CN108807786B - 一种用于电池隔离的增强膜及其制备方法 - Google Patents

一种用于电池隔离的增强膜及其制备方法 Download PDF

Info

Publication number
CN108807786B
CN108807786B CN201710306384.3A CN201710306384A CN108807786B CN 108807786 B CN108807786 B CN 108807786B CN 201710306384 A CN201710306384 A CN 201710306384A CN 108807786 B CN108807786 B CN 108807786B
Authority
CN
China
Prior art keywords
stretching
temperature
ptfe
longitudinal stretching
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710306384.3A
Other languages
English (en)
Other versions
CN108807786A (zh
Inventor
李朝晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Changqi Micro Filtering Film Technology Co ltd
Original Assignee
Ningbo Changqi Micro Filtering Film Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Changqi Micro Filtering Film Technology Co ltd filed Critical Ningbo Changqi Micro Filtering Film Technology Co ltd
Priority to CN201710306384.3A priority Critical patent/CN108807786B/zh
Priority to EP17908245.8A priority patent/EP3640014B1/en
Priority to PCT/CN2017/000425 priority patent/WO2018201264A1/zh
Priority to KR1020197035747A priority patent/KR102304754B1/ko
Publication of CN108807786A publication Critical patent/CN108807786A/zh
Application granted granted Critical
Publication of CN108807786B publication Critical patent/CN108807786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/94Lubricating
    • B29C48/95Lubricating by adding lubricant to the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0038Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

一种用于电池隔离的增强膜及其制备方法,其特征在于;采用双向拉伸后的膨体聚四氟乙烯微孔滤膜,纵向拉伸强度达到25‑30Mpa,横向拉伸强度达到20‑25Mp,纵向弹性模量达到70‑80Mpa,横向拉伸强度达到50‑60Mpa,纵向和横向最大力达到3‑4N。制备步骤:混料‑推压‑挤压‑压延‑去除润滑剂‑纵向拉伸‑热处理‑冷却定型‑横向拉伸‑热定型‑冷却定型。本发明通过多道拉伸、超过正常熔点的热处理及冷却的工艺进行制备,工艺合理,制备的膜是排列整齐结晶型结构膜,结节小、拉伸强度大、弹性模量高,抗蠕变性、硬度及尺寸稳定性等,纵横向双向拉伸强度接近,不仅使电池隔离膜的尺寸稳定性更好,机械性能更高,而且显著降低电池内阻而提高电池性能,降低膜材料用量,降低成本。

Description

一种用于电池隔离的增强膜及其制备方法
技术领域
本发明属于膜制备技术领域,尤其涉及一种用于电池隔离的增强膜及其制备方法。
背景技术
