CN109781697A - 一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用 - Google Patents

一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用 Download PDF

Info

Publication number
CN109781697A
CN109781697A CN201811615951.4A CN201811615951A CN109781697A CN 109781697 A CN109781697 A CN 109781697A CN 201811615951 A CN201811615951 A CN 201811615951A CN 109781697 A CN109781697 A CN 109781697A
Authority
CN
China
Prior art keywords
hydrogen peroxide
solution
detection
sers
boronic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811615951.4A
Other languages
English (en)
Other versions
CN109781697B (zh
Inventor
翁国军
冯瑶
赵婧
李剑君
朱键
赵军武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811615951.4A priority Critical patent/CN109781697B/zh
Publication of CN109781697A publication Critical patent/CN109781697A/zh
Application granted granted Critical
Publication of CN109781697B publication Critical patent/CN109781697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种柔性SERS基底及其制备方法和双氧水SERS光谱检测的应用。首先利用化学还原法合成银纳米三角片,再用针式过滤方法将三角片截留在过滤膜表面制备柔性SERS增强基底。然后将拉曼信标分子3‑巯基苯硼酸修饰在银三角柔性基底表面。滴加的双氧水能与3‑巯基苯硼酸的硼酸基团反应,导致其1020cm‑1的强度降低,并发现1020与996cm‑1峰比值与双氧水浓度呈线性关系,可实现检测限低至0.15nM的双氧水SERS光谱检测。通过上述方法进行双氧水检测时,所需样品量较少且对双氧水检测具有特异性,并且本发明与传统检测方法相比具有操作简单,反应时间短,灵敏度高等优点。

Description

一种柔性SERS基底及其制备方法和双氧水SERS光谱检测的 应用
技术领域
本发明涉及一种柔性SERS基底及其制备方法和双氧水SERS光谱检测的应用,属于生物光谱传感技术领域。
背景技术
双氧水(H2O2)是化学工业生产过程中的重要化学原料,同时也是天然存在于生物组织中的一种物质。双氧水是许多酶反应的重要底物,在信号传导、组织损伤老化、癌变等多种生物过程中发挥重要作用。当生物体内的双氧水累积时会造成氧化应激,而氧化应激会对细胞产生毒性引起生物体中蛋白质及DNA等的损伤。因此,开发一种快捷、高灵敏度的双氧水检测方法是非常重要的。Chen等人利用双氧水对银纳米三角片的刻蚀作用,引起其溶胶颜色变化实现了对双氧水的比色检测(Chen Z,Zhang C,Wu Q,et al.Application oftriangular silver nanoplates for colorimetric detection of H2O2[J].Sensors&Actuators B Chemical,2015,220:314-317.)。Hu等人利用对苯二甲酸会在氧化铜纳米颗粒催化下被双氧水氧化形成一种荧光物质羟基对苯二甲酸,根据羟基对苯二甲酸的荧光强度变化实现了对双氧水的荧光法检测(Hu AL,Liu Y H,Deng H H,et al.Fluorescenthydrogen peroxide sensor based on cupric oxide nanoparticles and itsapplication for glucose and l-lactate detection[J].Biosensors andBioelectronics,2014,61:374-378.)。
表面增强拉曼散射(SERS)是一种功能强大的振动光谱技术,由于其可以实现超灵敏且无损的分子检测而被广泛应用于分析化学、食品安全及环境监测等领域。Ding等人使用氯霉素作为信标分子,利用其拉曼峰强与氯霉素浓度呈线性关系实现了氯霉素的检测(Ding Y F,Zhang X,Yin H J,et al.Quantitative and Sensitive Detection ofChloramphenicol by Surface-Enhanced Raman Scattering[J].Sensors,2017,17(12):2962-2969.)。而利用信标分子与检测物反应,使得信标峰强随检测物浓度增加逐渐减弱的研究还较少。近年来,柔性SERS基底由于便于携带、成本低的优点受到了广泛的关注。目前柔性SERS基底的主要制备方法有喷墨打印法、化学合成法及直接浸泡法等,而这些方法存在着均一性难以控制,技术壁垒高等缺点。因此,开发一种制备方法简单且灵敏度高的柔性SERS基底是非常重要的。
发明内容
本发明的目的是提供一种柔性SERS基底及其制备方法和双氧水SERS光谱检测的应用,是基于3-巯基苯硼酸拉曼特征峰强度变化特异性检测双氧水的方法,该方法具有选择性强、操作简单、反应时间短的特点,与传统的检测双氧水的方法相比具有检测范围宽,检测灵敏度高的优点。
为达到以上几个目的,本发明采用以下的技术方案予以实现:
一种柔性SERS基底的制备方法,包括以下步骤:
(1)首先利用小粒径银三角种子介导合成银纳米三角片;
(2)再用针式过滤方法将三角片截留在过柔性微孔滤膜表面制备柔性SERS增强基底;
(3)然后将拉曼信标分子3-巯基苯硼酸修饰在银三角柔性基底表面;
(4)最后向上述修饰后的SERS基底上滴加不同浓度的双氧水溶液进行拉曼光谱的表征。
作为本发明的进一步改进,步骤(1)的具体步骤为:
向水中加入普莱尼克F127,搅拌使其完全溶解,随后依次加入硝酸银溶液、柠檬酸钠溶液及双氧水溶液,室温下搅拌均匀;接着,注入硼氢化钠溶液,搅拌使溶液颜色变为深黄;
将抗坏血酸溶液与乙腈加入到水中,混合均匀后加入浓缩后的种子溶液;随后向该混合溶液中逐滴加入硝酸银溶液,0℃下反应后,制备得到银纳米三角片溶液。
作为本发明的进一步改进,银纳米三角片边长为30-90nm;柔性微孔滤膜的微孔直径为13mm,孔径为0.22μm。
作为本发明的进一步改进,步骤(2)具体步骤如下:
将柔性微孔滤膜浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取银纳米三角片溶胶,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥。
作为本发明的进一步改进,柔性微孔滤膜选自:聚偏氟乙烯、聚四氟乙烯、聚醚砜、尼龙、混合纤维素膜及中速定性滤纸中的一种。
作为本发明的进一步改进,步骤(3)具体步骤如下:
将3-巯基苯硼酸溶解于NaOH溶液,制备出巯基苯硼酸溶液,取巯基苯硼酸溶液滴加于柔性基底上,置于烘箱中干燥制得3-巯基苯硼酸的修饰柔性SERS基底。
一种柔性SERS基底,由所述的柔性SERS基底的制备方法制得。
一种柔性SERS基底在双氧水SERS光谱检测中的应用。
作为本发明的进一步改进,双氧水的检测的具体步骤如下:
向取经过3-巯基苯硼酸修饰后的SERS增强基底上滴加不同浓度的双氧水溶液,反应后,置于烘箱中干燥,然后进行拉曼光谱的表征;
拉曼信标分子3-巯基苯硼酸特征峰强度随双氧水浓度增加而降低,实现双氧水的SERS光谱检测。
作为本发明的进一步改进,不同浓度双氧水与3-巯基苯硼酸的硼酸基团特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱中1020cm-1处峰强度降低,1020cm-1与996cm-1峰强比值与双氧水浓度呈线性关系。
与现有技术相比,本发明具有以下有益效果:
在本发明中,首先使用化学还原法合成边长为50nm银纳米三角片,浓缩后利用针式过滤器将银纳米三角片截留在滤膜上作为SERS增强基底。信标分子3-巯基苯硼酸被修饰在银三角柔性SERS基底表面。本制备方法简单且能够制备灵敏度高的柔性SERS基底。
制备的柔性SERS基底滴加的双氧水能与3-巯基苯硼酸的硼酸基团反应,导致其1020cm-1的峰强降低,并发现1020与996cm-1峰比值与双氧水浓度呈线性关系,可实现双氧水SERS光谱检测。该方法具有选择性强、操作简单、反应时间短的特点,与传统的检测双氧水的方法相比具有检测范围宽,检测灵敏度高的优点。
本发明基于膜过滤操作能简单、快速制备用于SERS检测的通用性柔性基底,耗时1分钟,成本仅需要0.89元。
附图说明
图1银纳米三角片的TEM图;
图2柔性基底制备流程示意图;
图3加入不同浓度双氧水后3-巯基苯硼酸的拉曼光谱变化;
图4基于3-巯基苯硼酸拉曼光谱变化进行双氧水检测的标准曲线。
具体实施方式
下面将通过具体实施例对本发明的技术方案进行详细描述:
本发明一种基于针式过滤和拉曼信标峰强降低的双氧水SERS光谱检测方法,首先利用小粒径银三角种子介导合成边长为30-90nm(最优为50nm)的银纳米三角片,再用针式过滤方法将三角片截留在过滤膜表面制备柔性SERS增强基底。然后将拉曼信标分子3-巯基苯硼酸修饰在银三角柔性基底表面。最后进行双氧水的检测。具体步骤如下:
实施例1
(1)银纳米三角片的合成:
银纳米三角片种子的合成:向200mL超纯水中加入0.4g普莱尼克F127,剧烈搅拌使其完全溶解。随后向该溶液中依次加入0.4mL硝酸银溶液(50mM),4mL柠檬酸钠溶液(75mM)及0.48mL双氧水溶液(30wt%),室温下搅拌均匀。接着,快速注入0.4mL硼氢化钠溶液(100mM),搅拌15分钟后,溶液颜色变为深黄。
边长为50nm银纳米三角片的合成:将0.3mL的抗坏血酸溶液(100mM)与10mL乙腈加入到20mL超纯水中,混合均匀后加入6.5mL浓缩后的种子溶液。随后向该混合溶液中逐滴加入0.175mL硝酸银溶液(50mM),0℃下反应30分钟后,制备得到边长为50nm银纳米三角片溶液,离心后进行TEM表征。如图1所示,为制备的50nm银纳米三角片。
(2)柔性基底的制备:
如图2所示,将直径为13mm,孔径为0.22μm PVDF滤膜浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取浓度为0.5μM已浓缩好的边长为50nm银纳米三角片溶胶0.2mL,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥,将干燥后的滤膜裁剪成4mm×4mm的试纸片待用。
(3)3-巯基苯硼酸的修饰:
将3-巯基苯硼酸溶解于0.2M NaOH溶液,制备出浓度为1mM巯基苯硼酸溶液,取其中的10μL溶液滴加于柔性基底上,置于60℃烘箱中干燥20分钟后,进行拉曼表征。
(4)双氧水的检测:
取经过3-巯基苯硼酸修饰后的柔性基底滴加不同浓度双氧水溶液(具体为10-4,10-5,10-6,10-7,10-8,10-9M),反应10分钟后干燥,不同浓度双氧水与3-巯基苯硼酸特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱出现特异性变化,进而实现双氧水浓度的检测。
如图3所示,滴加的双氧水能与3-巯基苯硼酸的硼酸基团反应,导致其1020cm-1的强度降低,并发现1020cm-1与996cm-1峰比值与双氧水浓度呈线性关系(如图4所示),可实现检测限低至0.15nM的双氧水SERS光谱检测。本发明利用3-巯基苯硼酸与双氧水特异性反应生成3-羟基苯硫酚,首次发现使得其拉曼特征峰1020cm-1的强度出现特异性变化来检测双氧水。
通过上述方法进行双氧水检测时,所需样品量较少且对双氧水检测具有特异性,并且本发明与传统检测方法相比具有操作简单,反应时间短,灵敏度高等优点。此外利用双氧水参与的酶促反应体系,本发明在实现酶活力及酶底物浓度(葡萄糖,尿酸,乳酸等)检测方面具有巨大潜力。
其中,柔性微孔滤膜选自:聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚醚砜(PES)、尼龙(Nylon)、混合纤维素膜(CELL)、中速定性滤纸)的一种。
银纳米三角片溶胶的浓度可选择为0.1~1.5μM。
实施例2
(1)银纳米三角片的合成:
银纳米三角片种子的合成:向200mL超纯水中加入0.4g普莱尼克F127,剧烈搅拌使其完全溶解。随后向该溶液中依次加入0.4mL硝酸银溶液(50mM),4mL柠檬酸钠溶液(75mM)及0.48mL双氧水溶液(30wt%),室温下搅拌均匀。接着,快速注入0.4mL硼氢化钠溶液(100mM),搅拌15分钟后,溶液颜色变为深黄。
边长为50nm银纳米三角片的合成:将0.3mL的抗坏血酸溶液(100mM)与10mL乙腈加入到20mL超纯水中,混合均匀后加入6.5mL浓缩后的种子溶液。随后向该混合溶液中逐滴加入0.175mL硝酸银溶液(50mM),0℃下反应30分钟后,制备得到边长为50nm银纳米三角片溶液,离心后进行TEM表征。如图1所示,为制备的50nm银纳米三角片。
(2)柔性基底的制备:
如图2所示,将直径为13mm,孔径为0.22μm尼龙膜(Nylon)浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取浓度为0.75μM已浓缩好的边长为50nm银纳米三角片溶胶0.2mL,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥,将干燥后的滤膜裁剪成4mm×4mm的试纸片待用。
(3)3-巯基苯硼酸的修饰:
将3-巯基苯硼酸溶解于0.2M NaOH溶液,制备出浓度为1mM巯基苯硼酸溶液,取其中的10μL溶液滴加于柔性基底上,置于60℃烘箱中干燥20分钟后,进行拉曼表征。
(4)双氧水的检测:
取经过3-巯基苯硼酸修饰后的柔性基底滴加不同浓度双氧水溶液(具体为10-4,10-5,10-6,10-7,10-8,10-9M),反应10分钟后干燥,不同浓度双氧水与3-巯基苯硼酸特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱出现特异性变化,进而实现双氧水浓度的检测。
实施例3
(1)银纳米三角片的合成:
银纳米三角片种子的合成:向200mL超纯水中加入0.4g普莱尼克F127,剧烈搅拌使其完全溶解。随后向该溶液中依次加入0.4mL硝酸银溶液(50mM),4mL柠檬酸钠溶液(75mM)及0.48mL双氧水溶液(30wt%),室温下搅拌均匀。接着,快速注入0.4mL硼氢化钠溶液(100mM),搅拌15分钟后,溶液颜色变为深黄。
边长为50nm银纳米三角片的合成:将0.3mL的抗坏血酸溶液(100mM)与10mL乙腈加入到20mL超纯水中,混合均匀后加入6.5mL浓缩后的种子溶液。随后向该混合溶液中逐滴加入0.175mL硝酸银溶液(50mM),0℃下反应30分钟后,制备得到边长为50nm银纳米三角片溶液,离心后进行TEM表征。如图1所示,为制备的50nm银纳米三角片。
(2)柔性基底的制备:
如图2所示,将直径为13mm,孔径为0.22μm聚四氟乙烯(PTFE)膜浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取浓度为1μM已浓缩好的边长为50nm银纳米三角片溶胶0.2mL,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥,将干燥后的滤膜裁剪成4mm×4mm的试纸片待用。
(3)3-巯基苯硼酸的修饰:
将3-巯基苯硼酸溶解于0.2M NaOH溶液,制备出浓度为1mM巯基苯硼酸溶液,取其中的10μL溶液滴加于柔性基底上,置于60℃烘箱中干燥20分钟后,进行拉曼表征。
(4)双氧水的检测:
取经过3-巯基苯硼酸修饰后的柔性基底滴加不同浓度双氧水溶液(具体为10-4,10-5,10-6,10-7,10-8,10-9M),反应10分钟后干燥,不同浓度双氧水与3-巯基苯硼酸特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱出现特异性变化,进而实现双氧水浓度的检测。
实施例4
(1)银纳米三角片的合成:
银纳米三角片种子的合成:向200mL超纯水中加入0.4g普莱尼克F127,剧烈搅拌使其完全溶解。随后向该溶液中依次加入0.4mL硝酸银溶液(50mM),4mL柠檬酸钠溶液(75mM)及0.48mL双氧水溶液(30wt%),室温下搅拌均匀。接着,快速注入0.4mL硼氢化钠溶液(100mM),搅拌15分钟后,溶液颜色变为深黄。
边长为50nm银纳米三角片的合成:将0.3mL的抗坏血酸溶液(100mM)与10mL乙腈加入到20mL超纯水中,混合均匀后加入6.5mL浓缩后的种子溶液。随后向该混合溶液中逐滴加入0.175mL硝酸银溶液(50mM),0℃下反应30分钟后,制备得到边长为50nm银纳米三角片溶液,离心后进行TEM表征。如图1所示,为制备的50nm银纳米三角片。
(2)柔性基底的制备:
如图2所示,将直径为13mm,孔径为0.22μm聚醚砜(PES)膜浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取浓度为1.25μM已浓缩好的边长为50nm银纳米三角片溶胶0.2mL,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥,将干燥后的滤膜裁剪成4mm×4mm的试纸片待用。
(3)3-巯基苯硼酸的修饰:
将3-巯基苯硼酸溶解于0.2M NaOH溶液,制备出浓度为1mM巯基苯硼酸溶液,取其中的10μL溶液滴加于柔性基底上,置于60℃烘箱中干燥20分钟后,进行拉曼表征。
(4)双氧水的检测:
取经过3-巯基苯硼酸修饰后的柔性基底滴加不同浓度双氧水溶液(具体为10-4,10-5,10-6,10-7,10-8,10-9M),反应10分钟后干燥,不同浓度双氧水与3-巯基苯硼酸特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱出现特异性变化,进而实现双氧水浓度的检测。
实施例5
(1)银纳米三角片的合成:
银纳米三角片种子的合成:向200mL超纯水中加入0.4g普莱尼克F127,剧烈搅拌使其完全溶解。随后向该溶液中依次加入0.4mL硝酸银溶液(50mM),4mL柠檬酸钠溶液(75mM)及0.48mL双氧水溶液(30wt%),室温下搅拌均匀。接着,快速注入0.4mL硼氢化钠溶液(100mM),搅拌15分钟后,溶液颜色变为深黄。
边长为50nm银纳米三角片的合成:将0.3mL的抗坏血酸溶液(100mM)与10mL乙腈加入到20mL超纯水中,混合均匀后加入6.5mL浓缩后的种子溶液。随后向该混合溶液中逐滴加入0.175mL硝酸银溶液(50mM),0℃下反应30分钟后,制备得到边长为50nm银纳米三角片溶液,离心后进行TEM表征。如图1所示,为制备的50nm银纳米三角片。
(2)柔性基底的制备:
如图2所示,将直径为13mm,孔径为0.22μm混合纤维素膜(CELL)浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取浓度为1.5μM已浓缩好的边长为50nm银纳米三角片溶胶0.2mL,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥,将干燥后的滤膜裁剪成4mm×4mm的试纸片待用。
(3)3-巯基苯硼酸的修饰:
将3-巯基苯硼酸溶解于0.2M NaOH溶液,制备出浓度为1mM巯基苯硼酸溶液,取其中的10μL溶液滴加于柔性基底上,置于60℃烘箱中干燥20分钟后,进行拉曼表征。
(4)双氧水的检测:
取经过3-巯基苯硼酸修饰后的柔性基底滴加不同浓度双氧水溶液(具体为10-4,10-5,10-6,10-7,10-8,10-9M),反应10分钟后干燥,不同浓度双氧水与3-巯基苯硼酸特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱出现特异性变化,进而实现双氧水浓度的检测。
本发明创造也望开发成双氧水相关的生物酶光谱现场快速检测产品,在医学快速筛查和食品安全现场检测领域具有潜在的经济价值。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种柔性SERS基底的制备方法,其特征在于,包括以下步骤:
(1)首先利用小粒径银三角种子介导合成银纳米三角片;
(2)再用针式过滤方法将三角片截留在过柔性微孔滤膜表面制备柔性SERS增强基底;
(3)然后将拉曼信标分子3-巯基苯硼酸修饰在银三角柔性基底表面;
(4)最后向上述修饰后的SERS基底上滴加不同浓度的双氧水溶液进行拉曼光谱的表征。
2.根据权利要求1所述的一种柔性SERS基底的制备方法,其特征在于,步骤(1)的具体步骤为:
向水中加入普莱尼克F127,搅拌使其完全溶解,随后依次加入硝酸银溶液、柠檬酸钠溶液及双氧水溶液,室温下搅拌均匀;接着,注入硼氢化钠溶液,搅拌使溶液颜色变为深黄;
将抗坏血酸溶液与乙腈加入到水中,混合均匀后加入浓缩后的种子溶液;随后向该混合溶液中逐滴加入硝酸银溶液,0℃下反应后,制备得到银纳米三角片溶液。
3.根据权利要求1或2所述的一种柔性SERS基底的制备方法,其特征在于,银纳米三角片边长为30-90nm;柔性微孔滤膜的微孔直径为13mm,孔径为0.22μm。
4.根据权利要求1所述的一种柔性SERS基底的制备方法,其特征在于,步骤(2)具体步骤如下:
将柔性微孔滤膜浸于乙醇与水的混合溶液中浸湿,再置于可拆卸的针式过滤器中作为滤膜使用;使用一次注射器取银纳米三角片溶胶,去掉针头后将其固定在可换滤膜的针式过滤器上,利用推力将银纳米三角片修饰在滤膜表面,取出滤膜后干燥。
5.根据权利要求1所述的一种柔性SERS基底的制备方法,其特征在于,柔性微孔滤膜选自:聚偏氟乙烯、聚四氟乙烯、聚醚砜、尼龙、混合纤维素膜及中速定性滤纸中的一种。
6.根据权利要求1所述的一种柔性SERS基底的制备方法,其特征在于,步骤(3)具体步骤如下:
将3-巯基苯硼酸溶解于NaOH溶液,制备出巯基苯硼酸溶液,取巯基苯硼酸溶液滴加于柔性基底上,置于烘箱中干燥制得3-巯基苯硼酸的修饰柔性SERS基底。
7.一种柔性SERS基底,其特征在于,由权利要求1至6任意一项所述的柔性SERS基底的制备方法制得。
8.权利要求7所述的一种柔性SERS基底在双氧水SERS光谱检测中的应用。
9.根据权利要求8所述的一种柔性SERS基底在双氧水SERS光谱检测中的应用,其特征在于,双氧水的检测的具体步骤如下:
向取经过3-巯基苯硼酸修饰后的SERS增强基底上滴加不同浓度的双氧水溶液,反应后,置于烘箱中干燥,然后进行拉曼光谱的表征;
拉曼信标分子3-巯基苯硼酸特征峰强度随双氧水浓度增加而降低,实现双氧水的SERS光谱检测。
10.根据权利要求9所述的一种柔性SERS基底在双氧水SERS光谱检测中的应用,其特征在于,不同浓度双氧水与3-巯基苯硼酸的硼酸基团特异性反应后有3-羟基苯硫酚生成,导致其拉曼光谱中1020cm-1处峰强度降低,1020cm-1与996cm-1峰强比值与双氧水浓度呈线性关系。
CN201811615951.4A 2018-12-27 2018-12-27 一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用 Active CN109781697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811615951.4A CN109781697B (zh) 2018-12-27 2018-12-27 一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811615951.4A CN109781697B (zh) 2018-12-27 2018-12-27 一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用

Publications (2)

Publication Number Publication Date
CN109781697A true CN109781697A (zh) 2019-05-21
CN109781697B CN109781697B (zh) 2021-03-02

Family

ID=66498556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811615951.4A Active CN109781697B (zh) 2018-12-27 2018-12-27 一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用

Country Status (1)

Country Link
CN (1) CN109781697B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109676153A (zh) * 2019-01-28 2019-04-26 武汉科技大学 一种能同时制备多孔金纳米颗粒与六边形金纳米片的方法
CN110068565A (zh) * 2019-06-06 2019-07-30 长江师范学院 Sers传感芯片的应用及其检测方法和制备方法
CN110308138A (zh) * 2019-08-06 2019-10-08 深圳海关食品检验检疫技术中心 一种多功能表面增强拉曼基底材料及其制备方法和应用
CN110501322A (zh) * 2019-08-20 2019-11-26 广东食品药品职业学院 一种柔性表面增强拉曼基底及其制备方法和应用
CN110779907A (zh) * 2019-11-26 2020-02-11 启东科赛尔纳米科技有限公司 一种快速检测过氧化氢含量的方法
CN111122544A (zh) * 2019-12-28 2020-05-08 西安交通大学 基于毛细作用的富集型表面增强拉曼散射基底的制备方法
CN113624736A (zh) * 2021-07-07 2021-11-09 张鑫 一种基于拉曼效应的微生物浓度快速检测方法
CN113702355A (zh) * 2021-09-24 2021-11-26 河南农业大学 AgNPs@PDMS多孔洞微孔滤膜SERS检测平台的制备方法及应用
CN114034680A (zh) * 2021-10-27 2022-02-11 上海应用技术大学 一种同时检测生鲜乳中硫氰酸钠和过氧化氢的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160201A (zh) * 1996-03-18 1997-09-24 株式会社京都第一科学 用拉曼散射测定过氧化氢的方法和仪器
CN101947655A (zh) * 2010-10-25 2011-01-19 江苏技术师范学院 三角形银纳米片的制备方法
CN103604796A (zh) * 2013-11-29 2014-02-26 苏州大学 一种硅基表面增强拉曼散射(sers)基底的制备方法
EP2767824A1 (en) * 2013-02-15 2014-08-20 Imec Method and device for detecting analytes
CN104215626A (zh) * 2014-09-24 2014-12-17 苏州大学 一种基于表面增强拉曼光谱检测耳聋基因的方法
CN104263837A (zh) * 2014-10-13 2015-01-07 江南大学 基于三重信标修饰的金纳米粒子三聚体的表面增强拉曼散射效应检测水溶液中Hg2+和/或Ag+的方法
CN104697980A (zh) * 2015-04-02 2015-06-10 吉林师范大学 一种基于拉曼特征峰峰位变化对汞离子进行定量检测的方法
CN104849259A (zh) * 2015-06-05 2015-08-19 中物院成都科学技术发展中心 一种柔性表面增强拉曼基底的制备方法
CN105277526A (zh) * 2015-10-09 2016-01-27 苏州大学 一种表面增强拉曼光谱基底材料、制备方法及应用
CN105823768A (zh) * 2016-04-25 2016-08-03 中国科学院高能物理研究所 一种基于表面增强拉曼散射技术的检测芯片、制备方法以及试剂盒
CN107300548A (zh) * 2017-06-19 2017-10-27 华中科技大学 一种柔性表面增强拉曼基底材料及制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160201A (zh) * 1996-03-18 1997-09-24 株式会社京都第一科学 用拉曼散射测定过氧化氢的方法和仪器
CN101947655A (zh) * 2010-10-25 2011-01-19 江苏技术师范学院 三角形银纳米片的制备方法
EP2767824A1 (en) * 2013-02-15 2014-08-20 Imec Method and device for detecting analytes
CN103604796A (zh) * 2013-11-29 2014-02-26 苏州大学 一种硅基表面增强拉曼散射(sers)基底的制备方法
CN104215626A (zh) * 2014-09-24 2014-12-17 苏州大学 一种基于表面增强拉曼光谱检测耳聋基因的方法
CN104263837A (zh) * 2014-10-13 2015-01-07 江南大学 基于三重信标修饰的金纳米粒子三聚体的表面增强拉曼散射效应检测水溶液中Hg2+和/或Ag+的方法
CN104697980A (zh) * 2015-04-02 2015-06-10 吉林师范大学 一种基于拉曼特征峰峰位变化对汞离子进行定量检测的方法
CN104849259A (zh) * 2015-06-05 2015-08-19 中物院成都科学技术发展中心 一种柔性表面增强拉曼基底的制备方法
CN105277526A (zh) * 2015-10-09 2016-01-27 苏州大学 一种表面增强拉曼光谱基底材料、制备方法及应用
CN105823768A (zh) * 2016-04-25 2016-08-03 中国科学院高能物理研究所 一种基于表面增强拉曼散射技术的检测芯片、制备方法以及试剂盒
CN107300548A (zh) * 2017-06-19 2017-10-27 华中科技大学 一种柔性表面增强拉曼基底材料及制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIN GU 等: "Sensing Glucose in Urine and Serum and Hydrogen Peroxide in Living Cells by Use of a Novel Boronate Nanoprobe Based on Surface-Enhanced Raman Spectroscopy", 《ANALYTICAL CHEMISTRY》 *
孙洁芳;刘睿;刘景富: "滤纸负载功能化纳米探针用于H2O2的快速SERS检测", 《中国化学会第29届学术年会摘要集——第20分会:环境与健康》 *
张强: "银纳米三角片增强有机光伏电池性能机制的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
曾甜 等: "PVDF微孔滤膜负载金纳米粒子用于牛奶中三聚氰胺的SERS快速检测", 《光散射学报》 *
薛彬: "银纳米三角片的制备及其表面增强拉曼光谱的应用", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109676153A (zh) * 2019-01-28 2019-04-26 武汉科技大学 一种能同时制备多孔金纳米颗粒与六边形金纳米片的方法
CN110068565A (zh) * 2019-06-06 2019-07-30 长江师范学院 Sers传感芯片的应用及其检测方法和制备方法
CN110308138A (zh) * 2019-08-06 2019-10-08 深圳海关食品检验检疫技术中心 一种多功能表面增强拉曼基底材料及其制备方法和应用
CN110501322A (zh) * 2019-08-20 2019-11-26 广东食品药品职业学院 一种柔性表面增强拉曼基底及其制备方法和应用
CN110779907A (zh) * 2019-11-26 2020-02-11 启东科赛尔纳米科技有限公司 一种快速检测过氧化氢含量的方法
CN111122544A (zh) * 2019-12-28 2020-05-08 西安交通大学 基于毛细作用的富集型表面增强拉曼散射基底的制备方法
CN113624736A (zh) * 2021-07-07 2021-11-09 张鑫 一种基于拉曼效应的微生物浓度快速检测方法
CN113624736B (zh) * 2021-07-07 2023-12-08 张鑫 一种基于拉曼效应的微生物浓度快速检测方法
CN113702355A (zh) * 2021-09-24 2021-11-26 河南农业大学 AgNPs@PDMS多孔洞微孔滤膜SERS检测平台的制备方法及应用
CN113702355B (zh) * 2021-09-24 2023-06-30 河南农业大学 AgNPs@PDMS多孔洞微孔滤膜SERS检测平台的制备方法及应用
CN114034680A (zh) * 2021-10-27 2022-02-11 上海应用技术大学 一种同时检测生鲜乳中硫氰酸钠和过氧化氢的方法

Also Published As

Publication number Publication date
CN109781697B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
CN109781697A (zh) 一种柔性sers基底及其制备方法和双氧水sers光谱检测的应用
Jin et al. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors
Hussain et al. Non-enzymatic simultaneous detection of L-glutamic acid and uric acid using mesoporous Co 3 O 4 nanosheets
Guo et al. A smartphone optical device for point-of-care testing of glucose and cholesterol using Ag NPs/UiO-66-NH2-based ratiometric fluorescent probe
Lin et al. Luminol chemiluminescence in unbuffered solutions with a cobalt (II)− ethanolamine complex immobilized on resin as catalyst and its application to analysis
Sun et al. Fabrication of an inorganic–organic hybrid based on an iron-substituted polyoxotungstate as a peroxidase for colorimetric immunoassays of H 2 O 2 and cancer cells
CN105092548B (zh) 一种基于分子印迹比率型荧光探针检测对硝基苯酚的方法
CN114011422B (zh) 一种单原子纳米酶及其制备方法与应用
CN108455652B (zh) 一种类过氧化物酶的氢氧化铜纳米棒的制备方法及应用
Ahn et al. Ultrarapid, size-controlled, high-crystalline plasma-mediated synthesis of ceria nanoparticles for reagent-free colorimetric glucose test strips
Ji et al. Progress in rapid detection techniques using paper-based platforms for food safety
Liu et al. A two-dimensional zinc (II)-based metal-organic framework for fluorometric determination of ascorbic acid, chloramphenicol and ceftriaxone
Qiao et al. A label-free aptasensor for ochratoxin a detection with signal amplification strategies on ultrathin micron-sized 2D MOF sheets
Tian et al. Fluorometric enhancement of the detection of H 2 O 2 using different organic substrates and a peroxidase-mimicking polyoxometalate
Wang et al. A simple SPR absorption method for ultratrace Pb2+ based on DNAzyme-COFPd nanocatalysis of Ni-P alloy reaction
CN109942508B (zh) 一种比率型一氧化碳荧光探针及其制备方法和应用
Khajvand et al. Imidazolium-based ionic liquid derivative/Cu II complexes as efficient catalysts of the lucigenin chemiluminescence system and its application to H 2 O 2 and glucose detection
CN106124588B (zh) 一种基于掺杂二氧化钛/二硫化钼复合材料的电化学壬基酚传感器的制备方法
Li et al. A Multi-catalytic sensing for hydrogen peroxide, glucose, and organophosphorus pesticides based on carbon dots
Chen et al. A novel resonance Rayleigh scattering assay for trace formaldehyde detection based on Ce-MOF probe and acetylacetone reaction
CN113322256B (zh) 一种探针组、传感器、检测方法及其用途
CN112210369B (zh) 一种后合成修饰的mof-pc材料及其制备方法和应用
CN107764763A (zh) 碘离子信号增强的双氧水比色检测方法
Li et al. Simultaneous electrochemical determination of uric acid and ascorbic acid on a glassy carbon electrode modified with cobalt (II) tetrakisphenylporphyrin
Demirkol et al. Microfluidic devices and true‐color sensor as platform for glucose oxidase and laccase assays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant