接合体的接合工序;将上述接合体加热,将上述离子注入层从单晶碳化硅基板剥离,得到单晶被覆基板的第一剥离工序;将上述单晶被覆基板的上述玻璃状碳层和CVD-碳化硅层剥离而得到碳化硅晶片的第二剥离工序。不过,使玻璃状碳层软化并平滑化困难,采用CMP的平坦化也困难,因此难以通过剥离得到平滑的碳化硅晶片。
另外,由于碳层的对于氧化气氛的耐性不充分,因此在形成CVD-碳化硅层时其表面有可能粗糙。
本发明人基于以上的认识,进行深入研究,完成了本发明。
即,本发明提供下述的碳化硅基板的制造方法和碳化硅基板。
[1]碳化硅基板的制造方法,具有:准备在由碳、硅或碳化硅构成的母材基板的两面设置包含氧化硅、氮化硅、氮化碳化硅或硅化物的被覆层并使该被覆层表面成为平滑面的支承基板的工序;在所述支承基板的两面采用气相生长法或液相生长法形成多晶碳化硅的膜的工序;将所述支承基板中至少被覆层以化学方式除去,在使被覆层表面的平滑性反映于表面的状态下将多晶碳化硅的膜从该支承基板分离,得到该多晶碳化硅的膜作为晶粒直径为10nm以上且10μm以下、至少一个主面的算术平均粗糙度Ra为0.3nm以下的碳化硅基板的工序。
[2][1]所述的碳化硅基板的制造方法,其中,通过使所述母材基板的两面平滑化,接下来在该母材基板的两面将由氧化硅、氮化硅、氮化碳化硅或硅化物构成的被覆层成膜,使母材基板的平滑面反映于该被覆层表面,从而制作所述支承基板。
[3][1]所述的碳化硅基板的制造方法,其中,在所述母材基板的两面形成了由磷硅酸玻璃或硼磷硅酸玻璃构成的被覆层后,使该被覆层回流而使其表面平滑化,从而制作所述支承基板。
[4][1]~[3]中任一项所述的碳化硅基板的制造方法,其中,采用热CVD法形成所述多晶碳化硅的膜。
[5]碳化硅基板,是由多晶碳化硅的气相生长膜或液相生长膜构成的碳化硅基板,其晶粒直径为10nm以上且10μm以下,至少一个主面的算术平均粗糙度Ra为0.3nm以下。
[6][5]所述的碳化硅基板,其由立方晶和六方晶中的至少一个构成,最密排面从基板主面的法线轴以1/3π球面角度以内的立方角取向的晶粒的体积为全部构成晶粒的体积的一半以下。
[7][5]或[6]所述的碳化硅基板,其中,基板的翘曲量在基板的直径为6英寸时为-30μm以上且30μm以下。
发明的效果
根据本发明,由于在表面平滑的支承基板的被覆层上没有侵蚀该被覆层地形成多晶碳化硅膜,因此能够得到使表面反映支承基板的平滑的面的多晶碳化硅膜作为碳化硅基板。
附图说明
图1为表示本发明涉及的碳化硅基板的制造方法的一实施方式中的工序的图,(a)为在母材基板的两面设置被覆层的支承基板的截面图,(b)为表示在支承基板的整面形成了多晶碳化硅膜的状态的截面图,(c)为表示将支承基板的端部的多晶碳化硅膜除去了的状态的截面图,(d)为表示将多晶碳化硅膜作为碳化硅基板取出的状态的截面图。
图2为实施例1的碳化硅基板的表面的AFM像。
图3为表示实施例1的碳化硅基板的表面轮廓的图。
图4为实施例2的碳化硅基板的表面的AFM像。
图5为表示实施例2的碳化硅基板的表面轮廓的图。
图6为比较例1的碳化硅基板的与硅基板的接触面的表面AFM像。
图7为表示比较例1的碳化硅基板的与硅基板的接触面的表面轮廓的图。
图8为比较例1的碳化硅基板的CMP处理后的表面AFM像。
图9为表示比较例1的碳化硅基板的CMP处理后的表面轮廓的图。
图10为比较例2的碳化硅基板的与碳基板的接触面的表面AFM像。
图11为表示比较例2的碳化硅基板的与碳基板的接触面的表面轮廓的图。
图12为比较例2的碳化硅基板的CMP处理后的表面AFM像。
图13为表示比较例2的碳化硅基板的CMP处理后的表面轮廓的图。
图14为表示现有的碳化硅基板的制造例的截面图,(a)为表示在具有蚀刻凹坑的硅基板上形成了碳化硅膜的状态的截面图,(b)为表示将碳化硅膜作为碳化硅基板取出的状态的截面图。
具体实施方式
[碳化硅基板的制造方法]
以下对本发明涉及的碳化硅基板的制造方法进行说明。
本发明涉及的碳化硅基板的制造方法具有:准备在由碳、硅或碳化硅构成的母材基板的两面设置包含氧化硅、氮化硅、氮化碳化硅或硅化物的被覆层并使该被覆层表面成为平滑面的支承基板的工序;在上述支承基板的两面采用气相生长法或液相生长法形成多晶碳化硅的膜的工序;作为晶粒直径为10nm以上且10μm以下、至少一个主面的算术平均粗糙度Ra为0.3nm以下的碳化硅基板得到将上述支承基板全体以化学方式除去而取出的多晶碳化硅的膜、或者将上述支承基板中的被覆层以化学方式除去并与母材基板分离的多晶碳化硅的膜的工序。
以下参照图1对本发明涉及的碳化硅基板的制造方法的实施方式进行说明。
(工序1)
在由碳、硅或碳化硅构成的母材基板1a的两面设置包含氧化硅、氮化硅、氮化碳化硅或硅化物的膜即被覆层1b,1b,准备使该被覆层1b、1b表面成为平滑面的支承基板1(图1(a))。
其中,母材基板1a为由碳、硅或碳化硅构成的板厚均匀的基板。例如,可列举出高纯度碳基板、硅(Si)片、碳化硅基板。
母材基板1a的主面的大小对应于最终得到的碳化硅基板的大小,例如可适当地选择直径3英寸、6英寸等。另外,母材基板1a的厚度优选厚到能够确保可支承后述的碳化硅膜的程度的强度的程度,薄到后述的除去容易的程度,例如优选100~1000μm,更优选300~700μm。