膜技术是国际公认的二十一世纪绿色节能的高新技术,当今世界,全球变暖、能源短缺、水源紧张、环境污染,其控制与解决的方案无不与膜技术密切相关。
膜是在仿生学的基础上发展起来的绿色技术,它是模仿细胞膜的功能人工合成的具有选择性分离特征的化工复合材料。根据膜的应用,膜可分为反渗透膜、纳滤膜、超滤膜、微滤膜、气体分离膜、渗透汽化膜、离子交换膜、质子交换膜、分子扩散膜、电渗析膜、膜反应器、膜催化器等。e-PTFE微孔滤膜具有以下性能:耐化学品、耐热性、低摩擦系数、坚韧和高超的电绝缘性。除了在制药、化工、石油、染料、纺织、印染、造纸、电子、食品、饮料、冶金、农业、水处理、空气净化、生物技术与环保工程等领域得到广泛应用之外,目前在商业电池隔膜如用于锂离子电池、燃料电池隔离的增强膜方面也获得越来越多的关注和应用。
隔离膜材料性能的好坏直接关系到电池的性能与寿命,对电池的运行状况起着决定性的作用。以锂离子电池隔膜为例,用聚四氟乙烯制成的微滤膜,具有电池隔膜所需的较高孔隙率,较低的电阻,较高的耐刺穿强度,良好的弹性等性能,而且还具有良好的化学稳定性和热稳定性,在电池应用温度下的强酸、强碱和强氧化还原环境中性能稳定,比目前商业化的聚乙烯、聚丙烯微孔膜性能更优良,尤其是其良好的抗氧化还原性能对提高电池的使用寿命和使用安全性更具优越性。这使得聚四氟乙烯微孔膜可以作为替代聚乙烯或聚丙烯隔膜增强的优良基膜材料。对燃料电池隔膜而言,由于全氟磺酸膜的吸水溶胀问题导致膜在燃料电池中可能发生一些失效行为(如蠕动行为、干态和湿态的转变条件下),因此如何抑制膜的溶胀性问题或者提高膜的机械强度,是燃料电池用质子交换膜的关键技术之一。以e-PTFE微孔滤膜增强的Nafion/PTFE复合膜既可改善机械强度和尺寸稳定性,又可以降低电池内阻、提高电池性能并显著降低成本,是今后电池隔膜的商业化应用的发展方向。性能合适的e-PTFE膜是增强型电池隔膜的基础,要求e-PTFE微孔滤膜具有优良的机械强度、两向均衡的弹性模量、化学稳定性、更高的孔隙率和均匀的膜体。
经查,现有专利号为CN201010289759.8的中国专利《一种锂电池隔离膜》,其隔离膜是采用单层聚乙烯或单层聚丙烯,或是聚乙烯和聚丙烯的复合材料,隔离膜的厚度为15~30um,孔隙率为47%~58%,透气度为60~220S/cc,平均孔径为0.15~0.25um。
还有专利号为CN201010613711.8的中国专利《一种电池隔离膜》,它的厚度为16~35微米、微孔孔径为0.3~0.65微米、孔隙率为40~50%;所述电池隔离膜是由下列聚合物组合物制得的,该聚合物组合物包括:(a)分子量为1.5×106~7.5×106的超高分子量聚乙烯和密度为0.945g/cm3以上的高密度聚乙烯的混合物,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1∶1~20;(b)按所述超高分子量聚乙烯和高密度聚乙烯的重量为100份计,500~2000重量份的成孔剂;和(c)按所述超高分子量聚乙烯和高密度聚乙烯的重量为100份计,0.5~20份抗氧化剂。
上述二种电池隔离膜都是采用聚乙烯、聚丙烯等材料进行制备,虽然在性能上均能满足使用的需要,但是与双向拉伸膨体聚四氟乙烯增强膜相比,其他隔离膜没有办法耐受电池中自由基强氧化的环境,很快就会降解,这也是目前全球范围内都在研制用双向拉伸膨体聚四氟乙烯增强膜做电池隔离膜的原因。
发明内容
本发明所要解决的第一个技术问题是提供一种用于电池隔离的增强膜,采用双向拉伸后形成的膨体聚四氟乙烯微孔滤膜,具有膜纤维排列规整,结节少,孔隙率高,机械性能优良,抗蠕变性好、硬度及尺寸稳定性高的特点。
本发明所要解决的第二个技术问题是提供一种用于电池隔离的增强膜的制备方法,采用采用鱼尾型口模挤出法、多道超高温高速拉伸、热处理及冷却工序、热气流炉超高温定型等工序,制备的增强膜具有膜纤维排列规整,结节少,孔隙率高,机械性能优良,抗蠕变性好、硬度及尺寸稳定性高的特点。
本发明解决上述第一个技术问题所采用的技术方案为:一种用于电池隔离的增强膜,其特征在于;采用双向拉伸后形成的膨体聚四氟乙烯微孔滤膜,纵向拉伸强度达到25-30Mpa,横向拉伸强度达到20-25Mp,纵向弹性模量达到70-80Mpa,横向拉伸强度达到50-60Mpa,纵向和横向最大力达到3-4N。
本发明解决上述第二个技术问题所采用的技术方案为:一种用于电池隔离的增强膜的制备方法,其特征在于包括以下步骤:
(1)混料:取适量聚四氟乙烯(PTFE)粉料,按23~27%的比例添加润滑剂Isopar,搅拌均匀,过筛后倒入保温桶中,在40-80℃保温24-48小时。
(2)推压:在2-10Mpa的压力下,把保温的PTFE细粉推压做成圆柱状的胚料。
(3)挤压:把圆柱状的胚料在40-80℃下用鱼尾型口模把圆柱状的胚料挤出成宽170~190mm,厚1.8~2.2mm的连续带状薄膜。
(4)压延:薄膜宽度不变,纵向进行延辗到厚度为0.18~0.22mm的PTFE带状薄膜。
(5)去除润滑剂:PTFE带状薄膜在200-250℃温度下干燥,去除润滑剂。
(6)多道高速纵向拉伸:然后在一定温度下进行多道高速纵向拉伸,再在超过PTFE熔点的温度下进行热处理,之后低温冷却定型;
(7)高速横向拉伸:接着在一定温度下进行高速横向拉伸使PTFE膨化,拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,再用超高温热气流炉子进行定型,然后快速冷却。
作为优选,所述步骤(6)的多道高速纵向拉伸温度为100~300℃,纵向拉伸的次数为5次,纵向拉伸倍数为1~640倍,每次纵向拉伸速度为30~50M/min,每次纵向拉伸后热处理温度为327~800℃,所述低温冷却定型温度为0-10℃。
作为优选,所述的多道高速纵向拉伸中第1次为1倍纵向拉伸,第2次为2倍纵向拉伸,第3次为4倍纵向拉伸,第4次为8倍纵向拉伸,第5次为10倍纵向拉伸。
再优选,所述步骤(7)的高速横向拉伸的拉伸温度为100~300℃,拉伸速度为30~50M/min。
优选,所述步骤(7)热气流炉超高温定型温度为327~800℃。低温冷却定型的温度为0~10℃。
作为优选,所述混料按25%的比例添加润滑剂Isopar。
作为优选,所述挤压把圆柱状的胚料挤出成宽180mm,厚2.0mm的连续带状薄膜。
作为优选,所述压延延辗到厚度为0.2mm的PTFE带状薄膜。
最后所述步骤(7)中拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,为2~6s,更优选3~5s。
与现有技术相比,本发明的优点在于:采用双向拉伸后形成的膨体聚四氟乙烯微孔滤膜作为电池隔离增强膜,制备时,用鱼尾型口模挤压,更容易纤维化,结节少且小。再通过多道纵向拉伸、超过正常熔点的热处理及冷却的工艺,在高于PTFE熔点,有规则的结晶排列逐渐消失;在开始冷却时,有规则的分子排列又开始生成,即形成排列整齐结晶型结构膜。然后通过合理的拉伸比,使纵横向拉伸强度均衡,最后通过热气流炉超高温定型,使膜瞬间固化成半烧结状态,提高了强度和弹性模量,并使膜表面变得光滑。本发明制备膨体聚四氟乙烯膜具有如下特性:结节直径小于0.3μm,纤维平均直径0.1-0.3μm,孔径在0.15-0.25μm,厚度为5-60μm,孔隙率在70-90%。本发明制备的聚四氟乙烯微孔滤膜适用于动力电池如锂离子电池、燃料电池隔离的增强膜等,由于结节小、孔径小和孔隙率高,可以使全氟磺酸树酯更易均匀渗透,提高电导率。此微孔膜形成的纤维挺直,纵横向(MD/TD)弹性模量差异小使增强的全氟磺酸质子交换膜弹性模量和强度变高并使溶胀率大大降低,从而提高了电池的使用寿命。用本发明的微孔滤膜制备成的全氟磺酸质子交换膜的纵横向(MD/TD)弹性模量差异小且达300-500MPa,拉伸强度达到25-40MPa,溶胀率小于5%、电导率达到50-80mS/cm。在电堆中已经正常运行超过5000小时。用本发明的微孔滤膜制备成的全氟磺酸质子交换膜尺寸稳定性更好,机械性能更高,而且可显著降低电池内阻而提高电池性能,降低膜材料用量,降低成本,具有广泛用途。
附图说明
图1是本发明提供的实施例1制备的e-PTFE膜形貌结构的扫描电镜(SEM)图;
图2是常规工艺制备的e-PTFE膜形貌结构的扫描电镜(SEM)图;
图3是本发明提供的实施例1制备e-PTFE膜的多道拉伸热处理工艺流程图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
材料:采用杜邦的601A的PTFE细粉。
加工步骤:
混料-推压-挤压-压延-去除润滑剂-多次纵向拉伸-热处理-冷却定型-横向拉伸-热定型-冷却定型。
具体为:
(1)混料:取适量聚四氟乙烯(PTFE)粉料,按25%的比例添加润滑剂Isopar,充分搅拌均匀,过筛后倒入保温桶中,在40℃保温24小时。
(2)推压:在2Mpa的压力下,把保温的PTFE细粉推压做成圆柱状的胚料。
(3)挤压:把圆柱状的胚料在40℃下用鱼尾型口模把圆柱状的胚料挤出成宽180mm,厚2.0mm的连续带状薄膜。
(4)压延:薄膜宽度不变,纵向进行延辗到厚度为0.2mm的PTFE带状薄膜。
(5)去除润滑剂:PTFE带状薄膜在200℃温度下干燥,去除润滑剂。
(6)多道高速纵向拉伸:然后在一定温度下进行多道高速纵向拉伸,再在超过PTFE熔点的温度下进行热处理,之后低温冷却定型;
(7)高速横向拉伸:接着在一定温度下进行高速横向拉伸使PTFE膨化,拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,再用超高温热气流炉子进行定型,然后快速冷却。
步骤(6)的多道高速纵向拉伸温度为200℃,纵向拉伸的次数为5次,纵向拉伸倍数为640倍,每次纵向拉伸速度为40M/min,每次纵向拉伸后热处理温度为450℃,所述低温冷却定型温度为5℃。
多道纵向拉伸中第1次为1倍纵向拉伸,第2次为2倍纵向拉伸,第3次为4倍纵向拉伸,第4次为8倍纵向拉伸,第5次为10倍纵向拉伸。
步骤(7)的高速横向拉伸的拉伸温度为200℃,拉伸速度为40M/min。
步骤(7)热气流炉超高温定型温度为500℃。低温冷却定型的温度为5℃。
制备的e-PTFE膜的形貌结构如图1所示,制备的e-PTFE膜的性能如表1所示:
表1:
Figure DEST_PATH_GDA0001308868080000051
从图1可以看出,通过本发明的多道拉伸和热处理技术,在超过正常熔点的拉伸和热定型,可以使e-PTFE膜纤维排列规整,结节显著减少,膜孔径分布窄,均匀性显著提高;从表1可以看出膜的孔隙率高,机械性能优良,抗蠕变性好、硬度及尺寸稳定性高,纵横向(MD/TD)双向强度接近。
实施例2
材料:采用大金的F106C PTFE细粉。
加工步骤:混料-推压-挤压-压延-去除润滑剂-纵向拉伸-热处理-冷却定型-横向拉伸-热定型-冷却定型。
具体为:
(1)混料:取适量聚四氟乙烯(PTFE)粉料,按25%的比例添加润滑剂Isopar,充分搅拌均匀,过筛后倒入保温桶中,在60℃保温36小时。
(2)推压:在6Mpa的压力下,把保温的PTFE细粉推压做成圆柱状的胚料。
(3)挤压:把圆柱状的胚料在60℃下用鱼尾型口模把圆柱状的胚料挤出成宽180mm,厚2.0mm的连续带状薄膜。
(4)压延:薄膜宽度不变,纵向进行延辗到厚度为0.2mm的PTFE带状薄膜。
(5)去除润滑剂:PTFE带状薄膜在225℃温度下干燥,去除润滑剂。
(6)多道高速纵向拉伸:然后在一定温度下进行多道高速纵向拉伸,再在超过PTFE熔点的温度下进行热处理,之后低温冷却定型;
(7)高速横向拉伸:接着在一定温度下进行高速横向拉伸使PTFE膨化,拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,再用超高温热气流炉子进行定型,然后快速冷却。
步骤(6)的多道高速纵向拉伸温度为100℃,纵向拉伸的次数为5次,纵向拉伸倍数为120倍,每次纵向拉伸速度为30~50M/min,每次纵向拉伸后热处理温度为327℃,所述低温冷却定型温度为0℃。
作为优选,所述的多道纵向拉伸中第1次为1倍纵向拉伸,第2次为2倍纵向拉伸,第3次为3倍纵向拉伸,第4次为4倍纵向拉伸,第5次为5倍纵向拉伸。
再优选,所述步骤(7)的高速横向拉伸的拉伸温度为100℃,拉伸速度为30M/min。
最后,所述步骤(7)热气流炉超高温定型温度为327℃。低温冷却定型的温度为0℃
制备的e-PTFE膜的性能如表2所示:
表2:
Figure DEST_PATH_GDA0001308868080000061
本发明的测试方法如表3:
表3
Figure DEST_PATH_GDA0001308868080000062
Figure DEST_PATH_GDA0001308868080000071
实施例3
材料:采用杜邦的601A的PTFE细粉。
加工步骤:
混料-推压-挤压-压延-去除润滑剂-纵向拉伸-热处理-冷却定型-横向拉伸-热定型-冷却定型。
具体为:
(1)混料:取适量聚四氟乙烯(PTFE)粉料,按25%的比例添加润滑剂Isopar,充分搅拌均匀,过筛后倒入保温桶中,在80℃保温48小时。
(2)推压:在10Mpa的压力下,把保温的PTFE细粉推压做成圆柱状的胚料。
(3)挤压:把圆柱状的胚料在80℃下用鱼尾型口模把圆柱状的胚料挤出成宽180mm,厚2.0mm的连续带状薄膜。
(4)压延:薄膜宽度不变,纵向进行延辗到厚度为0.2mm的PTFE带状薄膜。
(5)去除润滑剂:PTFE带状薄膜在250℃温度下干燥,去除润滑剂。
(6)多道高速纵向拉伸:然后在一定温度下进行多道高速纵向拉伸,再在超过PTFE熔点的温度下进行热处理,之后低温冷却定型;
(7)高速横向拉伸:接着在一定温度下进行高速横向拉伸使PTFE膨化,拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,再用超高温热气流炉子进行定型,然后快速冷却。
所述步骤(6)的多道高速纵向拉伸温度为300℃,纵向拉伸的次数为5次,纵向拉伸倍数为1倍,每次纵向拉伸速度为30~50M/min,每次纵向拉伸后热处理温度为327~800℃,所述低温冷却定型温度为0-10℃。
作为优选,所述的多道纵向拉伸中第1次为1倍纵向拉伸,第2次为1倍纵向拉伸,第3次为1倍纵向拉伸,第4次为1倍纵向拉伸,第5次为1倍纵向拉伸。
再优选,所述步骤(7)的高速横向拉伸的拉伸温度为300℃,拉伸速度为50M/min。
最后,所述步骤(7)热气流炉超高温定型温度为800℃。低温冷却定型的温度为10℃
制备的e-PTFE膜的形貌结构如图1所示,制备的e-PTFE膜的性能如表4所示:
表4:
Figure DEST_PATH_GDA0001308868080000072
Figure DEST_PATH_GDA0001308868080000081
实施例4
材料:采用杜邦的601A的PTFE细粉。
加工步骤:
混料-推压-挤压-压延-去除润滑剂-纵向拉伸-热处理-冷却定型-横向拉伸-热定型-冷却定型。
具体为:
(1)混料:取适量聚四氟乙烯(PTFE)粉料,按25%的比例添加润滑剂Isopar,充分搅拌均匀,过筛后倒入保温桶中,在40-80℃保温24小时。
(2)推压:在8Mpa的压力下,把保温的PTFE细粉推压做成圆柱状的胚料。
(3)挤压:把圆柱状的胚料在40℃下用鱼尾型口模把圆柱状的胚料挤出成宽180mm,厚2.0mm的连续带状薄膜。
(4)压延:薄膜宽度不变,纵向进行延辗到厚度为0.2mm的PTFE带状薄膜。
(5)去除润滑剂:PTFE带状薄膜在200-250℃温度下干燥,去除润滑剂。
(6)多道高速纵向拉伸:然后在一定温度下进行多道高速纵向拉伸,再在超过PTFE熔点的温度下进行热处理,之后低温冷却定型;
(7)高速横向拉伸:接着在一定温度下进行高速横向拉伸使PTFE膨化,拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,再用超高温热气流炉子进行定型,然后快速冷却。
所述步骤(6)的多道高速纵向拉伸温度为200℃,纵向拉伸的次数为5次,纵向拉伸倍数为384倍,每次纵向拉伸速度为30~50M/min,每次纵向拉伸后热处理温度为327~800℃,所述低温冷却定型温度为0-10℃。
所述的多道纵向拉伸中第1次为1倍纵向拉伸,第2次为2倍纵向拉伸,第3次为4倍纵向拉伸,第4次为6倍纵向拉伸,第5次为8倍纵向拉伸。
再优选,所述步骤(7)的高速横向拉伸的拉伸温度为300℃,拉伸速度为40M/min。
最后,所述步骤(7)热气流炉超高温定型温度为800℃。低温冷却定型的温度为2℃
制备的e-PTFE膜的形貌结构如图1所示,制备的e-PTFE膜的性能如表5所示:
表5:
Figure DEST_PATH_GDA0001308868080000091
下面用表格对本发明的与目前常规生产工艺进行具体比较:
一、表6为本发明的制备工艺与与目前常规生产工艺进行比较:
表6
生产步骤和条件比对表
Figure DEST_PATH_GDA0001308868080000092
可以看出,本发明采用多道纵向拉伸、热处理及冷却的工艺,在高于PTFE熔点,有规则的结晶排列逐渐消失;在开始冷却时,有规则的分子排列又开始生成,即结晶型结构的形成。
二、表7是本发明制备的增强膜和常规生产方法制备的e-PTFE微孔滤膜增强的燃料电池膜的对比数据:
表7
Figure DEST_PATH_GDA0001308868080000101
可以看到,本发明制备的增强膜不仅可使电池隔离膜的尺寸稳定性更好,机械性能更高,而且可显著降低电池内阻而提高电池性能,并降低膜材料用量,因而降低成本。

Claims (10)

1.一种用于电池隔离的增强膜的制备方法,其特征在于包括以下步骤:
(1)混料:取聚四氟乙烯PTFE粉料,按23~27%的比例添加润滑剂Isopar,搅拌均匀,过筛后倒入保温桶中,在40-80℃保温24-48小时;
(2)推压:在2-10Mpa的压力下,把保温的PTFE细粉推压做成圆柱状的胚料;
(3)挤压:把圆柱状的胚料在40-80℃下用鱼尾型口模把圆柱状的胚料挤出成宽170~190mm,厚1.8~2.2mm的连续带状薄膜;
(4)压延:薄膜宽度不变,纵向进行延辗到厚度为0.18~0.22mm的PTFE带状薄膜;
(5)去除润滑剂:PTFE带状薄膜在200-250℃温度下干燥,去除润滑剂;
(6)多道高速纵向拉伸:然后在一定温度下进行多道高速纵向拉伸,再在超过PTFE熔点的温度下进行热处理,之后低温冷却定型;
(7)高速横向拉伸:接着在一定温度下进行高速横向拉伸使PTFE膨化,拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,再用超高温热气流炉子进行定型,然后快速冷却。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(6)的多道高速纵向拉伸温度为100~300℃,纵向拉伸的次数为5次,纵向拉伸倍数为1~640倍,每次纵向拉伸速度为30~50M/min,每次纵向拉伸后热处理温度为327~800℃,所述低温冷却定型温度为0-10℃。
3.根据权利要求1所述的制备方法,其特征在于:所述的多道高速纵向拉伸中第1次为1倍纵向拉伸,第2次为2倍纵向拉伸,第3次为4倍纵向拉伸,第4次为8倍纵向拉伸,第5次为10倍纵向拉伸。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(7)的高速横向拉伸的拉伸温度为100~300℃,拉伸速度为30~50M/min。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(7)热气流炉子超高温定型温度为327~800℃,低温冷却定型的温度为0~10℃。
6.根据权利要求1所述的制备方法,其特征在于:所述混料按25%的比例添加润滑剂Isopar。
7.根据权利要求1所述的制备方法,其特征在于:所述挤压把圆柱状的胚料挤出成宽180mm,厚2.0mm的连续带状薄膜。
8.根据权利要求1所述的制备方法,其特征在于:所述压延延辗到厚度为0.2mm的PTFE带状薄膜。
9.根据权利要求1所述的制备方法,其特征在于:所述步骤(7)中拉伸后,迅速加热超过PTFE熔点的温度保持一定时间,为2~6s。
10.一种权利要求1至9中任一权利要求所述的制备方法制备的用于电池隔离的增强膜,其特征在于;采用双向拉伸后形成的膨体聚四氟乙烯微孔滤膜,纵向拉伸强度达到25-30Mpa,横向拉伸强度达到20-25Mp,纵向弹性模量达到70-80Mpa,横向拉伸强度达到50-60Mpa,纵向和横向最大力达到3-4N。
CN201710306384.3A 2017-05-04 2017-05-04 一种用于电池隔离的增强膜及其制备方法 Active CN108807786B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710306384.3A CN108807786B (zh) 2017-05-04 2017-05-04 一种用于电池隔离的增强膜及其制备方法
EP17908245.8A EP3640014B1 (en) 2017-05-04 2017-07-10 Reinforced membrane for separation in battery and preparation method therefor
PCT/CN2017/000425 WO2018201264A1 (zh) 2017-05-04 2017-07-10 一种用于电池隔离的增强膜及其制备方法
KR1020197035747A KR102304754B1 (ko) 2017-05-04 2017-07-10 배터리 분리용 강화막 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710306384.3A CN108807786B (zh) 2017-05-04 2017-05-04 一种用于电池隔离的增强膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108807786A CN108807786A (zh) 2018-11-13
CN108807786B true CN108807786B (zh) 2020-05-15

Family

ID=64015723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710306384.3A Active CN108807786B (zh) 2017-05-04 2017-05-04 一种用于电池隔离的增强膜及其制备方法

Country Status (4)

Country Link
EP (1) EP3640014B1 (zh)
KR (1) KR102304754B1 (zh)
CN (1) CN108807786B (zh)
WO (1) WO2018201264A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111716754A (zh) * 2019-03-20 2020-09-29 常州福升新材料科技有限公司 一种ptfe绕包膜及其生产方法
JP7294882B2 (ja) * 2019-05-21 2023-06-20 芝浦機械株式会社 再生炭素繊維を含有する成形体および成形体の製造方法
CN110690388A (zh) * 2019-09-18 2020-01-14 中国科学院金属研究所 一种耐热收缩的有机/无机复合型锂电隔膜及其制备方法
CN115176052A (zh) * 2020-02-25 2022-10-11 富士胶片株式会社 无纺布、无纺布制造方法
CN112717729B (zh) * 2020-12-28 2023-03-21 张春燕 一种ptfe多孔膜及其制备方法与用途
CN112787038A (zh) * 2021-02-20 2021-05-11 天津谦同新能源科技有限公司 一种锂离子电池纺丝隔膜的后处理方法及纺丝隔膜
CN115027081B (zh) * 2021-03-03 2024-09-03 哈尔滨纳新密封产品制造有限公司 一种聚四氟乙烯微孔膜及其制备方法与应用
CN113381046B (zh) * 2021-03-29 2022-11-18 浙江汉丞新能源有限公司 增强型含氟复合膜或膜电极的制备方法
CN113771324B (zh) * 2021-09-07 2022-08-16 南京贝迪新材料科技股份有限公司 一种双轴延伸lcp膜的制备方法
CN115020909B (zh) * 2022-06-29 2024-04-05 江苏恩捷新材料科技有限公司 一种锂离子电池用隔膜及其制备方法
CN116198137A (zh) * 2022-12-30 2023-06-02 国家电投集团氢能科技发展有限公司 一种多孔聚四氟乙烯膜及其制备方法和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110392A (en) * 1976-12-17 1978-08-29 W. L. Gore & Associates, Inc. Production of porous sintered PTFE products
JP3273735B2 (ja) * 1996-05-17 2002-04-15 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜およびその製造方法、シート状ポリテトラフルオロエチレン成形体、並びに、エアーフィルター用濾材
WO2007010878A1 (ja) * 2005-07-15 2007-01-25 Tonen Chemical Corporation ポリオレフィン多層微多孔膜及び電池用セパレータ
JP4963185B2 (ja) * 2006-03-28 2012-06-27 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜の製造方法とフィルター濾材ならびにフィルターユニット
CN101780718B (zh) * 2009-11-18 2012-10-17 浙江格尔泰斯环保特材科技有限公司 纺织面料用聚四氟乙烯微孔薄膜的制造方法
CN101958409A (zh) 2010-09-20 2011-01-26 惠州市赛能电池有限公司 一种锂电池隔离膜和使用该隔离膜的锂电池
CN101967694B (zh) * 2010-09-21 2012-04-11 浙江格尔泰斯环保特材科技有限公司 聚四氟乙烯纤维的制造方法
CN102030955B (zh) * 2010-11-25 2012-07-25 辽宁省金氟龙环保新材料有限公司 聚四氟乙烯微孔膜的制造方法
CN102208588B (zh) 2010-12-30 2013-05-08 上海恩捷新材料科技股份有限公司 电池隔离膜
CN102961976B (zh) * 2012-12-14 2015-09-23 国家海洋局天津海水淡化与综合利用研究所 聚四氟乙烯中空纤维多孔膜及其制备方法
CN104415672A (zh) * 2013-08-21 2015-03-18 黄天宇 一种高过滤精度聚四氟乙烯微孔膜的制备方法
EP3075768A4 (en) * 2013-11-29 2017-06-21 Daikin Industries, Ltd. Biaxially-oriented porous film
JP5862751B2 (ja) * 2013-11-29 2016-02-16 ダイキン工業株式会社 多孔質体、高分子電解質膜、フィルター用濾材及びフィルターユニット
JP5823601B2 (ja) * 2013-11-29 2015-11-25 旭化成イーマテリアルズ株式会社 高分子電解質膜
CN103937133A (zh) * 2014-04-02 2014-07-23 湖州森诺氟材料科技有限公司 一种用于电子行业的单项黑色膨体聚四氟乙烯膜及其制备方法
CN104043347B (zh) * 2014-04-30 2016-01-20 桐乡市健民过滤材料有限公司 低阻力耐磨损聚四氟乙烯微孔膜及其制备方法
CN106239925A (zh) * 2016-07-30 2016-12-21 徐雪宜 一种铁氟龙双向拉伸膜的制备工艺

Also Published As

Publication number Publication date
EP3640014B1 (en) 2023-06-07
EP3640014A1 (en) 2020-04-22
EP3640014A4 (en) 2021-01-13
KR20200014309A (ko) 2020-02-10
WO2018201264A1 (zh) 2018-11-08
KR102304754B1 (ko) 2021-09-23
CN108807786A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108807786B (zh) 一种用于电池隔离的增强膜及其制备方法
JP7098931B2 (ja) ポリオレフィン微多孔膜、リチウムイオン二次電池及びポリオレフィン微多孔膜製造方法
KR20200047451A (ko) 복합 다공성막 및 이의 제조 방법과 용도
CN102956859B (zh) 一种多层聚烯烃复合微孔膜的制备方法
JP7047382B2 (ja) ポリオレフィン微多孔膜、リチウムイオン二次電池及びポリオレフィン微多孔膜製造方法
CN109608794B (zh) Ptfe微孔膜及其制备方法以及复合质子交换膜
CN103394296B (zh) 一种用于平板式mbr的聚四氟乙烯超微水过滤膜及其制备方法
WO2022127224A1 (zh) 一种聚烯烃微多孔膜及其生产系统、电池隔膜、电化学装置
KR20130114187A (ko) Pem 적용을 위한 양자 전도성 멤브레인을 보강하기 위한 다공성 나노-섬유 매트
CN111086181A (zh) 一种锂电池隔膜的制备方法
KR102655259B1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
CN101777659A (zh) 一种燃料电池用全氟磺酸复合质子交换膜
CN108525529B (zh) 高强度聚乙烯微孔膜、其制备方法及其应用
CN111875825A (zh) 高质子传导的增强型全氟磺酸复合离子交换膜及其制备方法
CN114142160B (zh) 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法
CN110120532B (zh) 一种复合膜的制备方法
CN111001299B (zh) 孔径不对称隔膜及制备方法、在海水淡化中的应用
CN111921567A (zh) 增强型全氟磺酸离子交换膜及其制备方法
CN116198137A (zh) 一种多孔聚四氟乙烯膜及其制备方法和应用
CN110711503A (zh) 一种离子选择性膜及其制备方法
CN106953054B (zh) 一种长碳链聚酰胺多孔膜及其制备方法与用途
CN114917766A (zh) 一种ptfe复合膜的制备方法
CN115295808A (zh) 一种复合双极板材料及其制备方法和应用
CN103386262A (zh) 一种用于海水淡化的聚四氟乙烯微孔膜及其制备方法
KR101582024B1 (ko) 곁가지에 술폰화기를 지닌 폴리올레핀케톤, 이를 이용한 수처리 분리막 및 연료전지용 고분자 전해질막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant