CN109065895A - 铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用 - Google Patents

铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用 Download PDF

Info

Publication number
CN109065895A
CN109065895A CN201810830563.1A CN201810830563A CN109065895A CN 109065895 A CN109065895 A CN 109065895A CN 201810830563 A CN201810830563 A CN 201810830563A CN 109065895 A CN109065895 A CN 109065895A
Authority
CN
China
Prior art keywords
solution
added
pani
microballoon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810830563.1A
Other languages
English (en)
Inventor
马贵平
李凌峰
聂俊
吕金艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Original Assignee
Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute for Advanced Materials Beijing University of Chemical Technology filed Critical Changzhou Institute for Advanced Materials Beijing University of Chemical Technology
Priority to CN201810830563.1A priority Critical patent/CN109065895A/zh
Publication of CN109065895A publication Critical patent/CN109065895A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了铁钴共掺杂碳氮核壳微球材料的制备及应用,本发明用于燃料电池阴极氧还原反应电催化剂。该材料采用Fe3O4、苯胺、六水合硝酸钴、2‑甲基咪唑为原料,制备方法是将苯胺通过原位生长聚合在Fe3O4微球上以形成核壳微球,使用乙醇和去离子水洗涤之后放入真空干燥箱中进行干燥,之后在上述微球上继续生长ZIF‑67,同样洗涤干燥之后,将微球置于管式炉中进行碳化,碳化之后使用硫酸作为介质进行酸洗,之后继续洗涤并进行干燥。进过这样一系列处理后得到铁钴共掺杂碳氮核壳微球材料。本发明绿色环保,且制备的碳氮核壳微球材料电催化性能良好,在杂原子掺杂碳基氧还原电催化剂领域具有重要的价值与意义。

Description

铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的 应用
技术领域
本发明属于燃料电池电催化领域,具体涉及铁钴共掺杂碳氮核壳微球材料的制备。
背景技术
燃料电池是继水力发电、热能发电和原子能发电之后的第四种新型发电技术,其中应用及研究领域最为广泛的是氢氧燃料电池。氧化反应和还原反应分别在氢氧燃料电池的阳极和阴极发生,为了加速阳极的氢氧化和阴极的氧还原,分别在阳极和阴极搭载了含铂的催化剂,由于铂的价格较贵,故该种催化剂的大规模商业生产不够现实,在这种情况下,开发低铂或无铂催化剂就具有了很重要的发展意义。
核壳结构由于同时具备了内核与外壳两种材料的性质,使其可以优势互补,因此在电催化、光催化、气体存储和分离等方面有着广阔的应用前景。
聚苯胺作为高分子化合物具有优良的导电性以及电化学性能,经过一定的方法处理之后,可以作为各种催化剂以及传感器的原材料,聚苯胺的合成也较为简单。由于聚苯胺中同时具有苯环和氮元素,而C、N的掺杂又是无铂催化剂中重要的组成部分,因此考虑使用聚苯胺作为铁钴共掺杂碳氮微球材料的基材。
ZIFs为沸石咪唑酯骨架结构材料,在这种特殊的结构当中,咪唑连接到过渡金属上,形成咪唑酯包含过渡金属的结构,这种笼状结构具有较大的比表面积,在高温下碳化之后,就会形成碳氮掺杂材料包覆过渡金属的结构,恰好符合电催化剂的最优结构。
发明内容
本发明是针对目前氢氧燃料电池催化剂存在的问题提出的一种解决方案,在本发明中利用溶剂热反应制备了Fe3O4微球,在其上生长PANI,再与原位生长方法相结合制备出Fe3O4/PANI/ZIF-67复合微球,经过一定的碳化工艺处理,制备了铁钴共掺杂碳氮核壳微球材料催化剂。
本发明采用的技术方案如下:
(1)采用溶剂热法制备Fe3O4微球,温度设定在200℃,反应持续10h,产物经去离子水和乙醇洗涤,然后在真空干燥箱中干燥。得到粒径约为200nm的Fe3O4微球。
(2)将上述微球置于硫酸溶液中超声1h,将苯胺单体加入上述溶液,剧烈搅拌1h,加入一定量的硝酸钴溶液,转入冰水浴锅搅拌预冷,然后在上述溶液中逐滴加入APS,并在冰水浴中反应12h。得到PANI@Fe3O4
(3)将PANI@Fe3O4微粒均匀分散在甲醇溶液中,加入一定量的2-甲基咪唑,充分反应之后,得到的产物使用甲醇和去离子水洗涤之后在真空干燥箱中进行干燥,得到产物ZIF-67@PANI@Fe3O4
(4)将ZIF-67@PANI@Fe3O4在管式炉氮气气氛中经过碳化工艺热处理以及酸洗洗去Fe3O4得到钴铁共掺杂核壳碳氮微球材料。
优选的是,水热反应的温度设定在200℃,时间设定在10h,时间过长则合成的Fe3O4粒径过大,时间过短则合成的Fe3O4粒径太小,均对PANI的包覆不利,而且也不能形成良好的介孔结构。
优选的是,硫酸pH为1,硫酸的作用主要是刻蚀Fe3O4微球表面,若pH太小,可能会把Fe3O4全部溶解掉,因此而不能形成核壳结构,若硫酸pH太大,则不能对Fe3O4表面形成刻蚀作用,导致Fe3O4表面太过光滑而PANI无法正常生长上去。
优选的是,微球的碳化工艺为:升温速率为5℃/min,碳化温度为700℃-900℃,碳化时间为1-2h。
钴铁共掺杂碳氮核壳微球可作为氧还原催化剂来使用,在测试其电化学性能时,需以该钴铁共掺杂核壳碳氮微球材料修饰的玻碳电极作为工作电极,甘汞电极和铂电极分别作为参比电极和对电极,构成三电极体系进行测试。电解液则采用0.1M的KOH溶液。。
本发明的铁钴共掺杂碳氮核壳微球用于燃料电池阴极氧还原反应电催化剂,与之前的文献报道相比,具有如下优点:
(1)本发明制备方法条件可控,制备成本低。
(2)本发明成功地实现了将导电聚合物PANI和ZIF-67结合的目的,同时在除去Fe3O4核之后,PANI形成的中空碳微球内核还会有Fe离子的存在,进一步加强了催化效率。
(3)高温碳化及酸洗之后得到的碳氮微球材料具有多层多级孔状结构,具有高的比表面积和大的孔体积,该结构有利于物质扩散和电子传输,用于氧还原反应具有较高的电催化效率。
附图说明
图1为本发明所述核壳微球示意图;
图2为本实验制备的PANI/Fe3O4微球的透射电镜图;
图3为本实验制备的ZIF-67/PANI/Fe3O4微球表面的扫描电镜图;
图4为本实验实施例1制备的铁钴共掺杂碳氮核壳微球用作氧还原反应电催化剂的线性扫描伏安曲线图。
具体实施方式
实施例1
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为1的硫酸溶液中均匀分散,0.5ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将1.226gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应10h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例2
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为1的硫酸溶液中均匀分散,0.75ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将1.840gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应10h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例3
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为1的硫酸溶液中均匀分散,1ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将2.452gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应10h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例4
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为1的硫酸溶液中均匀分散,0.2ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将0.5gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应10h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例5
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为2的硫酸溶液中均匀分散,0.5ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将1.226gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应10h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例6
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为3的硫酸溶液中均匀分散,0.5ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将1.226gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应10h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例7
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为1的硫酸溶液中均匀分散,0.5ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将1.226gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应5h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。
实施例8
配制1.35g的FeCl3·6H2O溶解于乙二醇中,超声使其充分溶解,加入3.6gNaAc,继续超声使溶液呈现乳黄色,放入水热反应釜,温度设定在200℃,反应时间设定在10h进行溶剂热反应,产物经去离子水和乙醇洗涤,放入真空干燥箱中进行干燥,得到Fe3O4
将上述微球加入pH为1的硫酸溶液中均匀分散,0.5ml苯胺单体溶解在5ml乙醇中,加入上述溶液,硝酸钴0.5g溶解在10ml去离子水中加入上述溶液,在冰浴中搅拌1h预冷,之后将1.226gAPS溶解在10ml水中,在30min内逐滴加入到上述反应溶液中,然后在冰浴中反应12h,产物经去离子水和乙醇洗涤,再使用磁铁进行提纯,然后放入真空干燥箱中进行干燥,得到PANI/Fe3O4.
将上述微球置于0.15mol/L的2-甲基咪唑的甲醇溶液中在震荡培养箱中反应20h,使用乙醇和去离子水洗涤,然后在真空干燥箱中干燥,得到ZIF-67/PANI/Fe3O4
将ZIF-67/PANI/Fe3O4在管式炉氮气氛中以5℃/min的升温速率升至900℃,保温2h,自然冷却至室温,然后将其置于1mol/L的硫酸溶液中酸化48h,得到铁钴共掺杂碳氮核壳微球材料。

Claims (5)

1.铁钴共掺杂碳氮核壳微球材料的制备方法,其合成方法如下所述:
(1)采用溶剂热法制备Fe3O4微球,温度设定在200℃,反应持续10h,产物经去离子水和乙醇洗涤,然后在真空干燥箱中干燥,得到粒径约为200nm的Fe3O4微球;
(2)将上述微球置于硫酸溶液中超声1h,将苯胺单体加入上述溶液,剧烈搅拌1h,加入一定量的硝酸钴溶液,转入冰水浴锅搅拌预冷,然后在上述溶液中逐滴加入APS,并在冰水浴中反应12h,得到PANI@Fe3O4
(3)将PANI@Fe3O4微粒均匀分散在甲醇溶液中,加入一定量的2-甲基咪唑,充分反应之后,得到的产物使用甲醇和去离子水洗涤之后在真空干燥箱中进行干燥,得到产物ZIF-67@PANI@Fe3O4
(4)将ZIF-67@PANI@Fe3O4在管式炉氮气气氛中经过碳化工艺热处理以及酸洗洗去Fe3O4得到钴铁共掺杂核壳碳氮微球材料。
2.根据权利要求1所述的制备方法,其特征在于采用六水合氯化铁以及乙酸钠来合成Fe3O4,溶剂采用乙二醇。
3.根据权利要求1所述的制备方法,其特征在于硫酸溶液pH=1,APS需在30min内缓慢加入反应溶液。
4.根据权利要求1所述制备方法,其特征在于硝酸钴与二甲基咪唑的摩尔比为1:4,碳化时升温速率约为5℃/min,碳化温度为700℃-900℃,碳化时间为2h。
5.权利要求1所制备的铁钴共掺杂多孔碳微球材料的应用,其特征在于:可作为ORR反应的催化剂,在测试其电化学性能时,需以该钴铁共掺杂核壳碳氮微球材料修饰的玻碳电极作为工作电极,甘汞电极和铂电极分别作为参比电极和对电极,构成三电极体系进行测试,电解液则采用0.1M的KOH溶液。
CN201810830563.1A 2018-07-26 2018-07-26 铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用 Pending CN109065895A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810830563.1A CN109065895A (zh) 2018-07-26 2018-07-26 铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810830563.1A CN109065895A (zh) 2018-07-26 2018-07-26 铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用

Publications (1)

Publication Number Publication Date
CN109065895A true CN109065895A (zh) 2018-12-21

Family

ID=64836337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810830563.1A Pending CN109065895A (zh) 2018-07-26 2018-07-26 铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用

Country Status (1)

Country Link
CN (1) CN109065895A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164705A (zh) * 2019-03-06 2019-08-23 上海理工大学 一种新型钴铁基超级电容器电极材料及其制备方法
CN110224148A (zh) * 2019-05-24 2019-09-10 华中科技大学 Pt或Au修饰的多孔PdFe金属间化合物及其制备方法与应用
CN110459776A (zh) * 2019-08-02 2019-11-15 北京化工大学常州先进材料研究院 FeCo中空碳微球材料的制备及其在电催化方面的应用
CN110474062A (zh) * 2019-08-02 2019-11-19 北京化工大学常州先进材料研究院 一种高效MXene碳化钛电池催化剂的制备及应用
CN111477886A (zh) * 2020-04-24 2020-07-31 陈怀付 一种Co-Fe双金属掺杂多孔碳氧还原催化剂及其制法
CN111697239A (zh) * 2020-06-28 2020-09-22 全球能源互联网研究院有限公司 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN112735838A (zh) * 2020-12-24 2021-04-30 厦门大学 一种氮磷共掺杂多孔碳p@zif-8及其制备方法和应用
CN113117709A (zh) * 2021-03-12 2021-07-16 北京化工大学常州先进材料研究院 基于MXene和海藻酸钠制备高效锌空气电池催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630595A (zh) * 2009-08-21 2010-01-20 黑龙江大学 一种用于染料敏化太阳能电池的复合膜对电极及其制备方法
CN103920537A (zh) * 2014-04-28 2014-07-16 扬州大学 一种磁性聚苯胺基贵金属纳米催化剂的制备方法
WO2017123162A1 (en) * 2016-01-14 2017-07-20 Agency For Science, Technology And Research Free-standing mof-derived hybrid porous carbon nanofiber mats
CN107126974A (zh) * 2017-06-07 2017-09-05 北京化工大学常州先进材料研究院 ZIF‑67修饰Fe3O4@PZS核壳微球的制备及其ORR催化剂的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630595A (zh) * 2009-08-21 2010-01-20 黑龙江大学 一种用于染料敏化太阳能电池的复合膜对电极及其制备方法
CN103920537A (zh) * 2014-04-28 2014-07-16 扬州大学 一种磁性聚苯胺基贵金属纳米催化剂的制备方法
WO2017123162A1 (en) * 2016-01-14 2017-07-20 Agency For Science, Technology And Research Free-standing mof-derived hybrid porous carbon nanofiber mats
CN107126974A (zh) * 2017-06-07 2017-09-05 北京化工大学常州先进材料研究院 ZIF‑67修饰Fe3O4@PZS核壳微球的制备及其ORR催化剂的应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164705A (zh) * 2019-03-06 2019-08-23 上海理工大学 一种新型钴铁基超级电容器电极材料及其制备方法
CN110224148A (zh) * 2019-05-24 2019-09-10 华中科技大学 Pt或Au修饰的多孔PdFe金属间化合物及其制备方法与应用
CN110459776A (zh) * 2019-08-02 2019-11-15 北京化工大学常州先进材料研究院 FeCo中空碳微球材料的制备及其在电催化方面的应用
CN110474062A (zh) * 2019-08-02 2019-11-19 北京化工大学常州先进材料研究院 一种高效MXene碳化钛电池催化剂的制备及应用
CN111477886A (zh) * 2020-04-24 2020-07-31 陈怀付 一种Co-Fe双金属掺杂多孔碳氧还原催化剂及其制法
CN111697239A (zh) * 2020-06-28 2020-09-22 全球能源互联网研究院有限公司 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN112735838A (zh) * 2020-12-24 2021-04-30 厦门大学 一种氮磷共掺杂多孔碳p@zif-8及其制备方法和应用
CN112735838B (zh) * 2020-12-24 2021-10-26 厦门大学 一种氮磷共掺杂多孔碳p@zif-8及其制备方法和应用
CN113117709A (zh) * 2021-03-12 2021-07-16 北京化工大学常州先进材料研究院 基于MXene和海藻酸钠制备高效锌空气电池催化剂

Similar Documents

Publication Publication Date Title
CN109065895A (zh) 铁钴共掺杂碳氮核壳微球材料的制备及其在电催化方面的应用
CN108554413B (zh) 一种三维多级结构高分散镍基电催化材料及其制备方法
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN105552393A (zh) 一种碱性水系金属/空气电池用双功能催化剂及其制备方法
CN107093748A (zh) 一种钴和氮共掺杂碳纳米管催化剂、制备方法及应用
CN108155392B (zh) 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法
CN107516741B (zh) 一种具有优异电催化氧还原性能的金属Co负载的N掺杂三维多孔碳材料的合成方法
CN109908969A (zh) 一种V掺杂的Ni2P电催化剂的制备方法
CN108807015B (zh) 一种电化学电容器电极片的原位制备方法及其应用
CN109768218A (zh) 一种氮掺杂的硬碳锂离子电池负极材料及其制备方法及锂离子电池负极片和锂离子电池
CN110624540A (zh) 新型钌基自支撑电催化材料及其制备方法和在电催化氮气还原产氨中的应用
CN112142037A (zh) 一种钴、氮掺杂碳纳米管及其制备方法和应用
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
CN109755600A (zh) 碳布负载镍钴氧纳米片复合材料及其制备方法和电极的应用
CN115663212A (zh) 一种钒电池用亲疏水双面石墨毡电极的制备方法
CN110797541B (zh) 一种熔盐铁空气电池阴极双功能电催化剂及其应用
CN114477163B (zh) 铁/氮共掺杂单原子碳催化剂及其制备方法
CN110586127A (zh) 一种铂钴双金属纳米空心球的制备方法及其应用
CN108565474B (zh) 一种具有优异电催化氧还原性能的铁负载的氮掺杂多孔碳材料的合成方法
CN108306023B (zh) 一种BN/CuAg/CNT复合材料及其制备方法和用途
CN103120960B (zh) 一种Pt-Nafion/C催化剂及其制备和应用
CN106784762B (zh) 一种纳米硅阵列负极材料的制备方法及其应用
CN113353906B (zh) 非晶态铁掺杂磷酸镍-碳复合纳米球的制备方法及应用于电极催化剂
CN113224332A (zh) 一种锌-空气液流电池阴极材料催化剂及其制备方法
CN111416131B (zh) 一种燃料电池用中空结构Cu@PdNiP纳米电催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181221