被覆层1b为由包含氧化硅、氮化硅、氮化碳化硅或硅化物的、与后面进行的多晶碳化硅膜的成膜时使用的原料(在化学气相生长法的情况下为原料气体)的反应性小的材料制成的膜,用于抑制多晶碳化硅膜的成膜时的母材基板1a的非故意的蚀刻、碳化反应。另外,被覆层1b为由在多晶碳化硅膜的成膜后在不会侵害该多晶碳化硅膜地可以化学方式除去的材料制成的膜。
在此,被覆层1b为由与后面进行的多晶碳化硅膜的成膜时使用的原料(化学气相生长法的情况下为原料气体)的反应性小的材料制成的膜,只要由抑制多晶碳化硅膜的成膜时的母材基板1a的非故意的蚀刻、碳化反应、在多晶碳化硅膜的成膜后在不会侵害该多晶碳化硅膜下可以化学方式除去的材料制成,在作为主成分的氧化硅、氮化硅、氮化碳化硅或硅化物中可包含其他的副成分材料。
例如,“包含氧化硅的被覆层1b”不仅是只包含氧化硅的被覆层1b,而且包含由氧化硅(SiO2)和其他玻璃形成成分构成的被覆层1b,也包含优选由掺杂了B2O3和/或P2O5的具有回流性的硼硅酸玻璃(Boro silicate glass:BSG)、磷硅酸玻璃(Phospho silicateglass:PSG)、硼磷硅酸玻璃(Boro-phospho silicate glass:BPSG))构成的被覆层1b。
另外,对于“包含氮化硅、氮化碳化硅或硅化物的被覆层1b”,不仅是只包含氮化硅、氮化碳化硅或硅化物的被覆层1b,而且也可以是由包含氮化硅、氮化碳化硅或硅化物、和其以外的不阻碍上述特性的副成分材料的材料构成的被覆层1b。
作为优选的被覆层1b,可例示以下的被覆层。
例如,在母材基板1a为单晶硅基板的情况下,可将通过对该硅基板进行热氧化处理从而在基板表面和背面所形成的热氧化膜(氧化硅膜)作为被覆层1b。
另外,可在母材基板1a表面形成SOG(Spin on Glass)膜,将其作为被覆层1b。
或者,可将采用热CVD(Chemical Vapor Deposition)法所形成的由磷硅酸玻璃(PSG)构成的膜(PSG膜)或由硼磷硅酸玻璃(BPSG)构成的膜(BPSG膜)作为被覆层1b。
另外,可将由氧化硅、氮化硅、氮化碳化硅或硅化物构成的化学气相生长膜作为被覆层1b。
另外,可通过采用蒸镀法等在硅基板上沉积金属膜,进而加热,引起固相反应,从而形成任意的金属(例如镍、钴、钼、钨等)的硅化物作为被覆层1b。
再有,如果通过选择成膜方法和成膜条件从而使被覆层1b成为非晶质的膜,则即使在其上沉积碳化硅膜,也能够不依赖于沉积方法、沉积条件地得到各向同性地取向的多晶的碳化硅膜而优选。
就被覆层1b的厚度而言,只要能够确保支承基板1的表面的平滑性,可以化学方式除去,则并无特别限制,例如优选0.01~10μm,更优选0.1~1μm。
就支承基板1的表面而言,由于其平滑性最终反映于碳化硅基板的表面,因此必须具有该碳化硅基板所要求的水平的平滑性,优选其表面的算术平均粗糙度Ra为0.3nm以下,更优选为0.1nm以下。
应予说明,这里所说的算术平均粗糙度Ra是以采用原子间力显微镜(AtomicForce Microscope;AFM)等扫描探针显微镜法(Scanning Probe Microscope;SPM)测定成为对象的基板表面所得的表面轮廓(截面曲线)数据为基础,根据JIS B0601:2013中所规定的算术平均粗糙度Ra的式子算出的(即,在粗糙度曲线中基准长度处的Z(x)(任意位置x处的粗糙度曲线的高度)的绝对值的平均值)(以下出现的算术平均粗糙度Ra是同样的)。应予说明,表面轮廓(截面曲线)是观察对象的试样表面的组织,设为凹凸尽可能大的截面方向的表面轮廓。
本发明中,作为准备这样使两面平滑化的支承基板1的方法,推荐在使母材基板1a的两面平滑化后形成使该平滑面反映到表面的被覆层1b,1b而准备上述支承基板1的方法(方法1)和在母材基板1a的两面形成了被覆层1b,1b后使该被覆层1b,1b回流,使该表面平滑化而准备上述支承基板1的方法(方法2)这两个方法。
即,作为方法1,优选使母材基板1a、优选由碳或硅构成的母材基板1a的两面平滑化,接下来,在该母材基板1a的两面将被覆层1b,1b成膜,使母材基板1a的平滑面反映于该被覆层1b、1b表面,制作支承基板1。
在此,优选通过CMP处理对由碳或硅构成的母材基板1a两面进行平滑化以使算术平均粗糙度成为Ra0.1nm左右。接下来,作为被覆层1b,可形成上述例示的任一个膜。此时,在母材基板1a为硅基板(Si基板)的情况下,如果将硅基板热氧化,则能够简便地得到平滑且均匀性优异的氧化硅膜作为被覆层1b而优选。另外,如果使用化学气相生长法,即使是由氧化硅、氮化硅、氮化碳化硅、硅化物中的任一个构成的膜,也能以任意的膜厚形成为被覆层1b而优选。或者,也可将采用本发明的制造方法制造的至少单面被平滑化的2张碳化硅基板相互贴合以使其平滑化的表面成为外侧的产物作为母材基板1a。
作为方法1,例如可如下所述准备支承基板1。
即,首先,准备对两面实施了研磨的单晶Si基板。此时,使研磨后的表面的算术平均粗糙度(Ra)成为0.1nm以下。接下来,将该单晶Si基板载置于热氧化装置,在1100℃下实施300分钟的水蒸汽氧化。通过该氧化,将热氧化膜作为被覆层1b,1b形成于Si基板的两面。优选使氧化膜表面的Ra成为0.3nm以下,更优选0.1nm以下。为了使母材基板1a的平滑面反映于表面,优选氧化膜的厚度停留在0.5μm以下。再有,在氧化膜表面的算术平均粗糙度Ra超过0.3nm的情况下,可采用研磨、蚀刻等平滑化。
另外,作为方法2,优选在母材基板1a的两面形成了由磷硅酸玻璃(PSG)或硼磷硅酸玻璃(BPSG)构成的被覆层1b后,使该被覆层1b回流,将其表面平滑化,制作上述支承基板1。
这种情况下,母材基板1a可由碳、硅、碳化硅中的任何材料构成,即使是难以通过研磨进行表面平滑化的碳化硅基板也可应用。即,在母材基板1a的两面形成了PSG膜或BPSG膜作为被覆层1b后,通过在1000℃左右的高温下加热,从而使该膜回流,也能够将表面平滑化,得到所期望的支承基板1。另外,在使用了碳化硅基板作为母材基板1a的情况下,被覆层1b促进母材基板1a与多晶碳化硅膜的剥离,使得能够将多晶碳化硅膜分离而取出。再有,PSG膜或BPSG膜的形成可以是现有公知的方法例如热CVD法。
(工序2)
接下来,在支承基板1的整面采用气相生长法或液相生长法形成多晶碳化硅膜10(图1(b))。
在此,碳化硅膜10的形成优选采用化学气相生长法,更优选采用热CVD法。
(碳化硅膜的形成例)
在此,用使用了在单晶Si基板的母材基板1a表面形成了热氧化膜作为被覆层1b,1b的支承基板1的情形进行说明。
首先,将如上所述使表面平滑化了的晶片即支承基板1载置于热CVD装置。
载置时,为了使支承基板1的两面均等地暴露于气体气氛中,只将晶片周边部的一处用螺母固定于碳制或碳化硅制棒。由于所固定的场所只是一处,因此即使在固定夹具与晶片之间具有热膨胀系数差,也不产生应力,在热CVD工序后也抑制晶片的变形、残留应力。
接下来,在大气压氮气氛中将支承基板1升温到规定的成膜温度,导入氯化硅烷、烃。将导入的氯化硅烷在气相中热分解,生成SiCl2,它们在支承基板1的两面形成的被覆层1b,1b上吸附。将吸附的SiCl2用氢还原,形成Si。接下来,Si与烃反应,在被覆层1b,1b上形成碳化硅。进而,在支承基板1的端部外周部也形成碳化硅。在此,如果为单晶的Si基板上,所成膜的碳化硅继承基板Si的结晶性(外延生长)而形成单晶,由于Si基板用非晶质的氧化膜覆盖,因此阻碍外延生长而形成多晶的碳化硅。
再有,在上述工序中氧化膜(被覆层1b)受到热损伤或者被蚀刻的情况下,通过有意地在低温度下沉积薄膜的多晶碳化硅或者用烃气氛将氧化膜表面转换为碳化硅膜,从而可抑制氧化膜的劣化,其后可在高温下实施高速的多晶碳化硅的沉积。
所成膜的多晶碳化硅的晶粒形成立方晶或六方晶的晶体结构,使得能量上最稳定的晶面扩展表面积而形成膜,因此晶粒的取向方位未必变得均一。如果晶粒在特定方向上取向,则碳化硅膜的应力增大或者在基板中产生翘曲。因此,优选提高气相中的过饱和度以使晶粒直径尽可能小,并且在无规的方向上取向(以使成为各向同性的取向方位)。因此,基板温度可设为1000~1370℃的范围,更优选设为1250~1330℃的范围。在基板温度低的情况下,气相中的氯化硅烷的分解不充分,因此有时得不到工业上适合大量生产的成膜速度(5μm/h以上)。另一方面,在基板温度过高的情况下,促进晶粒的横向生长,膜的取向性提高,有可能不再能够显现本发明的效果。再有,在被覆层1b由PSG或BPSG构成的情况下,由于基板温度成为回流温度以上,因此希望用短时间使基板升温,用多晶碳化硅被覆。
另外,作为原料气体的氯化硅烷,可选自二氯硅烷、三氯硅烷、四氯硅烷中的任一个,也可用甲硅烷或乙硅烷和氯化氢的混合气体代用。在使用二氯硅烷作为氯化硅烷的情况下,优选以50~500sccm的流量导入,更优选100~300sccm的流量。在流量小的情况下,不仅得不到充分的成膜速度,过饱和度降低,膜的取向性提高,有可能膜应力提高或者在基板中产生翘曲。另外,在流量过大的情况下,气相中的SiCl2生成量变得过剩,有可能其使Si微晶混入膜中。另一方面,作为烃,能够使用甲烷、乙烷、乙炔、丙烷等,优选使用本实施方式中记载的温度区域中最稳定的乙炔。在与二氯硅烷并用而使用乙炔的情况下,所导入的Si与C的原子数之比优选碳化硅(Si/C)=1.5~3.5,更优选2.0~3.0。在该比大的情况下,Si的反应前体量变得过剩,有可能Si的微晶混入碳化硅膜中。另一方面,在该比小的情况下,有时发生促进基板表面的蚀刻、或石墨沉积的问题。
在上述的热CVD工序中,将晶片(支承基板1)表面暴露于氯化气氛、碳化气氛,就其表面而言,对氧化、氯化具有耐性的氧化膜作为被覆层1b覆盖,因此抑制蚀刻凹坑的产生,也不受到热粗化的影响,保持作为对于多晶碳化硅膜的界面的平滑性。
在上述的最佳CVD条件范围中,得到在无规的方向上(各向同性地)取向的碳化硅多晶膜,无论Si基板表面的面方位如何,从基板的法线轴以1/3π球面角度内的立体角使最密排面取向的晶粒的体积的比例成为全部构成晶粒体积的一半以下。该结晶的取向性分布能够由采用X射线衍射法得到的摇摆曲线、极坐标、后方散射电子衍射(ElectronBackScatter Diffraction:EBSD)等定量地算出。
为了在将支承基板1除去后单独地也保持充分的机械强度,在支承基板1的正主表面、背主表面上所形成的碳化硅膜10的膜厚优选为50μm以上,更优选为150μm以上。
(工序3)
接下来,通过磨削将碳化硅膜10中附着于支承基板1端部的碳化硅膜除去,使支承基板1的端面露出(图1(c))。
此时,可通过用金刚石砂轮将支承基板1端部的碳化硅膜切断或者用研磨磨粒磨削从而除去。其结果,成为在支承基板1的端面露出的同时在支承基板1的正主表面、背主表面上存在作为碳化硅膜的碳化硅基板10a、10b的状态。
(工序4)
接下来,将上述支承基板1中至少被覆层1b、1b以化学方式除去,在使被覆层1b表面的平滑性反映于表面的状态下从该支承基板1将多晶碳化硅的膜分离,得到该多晶碳化硅的膜作为碳化硅基板10a、10b(图1(d))。
在此,作为从支承基板1将多晶碳化硅的膜分离的方式,可将支承基板1全体以化学方式除去而将多晶碳化硅的膜取出,或者将上述支承基板1中的被覆层1b、1b以化学方式除去,从母材基板1a将多晶碳化硅的膜分离。
即,在支承基板1为上述例示的在单晶Si基板的母材基板1a表面形成了热氧化膜作为被覆层1b,1b的产物的情况下,可通过将图1(c)中所示的构成的层叠基板浸渍于氟化氢溶液和硝酸溶液的混合酸中,将支承基板1全体、即Si基板和热氧化膜蚀刻除去。此时,在支承基板1的正表面和背表面沉积的多晶碳化硅膜具有充分的化学耐性,能够不会被蚀刻地作为单独的膜取得。另外,由于将多晶碳化硅膜沉积在支承基板1的两面,因此通过该蚀刻能够得到每一张基板2张的多晶碳化硅膜作为碳化硅基板10a、10b。
另外,在支承基板1中母材基板1a由碳基板构成的情况下,可在大气中加热将碳氧化而除去,从而将残留的被覆层1b通过化学蚀刻除去。
进而,在支承基板1中母材基板1a由碳化硅基板构成的情况下,可从支承基板1的端面将被覆层1b,1b以化学方式蚀刻而除去,使碳化硅膜从母材基板1a剥离。
在将被覆层1b,1b以化学方式蚀刻除去的情况下,作为优选的蚀刻液,可例示以下的蚀刻液。
例如,在将由氧化硅构成的被覆层1b以化学方式蚀刻除去的情况下,作为蚀刻液,可使用氟化氢溶液和硝酸溶液的混合酸。
另外,在将由氮化硅构成的被覆层1b以化学方式蚀刻除去的情况下,作为蚀刻液,可使用磷酸(液温150℃以上)。
另外,在将由氮化碳化硅构成的被覆层1b以化学方式蚀刻除去的情况下,作为蚀刻液,可使用熔融KOH、熔融NaOH(液温400℃以上)。
另外,在将由硅化物构成的被覆层1b以化学方式蚀刻除去的情况下,根据构成硅化物的金属,可酌情从硫酸(H2SO4)、硝酸(HNO3)、磷酸(H3PO4)、膦酸(H3PO3)、有机酸的混合酸中选择用作蚀刻液。
另外,在将由磷硅酸玻璃或硼磷硅酸玻璃构成的被覆层1b以化学方式蚀刻除去的情况下,作为蚀刻液,可使用48质量%左右的氢氟酸水溶液(氟化氢酸)。
如上所述得到的碳化硅基板10a、10b的与被覆层1b,1b接触的面由于反映被覆层1b表面的形状(平滑性),因此无需经过繁杂的研磨工序,能够得到具有算术平均粗糙度Ra为0.3nm以下的平滑性的多晶碳化硅基板。
另外,构成碳化硅基板10a、10b的晶粒的粒径成为10nm~10μm的范围,优选地成为100nm~5μm的范围,更优选地成为100nm~2μm的范围。如果为该晶粒直径范围,则能够抑制膜的电阻的增加,减小作为功率器件的基板使用时的损失。另外,能够抑制结晶的取向性,抑制应力的定域化。
另外,由于构成碳化硅基板10a、10b的晶粒的取向方位为各向同性,妨碍位错的运动,因此将应力的产生也抑制到100MPa以下,也抑制碳化硅基板的翘曲、变形。通常,结晶性的膜通过位错的运动而带来变形、应力变化,但在晶粒各向同性地取向的情况下,位错的运动方向也成为各向同性,而且在晶界处阻碍位错的运动,因此抑制变形、应力分布。再有,多晶膜的应力、粗糙度受到晶粒直径的影响,晶粒直径可通过沉积时的温度、压力随意地控制。
如以上所述,根据本发明的碳化硅基板的制造方法,能够实现平坦性和平滑性优异、内部应力也减少的多晶碳化硅基板。
实施例
以下列举出实施例和比较例,对本发明更具体地说明,但本发明并不受实施例限定。应予说明,算术平均粗糙度Ra基于使用原子间力显微镜(Atomic Force Microscope;AFM)测定的表面轮廓(截面曲线)数据、根据JIS B0601:2013中规定的算术平均粗糙度Ra的式算出。应予说明,就此时的表面轮廓(截面曲线)而言,观察对象的试样表面的组织,设为凹凸尽可能变大的截面方向的表面轮廓。
[实施例1]
采用图1中所示的步骤制作碳化硅基板。
首先,作为母材基板1a,使用了直径3英寸φ、厚400μm、使表面为(100)面的单晶硅基板。对硅基板的两面实施研磨,基板表面的算术平均粗糙度Ra为0.1nm。
接下来,对于硅基板实施1100℃的水蒸汽氧化处理,在基板表面和背面形成0.5μm的厚度的热氧化膜作为被覆层1b,1b,准备支承基板1。这种情况下,被覆层1b、1b(热氧化膜)表面反映母材基板1a(硅基板)的平滑面,支承基板1的表面的算术平均粗糙度Ra为0.3nm以下。
接下来,对于支承基板1,采用以下的条件使用热CVD法实施了碳化硅膜的成膜。
(成膜条件)
成膜温度:1300℃、
压力:11Pa、
导入的气体:二氯硅烷200sccm、乙炔50sccm、氢3slm。
通过6小时的成膜,形成了厚300μm的立方晶碳化硅膜10。
接下来,通过磨削将附着于支承基板1端部的碳化硅膜除去,使支承基板的端面露出。然后,将该试样浸渍于氢氟酸和硝酸的混合酸中,将支承基板1的全部除去。通过支承基板1的除去,得到了无支撑的厚300μm的碳化硅基板10a、10b。
使用原子间力显微镜(AFM)观察碳化硅基板10a、10b的与支承基板1的被覆层1b相接的面10af、10bf,结果发现由图2中所示的表面组织和图3中所示的表面轮廓(粗糙度截面曲线。图中,横轴为试样表面的位置,纵轴为粗糙度截面曲线的高度(下同))组成的形态,判明了其算术平均粗糙度Ra为0.24nm。在图3的表面轮廓中表面粗糙度数据也一起示出(下同)。
另外,使用X射线衍射装置(株式会社Rigaku制造、SuperLab、Cu真空管)采用X射线摇摆曲线法(ω扫描)得到以碳化硅基板的表面的法线轴为基准的构成该碳化硅基板的3C-SiC结晶的(111)面的摇摆曲线,结果没有发现显著的峰,发现了其为从基板的法线轴以1/3π球面角度的立体角使最密排面取向的晶粒为全体的17%以下的多晶。再有,碳化硅基板的晶粒的粒径为110~600nm。
另外,将光学平玻璃载置于上述无支撑的碳化硅基板10a、10b,由因光学干涉所形成的牛顿环的间隔求出了曲率半径,结果得到103m,判明在口径6英寸的晶片中减小到27μm的翘曲量。
[实施例2]
采用图1中所示的步骤制作碳化硅基板。
首先,作为母材基板1a,使用了直径3英寸φ、厚度400μm的高纯度碳基板。碳基板表面的算术平均粗糙度Ra为2.3nm。
其次,采用CVD法在碳基板的正表面和背表面沉积厚1μm的BPSG(Boro-phosphosilicate glass)膜作为被覆层1b,1b。接下来,通过在氩气气氛中加热到900℃,使该被覆层1b,1b回流,从而使表面平滑化,制成支承基板1。该支承基板1的表面的算术平均粗糙度Ra为0.2nm。
接下来,对于该支承基板1,在与实施例1相同的条件下使用热CVD法实施了厚300μm的碳化硅膜的成膜。
接下来,通过磨削将附着于支承基板1端部的碳化硅膜除去,使支承基板1的端面露出。然后,通过将该试样在大气中900℃下加热24小时,从而将碳基板的部分除去,进而采用氢氟酸溶液将被覆层1b的BPSG膜除去。通过支承基板1的除去,得到了无支撑的厚300μm的碳化硅基板10a、10b。
使用原子间力显微镜(AFM)观察碳化硅基板10a、10b的与支承基板1的被覆层1b相接的面10af、10bf,结果发现图4中所示的表面组织和图5中所示的表面轮廓组成的形态,判明其算术平均粗糙度Ra为0.13nm。
另外,与实施例1同样地测定了碳化硅基板的结晶的摇摆曲线,结果没有发现显著的峰,发现了其为从基板的法线轴以1/3π球面角度的立体角使最密排面取向的晶粒为全体的17%以下的多晶。再有,碳化硅基板的晶粒的粒径为160~820nm。
另外,将光学平玻璃载置于上述无支撑的碳化硅基板10a、10b,由因光学干涉所形成的牛顿环的间隔求出了曲率半径,结果得到95m,判明在口径6英寸的晶片中减小到30μm的翘曲量。
[比较例1]
作为支承基板,使用了直径3英寸φ、厚度400μm、使表面为(100)面的单晶硅基板。对硅基板的两面实施研磨,基板表面的算术平均粗糙度Ra为0.1nm。
对于该支承基板,在与实施例1相同的条件下使用热CVD法实施了厚300μm的碳化硅膜的成膜。
接下来,通过磨削将附着于支承基板端部的碳化硅膜除去,使支承基板的端面露出。然后,将该试样在氢氟酸和硝酸的混合酸中浸渍,将硅基板的部分除去。通过基板的除去,得到了无支撑的厚300μm的碳化硅基板。
使用原子间力显微镜(AFM)观察碳化硅基板与硅基板相接的面,结果发现图6中所示的表面组织和图7中所示的表面轮廓组成的形态,判明其算术平均粗糙度Ra为2.1nm。
另外,与实施例1同样地测定了碳化硅基板的结晶的摇摆曲线,结果观察到以(111)面为极点的尖峰,发现其为以表面的法线轴为中心在100arcsec以内90%以上的最密排面取向的单晶。
另外,将光学平玻璃载置于上述无支撑的基板,由因光学干涉所形成的牛顿环的间隔求出了曲率半径,结果得到8m,判明在口径6英寸的晶片中成为350μm的翘曲量。
接下来,对于上述碳化硅基板的与硅基板相接的面实施3小时使用了胶体二氧化硅的CMP处理,使用AFM观察其表面,结果发现图8中所示的表面组织和图9中所示的表面轮廓组成的形态,判明其算术平均粗糙度Ra为8.3nm。
[比较例2]
作为支承基板,使用了直径3英寸φ、厚度400μm、基板表面的算术平均粗糙度Ra为2.3nm的高纯度碳基板。对于该基板,在与实施例1相同的条件下使用热CVD法实施了厚300μm的碳化硅膜的成膜。
接下来,通过磨削将附着于支承基板端部的碳化硅膜除去,使支承基板的端面露出。然后,通过将该试样在大气中900℃下加热24小时,从而将硅基板的部分除去。通过基板的除去,得到了无支撑的厚300μm的碳化硅基板。
使用原子间力显微镜(AFM)观察碳化硅基板与碳基板相接的面,结果发现图10中所示的表面组织和图11中所示的表面轮廓组成的形态,判明其算术平均粗糙度Ra为11.6nm。另外,与实施例1同样地测定了碳化硅基板的结晶的摇摆曲线,结果没有发现显著的峰,发现了其为从基板的法线轴以1/3π球面角度的立体角使最密排面取向的晶粒为全体的17%以下的多晶。再有,碳化硅基板的晶粒的粒径为210~2040nm。
另外,将光学平玻璃载置于上述无支撑的碳化硅基板,由因光学干涉所形成的牛顿环的间隔求出了曲率半径,结果得到98m,判明在口径6英寸的晶片中减小到29μm的翘曲量。
接下来,对于上述碳化硅基板的与碳基板相接的面实施3小时使用了胶体二氧化硅的CMP处理,使用AFM观察其表面,结果发现图12中所示的表面组织和图13中所示的表面轮廓组成的形态,判明其算术平均粗糙度Ra为2.8nm。
如上所述,尽管实施例1、2中得到的碳化硅基板没有实施研磨处理,也实现0.3nm以下的算术平均粗糙度,并且最密排面从基板的法线轴以1/3π球面角度以内的立体角取向的晶粒的体积为全部构成晶粒体积的一半以下,因此可知其为位错等缺陷的运动产生的变形得到了抑制的基板。
应予说明,目前为止用上述实施方式对本发明进行了说明,但本发明并不受该实施方式限定,其他的实施方式、追加、变更、删除等能够在本领域技术人员能够想到的范围内进行变形,只要所有的方案都取得本发明的作用效果,就包含在本发明的范围内。即,本发明中,被覆层并不限于实施例中所示的氧化硅、BPSG的膜,只要具有充分的耐热性和耐氧化性以及平滑性,就获得同样的效果,对其制造方法也无限定。另外,多晶碳化硅膜的成膜方法也并不限定于氯化硅和烃气体的组合,采用升华法、溶液法也获得同样的本发明的效果。
附图标记的说明
1 支承基板
1a 母材基板
1b 被覆层
10、92 碳化硅膜
10a、10b 碳化硅基板
10af、10bf、92f 正表面
10ar、10br、92r 背表面
91 硅基板
91p 蚀刻凹坑
93 突起

Claims (7)

1.碳化硅基板的制造方法,具有:
准备在由碳、硅或碳化硅构成的母材基板的两面设置包含氧化硅、氮化硅、氮化碳化硅或硅化物的被覆层并使该被覆层表面成为平滑面的支承基板的工序;
在所述支承基板的两面采用气相生长法或液相生长法形成多晶碳化硅的膜的工序;
将所述支承基板中至少被覆层以化学方式除去,在使被覆层表面的平滑性反映于表面的状态下将多晶碳化硅的膜从该支承基板分离,得到该多晶碳化硅的膜作为晶粒直径为10nm以上且10μm以下、至少一个主面的算术平均粗糙度Ra为0.3nm以下的碳化硅基板的工序。
2.根据权利要求1所述的碳化硅基板的制造方法,其中,通过使所述母材基板的两面平滑化,接下来在该母材基板的两面将由氧化硅、氮化硅、氮化碳化硅或硅化物构成的被覆层成膜,使母材基板的平滑面反映于该被覆层表面,从而制作所述支承基板。
3.碳化硅基板的制造方法,具有:
准备在由碳、硅或碳化硅构成的母材基板的两面形成了由磷硅酸玻璃或硼磷硅酸玻璃构成的被覆层后使该被覆层回流并使该被覆层表面成为平滑面的支承基板的工序;
在所述支承基板的两面采用气相生长法或液相生长法形成多晶碳化硅的膜的工序;
将所述支承基板中至少被覆层以化学方式除去,在使被覆层表面的平滑性反映于表面的状态下将多晶碳化硅的膜从该支承基板分离,得到该多晶碳化硅的膜作为晶粒直径为10nm以上且10μm以下、至少一个主面的算术平均粗糙度Ra为0.3nm以下的碳化硅基板的工序。
4.根据权利要求1~3中任一项所述的碳化硅基板的制造方法,其中,采用热CVD法形成所述多晶碳化硅的膜。
5.碳化硅基板,是由多晶碳化硅的气相生长膜或液相生长膜构成的碳化硅基板,其晶粒直径为10nm以上且10μm以下,至少一个主面的算术平均粗糙度Ra为0.3nm以下。
6.根据权利要求5所述的碳化硅基板,其由立方晶和六方晶中的至少一个构成,最密排面从基板主面的法线轴以1/3π球面角度以内的立方角取向的晶粒的体积为全部构成晶粒的体积的一半以下。
7.根据权利要求5或6所述的碳化硅基板,其中,基板的翘曲量在基板的直径为6英寸时为-30μm以上且30μm以下。
CN201880014716.3A 2017-03-02 2018-03-01 碳化硅基板的制造方法及碳化硅基板 Active CN110366611B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017039243 2017-03-02
JP2017-039243 2017-03-02
PCT/JP2018/007755 WO2018159754A1 (ja) 2017-03-02 2018-03-01 炭化珪素基板の製造方法及び炭化珪素基板

Publications (2)

Publication Number Publication Date
CN110366611A CN110366611A (zh) 2019-10-22
CN110366611B true CN110366611B (zh) 2021-07-27

Family

ID=63370458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880014716.3A Active CN110366611B (zh) 2017-03-02 2018-03-01 碳化硅基板的制造方法及碳化硅基板

Country Status (7)

Country Link
US (1) US11346018B2 (zh)
EP (1) EP3591101A4 (zh)
JP (1) JP6743963B2 (zh)
KR (1) KR102473088B1 (zh)
CN (1) CN110366611B (zh)
RU (1) RU2756815C2 (zh)
WO (1) WO2018159754A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300787B (zh) * 2018-09-21 2019-07-12 苏州汉骅半导体有限公司 回收碳面极性碳化硅衬底的方法
JP7322371B2 (ja) * 2018-09-27 2023-08-08 住友金属鉱山株式会社 炭化珪素多結晶基板の製造方法
JP2020090420A (ja) * 2018-12-07 2020-06-11 住友金属鉱山株式会社 黒鉛製またはセラミックス製の基板、基板の製造方法、炭化珪素の成膜方法および炭化珪素基板の製造方法
JP6564151B1 (ja) * 2019-02-28 2019-08-21 株式会社アドマップ SiC膜単体構造体
JP7155089B2 (ja) * 2019-09-27 2022-10-18 東海カーボン株式会社 多結晶SiC成形体
JP7367541B2 (ja) * 2020-01-27 2023-10-24 住友金属鉱山株式会社 炭化ケイ素多結晶基板の製造方法
JP7375580B2 (ja) * 2020-01-28 2023-11-08 住友金属鉱山株式会社 成膜用支持基板、および、多結晶基板の製造方法
FR3127330B1 (fr) * 2021-09-22 2023-09-22 Soitec Silicon On Insulator Procede de fabrication d’un substrat support en carbure de silicium poly-cristallin
CN114717651B (zh) * 2022-05-18 2023-10-10 北京青禾晶元半导体科技有限责任公司 一种碳化硅复合基板的制造方法及制造装置
CN116978783B (zh) * 2023-09-25 2023-12-12 苏州芯慧联半导体科技有限公司 一种碳化硅衬底的制备方法及碳化硅衬底

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397691A (ja) * 1989-09-08 1991-04-23 Fujitsu Ltd 半導体装置製造用治具
JPH09221395A (ja) * 1996-02-09 1997-08-26 Hoya Corp 炭化珪素膜
JPH10223870A (ja) * 1997-02-04 1998-08-21 Shin Etsu Handotai Co Ltd 半導体装置製造用ウェーハ
JPH11147766A (ja) * 1997-11-14 1999-06-02 Taiheiyo Cement Corp 炭化珪素焼結体及びその製造方法
JP2003282664A (ja) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd SiCパーティクルモニタウェハ
JP2005255420A (ja) * 2004-03-09 2005-09-22 Ngk Insulators Ltd 炭化珪素単結晶膜の製造方法および炭化珪素単結晶膜
JP2007273524A (ja) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd 複層構造炭化シリコン基板の製造方法
CN102378832A (zh) * 2009-03-31 2012-03-14 株式会社普利司通 支承基板、贴合基板、支承基板的制造方法及贴合基板的制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067594B2 (ja) * 1987-11-20 1994-01-26 富士通株式会社 半導体基板の製造方法
JPH01147766A (ja) 1987-12-04 1989-06-09 Fuji Electric Co Ltd マルチプロセッサシステム
JPH07335562A (ja) 1994-06-10 1995-12-22 Hoya Corp 炭化珪素の成膜方法
JP3990575B2 (ja) * 2001-03-05 2007-10-17 三井造船株式会社 膜厚測定用モニタウェハ
JP5213095B2 (ja) 2007-03-23 2013-06-19 学校法人関西学院 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
JP5272329B2 (ja) * 2007-05-22 2013-08-28 信越半導体株式会社 Soiウエーハの製造方法
CN101521155B (zh) * 2008-02-29 2012-09-12 信越化学工业株式会社 制备具有单晶薄膜的基板的方法
JP5033168B2 (ja) * 2009-09-29 2012-09-26 忠弘 大見 炭化珪素製品、その製造方法、及び、炭化珪素製品の洗浄方法
JP5831339B2 (ja) 2012-04-05 2015-12-09 株式会社デンソー 炭化珪素単結晶の製造方法
JP6061251B2 (ja) 2013-07-05 2017-01-18 株式会社豊田自動織機 半導体基板の製造方法
JP2015211047A (ja) 2014-04-23 2015-11-24 国立研究開発法人産業技術総合研究所 炭化ケイ素基板の研磨方法
JP6371142B2 (ja) 2014-07-08 2018-08-08 イビデン株式会社 SiCウェハの製造方法、SiC半導体の製造方法及び炭化珪素複合基板
JP2016155697A (ja) 2015-02-24 2016-09-01 小林 光 炭化ケイ素基板、炭化ケイ素基板の平坦化処理方法及びその製造装置
CN107484431B (zh) * 2015-03-04 2018-10-02 有限会社Mtec 半导体基板的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397691A (ja) * 1989-09-08 1991-04-23 Fujitsu Ltd 半導体装置製造用治具
JPH09221395A (ja) * 1996-02-09 1997-08-26 Hoya Corp 炭化珪素膜
JPH10223870A (ja) * 1997-02-04 1998-08-21 Shin Etsu Handotai Co Ltd 半導体装置製造用ウェーハ
JPH11147766A (ja) * 1997-11-14 1999-06-02 Taiheiyo Cement Corp 炭化珪素焼結体及びその製造方法
JP2003282664A (ja) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd SiCパーティクルモニタウェハ
JP2005255420A (ja) * 2004-03-09 2005-09-22 Ngk Insulators Ltd 炭化珪素単結晶膜の製造方法および炭化珪素単結晶膜
JP2007273524A (ja) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd 複層構造炭化シリコン基板の製造方法
CN102378832A (zh) * 2009-03-31 2012-03-14 株式会社普利司通 支承基板、贴合基板、支承基板的制造方法及贴合基板的制造方法

Also Published As

Publication number Publication date
JP6743963B2 (ja) 2020-08-19
CN110366611A (zh) 2019-10-22
KR20190121366A (ko) 2019-10-25
EP3591101A1 (en) 2020-01-08
EP3591101A4 (en) 2021-01-13
WO2018159754A1 (ja) 2018-09-07
JPWO2018159754A1 (ja) 2019-12-26
US20190382918A1 (en) 2019-12-19
US11346018B2 (en) 2022-05-31
RU2019130866A3 (zh) 2021-04-02
RU2019130866A (ru) 2021-04-02
RU2756815C2 (ru) 2021-10-05
KR102473088B1 (ko) 2022-12-01

Similar Documents

Publication Publication Date Title
CN110366611B (zh) 碳化硅基板的制造方法及碳化硅基板
JP6631517B2 (ja) ダイヤモンド基板、及び、ダイヤモンド複合基板
KR100973697B1 (ko) 다이아몬드의 고온 처리를 통한 aa 적층그라핀-다이아몬드 하이브리드 물질 및 그 제조 방법
US7887632B2 (en) Process for producing monocrystal thin film and monocrystal thin film device
EP2309039B1 (en) Seed crystal for growth of silicon carbide single crystal, process for producing the same, and process for producing silicon carbide single crystal by sublimation
KR100857751B1 (ko) SiC 모니터 웨이퍼의 제조방법
TW201723212A (zh) SiC複合基板及其製造方法
KR102115631B1 (ko) 나노카본막의 제작 방법 및 나노카본막
CN110318030A (zh) 一种自支撑超细纳米晶金刚石厚膜
TW202141582A (zh) 用於製作複合結構之方法,該複合結構包含一單晶SiC薄層在一SiC支撐底材上
TW202139261A (zh) 包含單晶SiC所製成之薄層在SiC所製成之載體基板上之複合結構的製造方法
JP7161158B2 (ja) ダイヤモンド基板層の製造方法
JPH11199323A (ja) ダミーウエハ
TWI334167B (zh)
JP7348422B1 (ja) ダイヤモンド電極、およびダイヤモンド電極の製造方法
JP7322315B1 (ja) ダイヤモンド電極
JP7298940B2 (ja) 炭化珪素ウエハ及びその製造方法
JP7322371B2 (ja) 炭化珪素多結晶基板の製造方法
US20220290324A1 (en) SiC SUBSTRATE PRODUCTION METHOD
JPH0825825B2 (ja) 炭化けい素コーティング黒鉛製品及びその製造方法
JP4907009B2 (ja) カーボンナノチューブ膜、カーボンナノチューブ膜含有SiC基板、カーボンナノチューブ膜体の製造方法
TW202343780A (zh) 在多晶碳化矽支撐底材上包含單晶薄膜之複合結構及其製作方法
JPH09255495A (ja) 炭化珪素膜及びその形成方法
JP2021085092A (ja) 炭化ケイ素多結晶膜の成膜方法、および、炭化ケイ素多結晶基板の製造方法
JPH09328382A (ja) 半導体製造装置用の窒化アルミニウム基材及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant