CN112142037A - 一种钴、氮掺杂碳纳米管及其制备方法和应用 - Google Patents

一种钴、氮掺杂碳纳米管及其制备方法和应用 Download PDF

Info

Publication number
CN112142037A
CN112142037A CN201910563124.3A CN201910563124A CN112142037A CN 112142037 A CN112142037 A CN 112142037A CN 201910563124 A CN201910563124 A CN 201910563124A CN 112142037 A CN112142037 A CN 112142037A
Authority
CN
China
Prior art keywords
cobalt
nitrogen
doped carbon
carbon nanotube
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910563124.3A
Other languages
English (en)
Inventor
鲁逸人
郑冬
薛涛
靳晓宁
赵鹏飞
吴政禹
董旭
方复浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910563124.3A priority Critical patent/CN112142037A/zh
Publication of CN112142037A publication Critical patent/CN112142037A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种钴、氮掺杂碳纳米管及其制备方法和应用,取醋酸钴置于乙醇溶液,搅拌溶解,溶解后向上述溶液中加入双氰胺,继续搅拌并蒸干溶剂后,干燥得到粉末状前体;将粉末状前体置于研钵中研磨后转移至反应容器中,将管式炉升温至900‑1000℃后,煅烧0.5‑2h后,退火得到样品,将上述样品置于无机酸溶液中搅拌过夜,抽滤洗涤干燥后,即得到钴、氮掺杂碳纳米管。该合成方法一步合成无二次热处理,合成方法简单,钴、氮掺杂碳纳米管具有较高催化活性,该催化剂能够用于燃料电池阴极氧还原反应,该催化剂形貌良好、均一、结构完整,且具有较高的起始电位和半波电位,具有替代Pt基催化剂潜力。

Description

一种钴、氮掺杂碳纳米管及其制备方法和应用
技术领域
本发明涉及燃料电池催化技术领域,更具体地说涉及一种钴、氮掺杂碳纳米管及其制备方法和应用。
背景技术
随着大气污染问题频发,环境保护越来越受到人们的重视。清洁能源作为一种有效减少化石燃料燃烧,改善大气环境的科学技术,受到了科研人员的瞩目。但燃料电池缓慢的阴极反应阻碍了其发展进程,Pt基催化剂因此应运而生,但是贵金属有限的存储容量和昂贵的价格使催化剂的成本一直居高不下,抬高了燃料电池的使用门槛,影响了其大规模应用。因此,低成本催化剂的开发显得更加重要,M-N-C催化剂作为众多非贵金属催化剂中的佼佼者,表现出了超越同类Pt代催化剂的性能和稳定性。
燃料电池(Fuel Cells)是将H2、H2S、甲烷、甲醇等燃料的化学能转换为可用电能的一种能量转换装置,被视为继水力、火力、核能发电之后的第四代新能源。燃料电池的发电效率高,电化学能量转化的综合效率可以达到80%以上,能量转换的整个过程清洁环保,应用领域十分广阔。其中,质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)和直接甲醇燃料电池(Direct Methanol Fuel Cells,DMFCs)具有工作温度低,H2、醇类和天然气等燃料来源丰富,设备尺寸小,工作时几乎没有污染的优点,是便携式电源设备、电动汽车和分布式固定电站的理想电源。PEMFC和DMFCs等燃料电池体系设计的核心部分是发生氧气还原反应(Oxygen Reduction Reaction,ORR)的阴极和发生H2或甲醇氧化反应(Hydrogen oxidation reaction,HOR)的阳极的制备。氧还原反应(ORR)是燃料和金属-空气电池中所必需的极度重要的电催化过程,主要包括酸性(O2+4H++4e-→2H2O)和碱性(O2+2H2O+4e-→4OH-)两个体系。目前可以加快这两个电极电化学反应的高效催化剂仍是以贵金属铂(Pt)为主的催化剂,尤其是过电位过高、动力学过程缓慢的阴极氧还原反应更是离不开催化剂的帮助,然而贵金属高昂的价格和有限的储量严重制约了燃料电池的规模化与商业化应用,因此近年来燃料电池的基础研究和应用研究都在着力解决这个问题。
碳纳米管材料具有独特的卷曲sp2杂化电子结构及中空管腔,在电催化方面,它主要有两种用途:一种是作为金属基电催化剂的载体,另一种是通过非金属元素掺杂修饰获取电催化活性本身作为阴极催化剂。使用碳材料负载具有一定催化活性的其他催化剂是一类非常具有潜力的复合材料。金属-氮/碳,(M-N-C)催化剂,尤其是与Co/Fe基的复合材料,在众多非贵金属催化剂中脱颖而出,获得了与Pt-C催化剂相媲美的催化活性和稳定性。
但是目前的研究的合成方法有着复杂的前处理过程,如水热合成和长时间的机械研磨等,很多方法还需要进行二次热处理,进行再退火。繁琐的工艺过程和处理步骤成为提高材料成本,阻碍催化剂大规模合成的原因之一。
发明内容
本发明克服了现有技术中的不足,贵金属铂(Pt)高昂的价格和有限的储量严重制约了燃料电池的规模化与商业化应用,提供了一种钴、氮掺杂碳纳米管及其制备方法和应用,钴、氮掺杂碳纳米管的合成方法一步合成无二次热处理,合成方法简单,钴、氮掺杂碳纳米管具有较高催化活性,该催化剂能够用于燃料电池阴极氧还原反应,该催化剂形貌良好、均一、结构完整,且具有较高的起始电位和半波电位,具有替代Pt基催化剂潜力。
本发明的目的通过下述技术方案予以实现。
一种钴、氮掺杂碳纳米管及其制备方法,按照下述步骤进行:
步骤1,取醋酸钴置于乙醇溶液,在70-90℃下搅拌溶解,溶解后向上述溶液中加入双氰胺,继续搅拌并蒸干溶剂后,置于70-90℃下干燥5-15h,得到粉末状前体;
步骤2,将步骤1制备得到的粉末状前体置于研钵中研磨3-6min后转移至反应容器中,将管式炉升温至900-1000℃后,在到达设定温度前,前体需放置在石英管的非加热区,待达到设定温度后再将前体推入管式升温炉内,煅烧0.5-2h后,退火得到样品,将上述样品置于无机酸溶液中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,抽滤洗涤干燥后,即得到钴、氮掺杂碳纳米管,其中,醋酸钴和双氰胺的质量比为(2-4):(6-10)。
在步骤1中,醋酸钴和双氰胺的质量比为3:(6-8)。
在步骤1中,干燥温度为75-85℃,干燥时间为6-12h。
在步骤2中,煅烧升温速率为8-12℃/min,煅烧温度为940-960℃,煅烧时间为0.5-1h,煅烧气氛为氮气气氛,氮气的流速为0.3-0.5L/min。
在步骤2中,所述无机酸采用浓度为0.5-1.0M/L的H2SO4
在步骤2中,干燥温度为75-85℃,干燥时间为12-24h。
本发明的有益效果为:钴、氮掺杂碳纳米管的合成方法一步合成无二次热处理,合成方法简单,钴、氮掺杂碳纳米管具有较高催化活性,该催化剂能够用于燃料电池阴极氧还原反应,该催化剂形貌良好、均一、结构完整,且具有较高的起始电位和半波电位,具有替代Pt基催化剂潜力。
附图说明
图1是本发明的反应过程流程图;
图2是本发明制备的钴、氮掺杂碳纳米管的扫描电镜(SEM)图;
图3是本发明制备的钴、氮掺杂碳纳米管的催化剂能谱(EDS)图;
图4是本发明制备的钴、氮掺杂碳纳米管的催化剂循环伏安曲线图(CV);
图5是本发明制备的钴、氮掺杂碳纳米管的催化剂在0.1M/L的氢氧化钾中的线性伏安扫描曲线图(LSV);
图6是负载量为80微克/平方厘米的20%Pt-C在0.1M/L的氢氧化钾中的线性伏安扫描曲线图(LSV)。
图7是本发明制备的钴、氮掺杂碳纳米管的X射线衍射图(XRD)。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的说明。
实施例1
步骤1,称取1.5g醋酸钴在30ml乙醇溶液中分散,于80℃条件下搅拌溶解,溶解后加入3.5g双氰胺,继续搅拌,蒸发溶剂6h,将上述混合物转移至烧杯,于常温下在磁力搅拌装置中蒸发剩余溶剂,搅拌过夜后,在80℃条件下干燥,得到粉末状前体;
步骤2,干燥后所得的粉末状前体在玛瑙研钵中研磨5min后转移至刚玉舟中,管式炉升温至750℃,煅烧升温速率为10℃/min,在到达设定温度前,样品需放置在石英管的非加热区,待达到设定温度后再将样品推入管式升温炉内,煅烧1h,整个过程处于N2氛围,流速0.4L/min,煅烧完成后,退火,即得到样品;
步骤3:样品收集后在1M/L的H2SO4中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,再进行抽滤,用去离子水和无水乙醇充分洗涤后放入鼓风干燥箱,80℃条件下进行干燥后,即得到钴、氮掺杂碳纳米管。
实施例2
步骤1,称取1.5g醋酸钴在30ml乙醇溶液中分散,于70℃条件下搅拌溶解,溶解后加入3.0g双氰胺,继续搅拌,蒸发溶剂6h,将上述混合物转移至烧杯,于常温下在磁力搅拌装置中蒸发剩余溶剂,搅拌过夜,在70℃条件下干燥,得到粉末状前体;
步骤2,干燥后所得的粉末状前体在玛瑙研钵中研磨3min后转移至刚玉舟中,管式炉升温至900℃,煅烧升温速率为8℃/min,在到达设定温度前,样品需放置在石英管的非加热区,待达到设定温度后再将样品推入管式升温炉内,样品放入,煅烧2h,整个过程处于N2氛围,流速0.3L/min,煅烧完成后,退火,即得到样品;
步骤3:样品收集后在0.5M/L的H2SO4中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,再进行抽滤,用去离子水和无水乙醇充分洗涤后放入鼓风干燥箱,75℃条件下进行干燥,即得到钴、氮掺杂碳纳米管。
实施例3
步骤1,称取2.0g四水合醋酸钴在30ml乙醇溶液中分散,于80℃条件下搅拌溶解,溶解后加入3.0g双氰胺,继续搅拌,蒸发溶剂6h,将上述混合物转移至烧杯,于常温下在磁力搅拌装置中蒸发剩余溶剂,搅拌过夜,在80℃条件下干燥,得到粉末状前体;
步骤2,干燥后所得的粉末状前体在玛瑙研钵中研磨5min后转移至刚玉舟中,管式炉升温至1000℃,煅烧升温速率为12℃/min,在到达设定温度前,样品需放置在石英管的非加热区,待达到设定温度后再将样品推入管式升温炉内,煅烧0.5h,整个过程处于N2氛围,流速0.4L/min,煅烧完成后,退火,即得到样品;
步骤3:样品收集后在0.8M/L的H2SO4中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,再进行抽滤,用去离子水和无水乙醇充分洗涤后放入鼓风干燥箱,80℃条件下进行干燥,即得到钴、氮掺杂碳纳米管。
实施例4
步骤1,称取1.5g醋酸钴在30ml乙醇溶液中分散,于90℃条件下搅拌溶解,溶解后加入4.0g双氰胺,继续搅拌,蒸发溶剂6h,将上述混合物转移至烧杯,于常温下在磁力搅拌装置中蒸发剩余溶剂,搅拌过夜,在80℃条件下干燥,得到粉末状前体;
步骤2,干燥后所得的粉末状前体在玛瑙研钵中研磨6min后转移至刚玉舟中,管式炉升温至950℃,煅烧升温速率为10℃/min,在到达设定温度前,样品需放置在石英管的非加热区,待达到设定温度后再将样品推入管式升温炉内,煅烧1h,整个过程处于N2氛围,流速0.5L/min,煅烧完成后,退火,即得到样品;
步骤3:样品收集后在1M/L的H2SO4中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,再进行抽滤,用去离子水和无水乙醇充分洗涤后放入鼓风干燥箱,85℃条件下进行干燥,即得到钴、氮掺杂碳纳米管。
实施例5
步骤1,称取1.0g四水合醋酸钴在30ml乙醇溶液中分散,于80℃条件下搅拌溶解,溶解后加入5.0g双氰胺,继续搅拌,蒸发溶剂6h,将上述混合物转移至烧杯,于常温下在磁力搅拌装置中蒸发剩余溶剂,搅拌过夜,在80℃条件下干燥,得到粉末状前体;
步骤2,干燥后所得的粉末状前体在玛瑙研钵中研磨5min后转移至刚玉舟中,管式炉升温至1000℃,煅烧升温速率为12℃/min,在到达设定温度前,样品需放置在石英管的非加热区,待达到设定温度后再将样品推入管式升温炉内,煅烧0.5h,整个过程处于N2氛围,流速0.4L/min,煅烧完成后,退火,即得到样品;
步骤3:样品收集后在0.8M/L的H2SO4中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,再进行抽滤,用去离子水和无水乙醇充分洗涤后放入鼓风干燥箱,80℃条件下进行干燥,即得到钴、氮掺杂碳纳米管。
如图1所示,实验过程在N2保护下的真空管式炉中进行,煅烧完成后经过酸洗浸泡以除去团聚的钴单质,氧化物等杂质,以得到更纯的产物,之后在鼓风干燥箱中干燥,得到粉末状样品,经过研磨过筛,得到最终样品后保存。
如图2所示,可以观察到在5000倍条件下,产品形貌均一,有大量纳米管状物质分布,对于进一步放大至20000倍的电镜图,可以观察到,产品的管状结构完整清晰,长度在10-15微米左右,直径在100-200nm左右,长径比在10-20之间。
如图3所示,N的掺杂量在3%左右,证明所得到的碳纳米管存在N的掺杂。
如图4所示,在氧气饱和的0.1M KOH中,循环伏安曲线的负扫过程中存在还原峰,峰位置在0.85v左右,说明催化剂在阴极发生了还原反应,因此证明了催化剂拥有氧还原活性。
如图5和图6所示,0.1M/L的氢氧化钾中线性扫描伏安曲线的结果显示,钴、氮掺杂碳纳米管显示出优于Pt的起始电位和接近的半波电位。负载量为80微克/平方厘米的Pt-C的起始电位在0.90v,半波电位为0.84v,极限扩散电流为3.5mA/cm2,而Co、N共掺杂碳纳米管的起始电位为0.90v,半波电位为0.83v,极限扩散电流为4.4mA/cm2,反映了与Pt-C相接近的起始电位与半波电位值,更优异的极限扩散电流值,说明了产物更优异的电化学反应过程。循环伏安曲线和线性扫描伏安曲线相结合共同说明了钴、氮掺杂碳纳米管作为替代Pt作为催化剂的应用潜能。
如图7所示,在不同煅烧温度下得到的XRD图谱显示出三个明显的峰,其中001号峰对应碳纳米管结构,与电镜图结果相吻合,证明了产物由均一的碳纳米管结构构成,002和003号峰分别对应Co的不同晶相,与能谱图相结合可以说明碳纳米管结构Co元素的存在,其中950℃下碳纳米管的峰最为强烈,因此可以证明,更高的加热温度有利于产物的碳化和纳米管结构的生成,950℃下可以得到更为均一的碳纳米管结构;且钴的氧化物和碳纳米管的纯物质的催化效果多不能令人满意,但是当两种物质复合,会表现出更优异的氧还原催化性能,虽然并不是说钴氧化物含量越多越好,但是XRD尖锐的物质峰可以说明复合更为有效,加上之前进行过酸处理步骤,可以说明钴氧化物与碳纳米管的复合是牢固的。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种钴、氮掺杂碳纳米管,其特征在于:按照下述步骤进行:
步骤1,取醋酸钴置于乙醇溶液,在70-90℃下搅拌溶解,溶解后向上述溶液中加入双氰胺,继续搅拌并蒸干溶剂后,置于70-90℃下干燥5-15h,得到粉末状前体;
步骤2,将步骤1制备得到的粉末状前体置于研钵中研磨3-6min后转移至反应容器中,将管式炉升温至900-1000℃后,在到达设定温度前,前体需放置在石英管的非加热区,待达到设定温度后再将前体推入管式升温炉内,煅烧0.5-2h后,退火得到样品,将上述样品置于无机酸溶液中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,抽滤洗涤干燥后,即得到钴、氮掺杂碳纳米管,其中,醋酸钴和双氰胺的质量比为(2-4):(6-8),钴、氮掺杂碳纳米管的长度为10-15微米,直径为100-200nm,长径比在10-20之间。
2.根据权利要求1所述的一种钴、氮掺杂碳纳米管,其特征在于:在步骤1中,醋酸钴和双氰胺的质量比为3:(6-7);干燥温度为75-85℃,干燥时间为6-12h。
3.根据权利要求1所述的一种钴、氮掺杂碳纳米管,其特征在于:在步骤2中,煅烧升温速率为8-12℃/min,煅烧温度为940-960℃,煅烧时间为0.5-1h,煅烧气氛为氮气气氛,氮气的流速为0.3-0.5L/min。
4.根据权利要求1所述的一种钴、氮掺杂碳纳米管,其特征在于:在步骤2中,所述无机酸采用浓度为0.5-1.0M/L的H2SO4;酸洗后的干燥温度为75-85℃,干燥时间为12-24h。
5.一种钴、氮掺杂碳纳米管的制备方法,其特征在于:按照下述步骤进行:
步骤1,取醋酸钴置于乙醇溶液,在70-90℃下搅拌溶解,溶解后向上述溶液中加入双氰胺,继续搅拌并蒸干溶剂后,置于70-90℃下干燥5-15h,得到粉末状前体;
步骤2,将步骤1制备得到的粉末状前体置于研钵中研磨3-6min后转移至反应容器中,将管式炉升温至900-1000℃后,在到达设定温度前,前体需放置在石英管的非加热区,待达到设定温度后再将前体推入管式升温炉内,煅烧0.5-2h后,退火得到样品,将上述样品置于无机酸溶液中搅拌过夜,以除去金属氧化物和碳基体表面的金属团聚,抽滤洗涤干燥后,即得到钴、氮掺杂碳纳米管,其中,醋酸钴和双氰胺的质量比为(2-4):(6-8),钴、氮掺杂碳纳米管的长度为10-15微米,直径为100-200nm,长径比在10-20之间。
6.根据权利要求5所述的一种钴、氮掺杂碳纳米管的制备方法,其特征在于:在步骤1中,醋酸钴和双氰胺的质量比为3:(6-7);干燥温度为75-85℃,干燥时间为6-12h。
7.根据权利要求5所述的一种钴、氮掺杂碳纳米管的制备方法,其特征在于:在步骤2中,煅烧升温速率为8-12℃/min,煅烧温度为940-960℃,煅烧时间为0.5-1h,煅烧气氛为氮气气氛,氮气的流速为0.3-0.5L/min。
8.根据权利要求5所述的一种钴、氮掺杂碳纳米管的制备方法,其特征在于:在步骤2中,所述无机酸采用浓度为0.5-1.0M/L的H2SO4;酸洗后的干燥温度为75-85℃,干燥时间为12-24h。
9.根据权利要求1-4任一所述的一种钴、氮掺杂碳纳米管在制备燃料电池阴极催化剂上的应用。
10.根据权利要求9所述的应用,其特征在于:钴、氮掺杂碳纳米管的起始电位为0.90v,半波电位为0.83v,极限扩散电流为4.4mA/cm2,表现出与Pt-C相接近的催化剂性能。
CN201910563124.3A 2019-06-26 2019-06-26 一种钴、氮掺杂碳纳米管及其制备方法和应用 Pending CN112142037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910563124.3A CN112142037A (zh) 2019-06-26 2019-06-26 一种钴、氮掺杂碳纳米管及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910563124.3A CN112142037A (zh) 2019-06-26 2019-06-26 一种钴、氮掺杂碳纳米管及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112142037A true CN112142037A (zh) 2020-12-29

Family

ID=73870065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910563124.3A Pending CN112142037A (zh) 2019-06-26 2019-06-26 一种钴、氮掺杂碳纳米管及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112142037A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036165A (zh) * 2021-02-04 2021-06-25 南京航空航天大学 一种氮硫掺杂的缺陷化碳纳米管及其制备方法
CN113122872A (zh) * 2021-04-09 2021-07-16 合肥工业大学 一种钴、氮掺杂碳纳米管/碳电催化剂及其制备方法与应用
CN113224335A (zh) * 2021-04-16 2021-08-06 华南理工大学 一种钴氮共掺杂多孔碳材料及其制备方法与应用
CN117362250A (zh) * 2023-10-08 2024-01-09 科乐美(广州)生物科技有限公司 一种利用氮掺杂活性炭催化剂催化合成抗坏血酸四异棕榈酸酯的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944410A (zh) * 2015-06-01 2015-09-30 北京理工大学 一种合成钴纳米粒子与竹节状氮掺杂碳纳米管复合材料的方法
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN108160077A (zh) * 2017-12-26 2018-06-15 江苏大学 一种氮掺杂碳纳米管包裹金属铁钴合金复合材料的制备方法
CN108666584A (zh) * 2018-04-13 2018-10-16 东莞理工学院 一种Co-N-C/碳纳米管催化剂及其制备方法和应用
WO2019020086A1 (zh) * 2017-07-28 2019-01-31 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料、其制备及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944410A (zh) * 2015-06-01 2015-09-30 北京理工大学 一种合成钴纳米粒子与竹节状氮掺杂碳纳米管复合材料的方法
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
WO2019020086A1 (zh) * 2017-07-28 2019-01-31 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料、其制备及应用
CN108160077A (zh) * 2017-12-26 2018-06-15 江苏大学 一种氮掺杂碳纳米管包裹金属铁钴合金复合材料的制备方法
CN108666584A (zh) * 2018-04-13 2018-10-16 东莞理工学院 一种Co-N-C/碳纳米管催化剂及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036165A (zh) * 2021-02-04 2021-06-25 南京航空航天大学 一种氮硫掺杂的缺陷化碳纳米管及其制备方法
CN113122872A (zh) * 2021-04-09 2021-07-16 合肥工业大学 一种钴、氮掺杂碳纳米管/碳电催化剂及其制备方法与应用
CN113224335A (zh) * 2021-04-16 2021-08-06 华南理工大学 一种钴氮共掺杂多孔碳材料及其制备方法与应用
CN117362250A (zh) * 2023-10-08 2024-01-09 科乐美(广州)生物科技有限公司 一种利用氮掺杂活性炭催化剂催化合成抗坏血酸四异棕榈酸酯的方法
CN117362250B (zh) * 2023-10-08 2024-05-10 科乐美(广州)生物科技有限公司 一种利用氮掺杂活性炭催化剂催化合成抗坏血酸四异棕榈酸酯的方法

Similar Documents

Publication Publication Date Title
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN103611555B (zh) 一种氮掺杂石墨烯催化剂及其制备方法及应用
CN112142037A (zh) 一种钴、氮掺杂碳纳米管及其制备方法和应用
CN102104157B (zh) 一种炭干凝胶的制备方法
CN107321373B (zh) 掺杂碳负载过渡金属硼化物纳米多功能催化剂及制备方法
CN102324531A (zh) 一种碳载CoN燃料电池催化剂及其制备方法和应用
CN113571713B (zh) 一种PtZn负载氮掺杂碳催化剂及其制备方法,以及氢氧燃料电池
CN112838225A (zh) 一种燃料电池催化剂及其制备方法和应用
CN110707337B (zh) 一种碳基非贵金属氧还原催化剂的制备方法及应用
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN115548351A (zh) 一种碳纳米管限域型燃料电池催化剂及其制备方法和应用
CN111193043B (zh) 一种用于质子交换膜燃料电池阳极催化剂及其合成方法
CN109873172B (zh) 一种甲醇燃料电池催化剂的制备方法
CN113839058B (zh) 一种碳基氧还原反应催化剂及其制备方法
An et al. Engineering gC 3 N 4 composited Fe-UIO-66 to in situ generate robust single-atom Fe sites for high-performance PEMFC and Zn–air battery
CN110649276A (zh) 一种基于n2等离子刻蚀的立体式多孔氮掺杂碳纳米管电催化剂及其制备方法
CN113745540A (zh) 一种直接醇类燃料电池阳极重整层及其制备方法和应用
CN116314871A (zh) 一种镍钴硒化物负载铂催化剂的制备方法
CN113871645A (zh) 一种负载均匀的碳纳米管载铂电催化剂的制备方法
CN114620712A (zh) 一种用于直接甲醇燃料电池阳极催化剂载体的制备方法
CN114122425A (zh) 一种双氧位掺杂O-FeN4C-O合成方法及在燃料电池中的应用
KR20220027437A (ko) 전이금속 질화물-탄소 촉매복합체, 이의 제조방법, 상기 전이금속 질화물-탄소 촉매복합체를 포함하는 연료전지용 전극촉매, 상기 전극촉매를 포함하는 연료전지
Yang et al. Synthesis of high-performance low-Pt (1 1 1)-loading catalysts for ORR by interaction between solution and nonthermal plasma
CN114497584B (zh) 金属-金属硫化物异质结催化剂的制备方法和应用
Fang et al. Integrated cathode with in-situ grown MnCo2O4/NC/MnO2 catalyst layer for alkaline liquid fuel cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201229