CN1084986C - 带有失真补偿的放大器及使用此放大器的无线通信基站 - Google Patents

带有失真补偿的放大器及使用此放大器的无线通信基站 Download PDF

Info

Publication number
CN1084986C
CN1084986C CN96109990.9A CN96109990A CN1084986C CN 1084986 C CN1084986 C CN 1084986C CN 96109990 A CN96109990 A CN 96109990A CN 1084986 C CN1084986 C CN 1084986C
Authority
CN
China
Prior art keywords
amplifier
circuit
signal
output
distortion compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96109990.9A
Other languages
English (en)
Other versions
CN1154023A (zh
Inventor
高野健
大石泰之
福田英辅
古川秀人
长谷和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP21087095A external-priority patent/JP3537228B2/ja
Priority claimed from JP22416995A external-priority patent/JP3560398B2/ja
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN1154023A publication Critical patent/CN1154023A/zh
Application granted granted Critical
Publication of CN1084986C publication Critical patent/CN1084986C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • H03D7/166Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature using two or more quadrature frequency translation stages
    • H03D7/168Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature using two or more quadrature frequency translation stages using a feedback loop containing mixers or demodulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

一种带失真补偿的放大器被用作为放大线性调制信号的一个功率放大器或放大线性调制信号的一个低噪声放大器。该带失真补偿的放大器包括一个用于放大输入信号的放大器电路;一个用于得出在送到放大器电路的输入信号与从放大器电路的输出信号之间的误差信号的误差检测电路;一个产生补偿系数的系数发生电路;一个第一输出电路;以及一个乘法电路。

Description

带有失真补偿的放大器及使用此放大器的无线通信基站
本发明涉及一种带有失真补偿的放大器,更具体地,涉及一种被用作为用于放大线性调制信号的功率放大器或用于接收和放大线性调制信号的低噪声放大器的放大器。再者,本发明涉及使用实行失真补偿的该放大器的一种无线通信用基站的一种结构。
近来,有要求使用具有高度线性特性的放大器作为放大线性调制信号的功率放大器或作为在接收线性调制信号的接收机中所使用的低噪声放大器,以便抑制由发射信号的频谱特性或失真所引起的传输特性的变坏。
在许多应用中,也要求放大器具有高功率效率。然而,通常可以看到,一个放大器的线性度和效率是互相矛盾的。为了满足这两个特性,已经提出了各种各样的失真补偿方法。
预失真器作为一种失真补偿方法是大家熟知的。预失真器的原理是藉助于先把和放大器失真特性相反的特性加到放大器输入信号的方法从放大器输出中获得已去掉失真的所希望的信号。
图1显示了传统的预失真器的结构方框图。在图1中,参考数字1是功率放大器,它放大来自正交调制器2的输出信号。从失真补偿表8送来的补偿值ΔI0和ΔQ0在加法器6中被分别加到输入基带信号I和Q上并输入到正交调制器2。正交调制信号在功率放大器1中被放大,并且被加上由放大器特性所产生的失真。然而,失真可藉补偿值ΔI0和ΔQ0被去掉。
放大器1的输出信号的一部分在正交解调器3中被解调以得到基带信号I′和Q′。然后,移相器5调整由本地振荡器4给出的用于解调的本地振荡信号的相位,以便使基带信号I′和Q′和输入信号I与Q的相位相一致。
比较器7把所得到的信号I′与Q′和输入基带信号I与Q相比较,然后得到ΔI1和ΔQ1,按照那些信号的差值更新失真补偿表8的数值,并把ΔI1和ΔQ1存储在失真补偿表8中。
在上述的传统方法中,放大器1的失真是作为正交坐标组的每个分量的误差而得到的。因此预失真是藉助于把和所得到的失真的特性相反的特性加到每个轴的分量的方法来实行的。
然而,在传统方法中有如下的几个问题:
(a)要求失真补偿表8在以输入信号I与Q表示的二维平面上的每个点都具有补偿值,因为放大器1的失真中包括幅度和相位两种失真。因此,在输入信号I与Q的量化比特数是n比特的情况下,就需要22n×n比特的失真补偿表8的存储容量。
(b)同时,在实行以极坐标组的失真补偿的方法中,补偿表8以一维形式构成。然而,当连接到正交调制器2和正交解调器3时,就需要用于从极坐标组变换到直角坐标组或从直角坐标组变换到极坐标组的变换运算。
(c)基带输入信号I与Q应当具有和解调信号I′与Q′相同的相位。因此,就要求提供用于调整正交检波器,也就是正交解调器3的本地相位的移相器5。再者,放大器1的相位旋转量随工作温度和工作时期而变化。这样,就要求有能保持其条件为最佳的功能,以便使本地相位适应于运行情况。
(d)再者,放大器或滤波器中延时的产生导致在输入信号I与Q和解调信号I′与Q′之间的时间滞后。因此,从失真补偿表8中加到输入信号上的误差信号对于输入信号并不是最佳的,从而导致线性化器的特性变坏。
同时,在用于移动通信的无线通信器件中,多个载波信号共同在射频频带上被功率放大,以实行信号传输和多路信号传输。因此,希望有一个具有良好线性度的功率放大器作为上述的功率放大器,以便抑制传输特性的变坏。
具有较好线性度的功率放大器,例如前向反馈型放大器,有诸如大尺寸,大功耗和器件高成本等的弱点。然而,如果功率放大器的失真补偿可藉数字信号处理实现,那么就可能改进具有高功率效率且低成本的小型的器件。
在这种情况下,A/D和D/A变换器是必不可少的。然而,很难给出具有足够运算速度和所想要的精度(比特数)的A/D和D/A变换器。当前,最大的输出和输入频率是几十MHz,而如果通信器件使用到大大超过10MHz的频段,就必须使用变频器。
因此,本发明的一个目的是提供一种能解决上述的现有技术中的问题的失真补偿放大器。
本发明的另一个目的是提供减少了失真补偿表容量的失真补偿放大器。
本发明的又一个目的是提供不用进行从极坐标组变换到直角坐标组或从直角坐标组变换到极坐标组的运算而又具有失真补偿功能的放大器。
本发明的再一个目的是提供具有较少的随时间推移其特性变化的失真补偿放大器。
本发明的还有一个目的是提供用于无线通信的基站,它藉使用一种镜频干扰抑制型变频器作为在把上述的失真补偿放大器用作为功率放大器时所需的上变频器或下变频器而使压缩无用的边带信号变得容易。
本发明的再一个目的是提供具有失真补偿放大器且处理功率增加3dB的用于无线通信的基站,更具体地说,适合于移动通信使用的用于无线通信的小型基站。
在镜频干扰抑制型变频器中需要有90°移相器。然而,宽频段使制造带无源电路的变频器变得困难。因此,本发明的又一个目的是提供能藉助于使用数字信号电路的方法使实现无源电路变得容易的用于无线通信的基站。
根据本发明的一种带失真补偿的放大器,其特征在于,包括:
一个放大器电路,用于放大输入信号;
一个误差检测电路,用于得出在进到放大器电路的输入信号和来自放大器电路的输出信号之间的误差信号;
一个系数发生电路,用于按照自适应型算法,根据误差信号产生补偿系数以补偿放大器电路特性的失真分量;
一个第一输出电路,用于输出相应于输入信号所产生的补偿系数;以及一个乘法电路,用于把所产生的补偿系数乘到输入信号上并把相乘后的系数输入到放大器电路。
藉助于按照附图阐述实施例的说明可使本发明的其它目的变得很清楚。
图1显示了传统的带有失真补偿的放大器。
图2显示了按照本发明的带有失真补偿的放大器的原理。
图3是按照本发明的带有失真补偿的放大器的第一实施例的方框图。
图4是按照本发明的带有失真补偿的放大器的第二实施例的方框图。
图5是按照本发明的带有失真补偿的放大器的第三实施例的方框图。
图6是按照本发明的带有失真补偿的放大器的第四实施例的方框图。
图7是图6所示的第四实施例的工作说明图。
图8是按照本发明的带有失真补偿的放大器的第五实施例的方框图。
图9是按照本发明的带有失真补偿的放大器的第六实施例的方框图。
图10A和10B是按照本发明的带有失真补偿的放大器的第七实施例的方框图。
图11是按照本发明的带有失真补偿的放大器的第八实施例的方框图。
图12是图11所示的第八实施例的工作说明图。
图13是按照本发明的带有失真补偿的放大器的第九实施例的方框图。
图14是按照本发明的带有失真补偿的放大器的第十实施例的方框图。
图15是用于说明使用带失真补偿的放大器的无线通信基站的位置的图。
图16是用于说明无线通信用基站的基本结构概貌的图。
图17是按照本发明的无线通信用基站的第一实施例的方框图。
图18A和18B是使用数字信号处理的90°移相器的结构方框图。
图19A和19B显示了镜频干扰抑制型上变频器的结构。
图20A和20B显示了双平衡型调制器的结构实例。
图21是按照本发明的无线通信用基站的第二实施例的方框图。
图22是按照本发明的无线通信用基站的第三实施例的方框图。
图23是按照本发明的无线通信用基站的第四实施例的方框图。
图24是按照本发明的无线通信用基站的第五实施例的方框图。
图25是间断工作的结构实例的说明图。
图26A和26B显示了移相器的结构实例。
图27A到27E是图25所示定时器的时序图。
图28是按照本发明的无线通信用基站的第六实施例的方框图。
图29是按照本发明的无线通信用基站的第七实施例的方框图。
图30是按照本发明的无线通信用基站的第八实施例的方框图。
图31是按照本发明的无线通信用基站的第九实施例的方框图。
图32是按照本发明的无线通信用基站的第十实施例的方框图。
图33是相应于图32的详细结构方框图。
图34A到34F是图33所示定时器的时序图。
图35是按照本发明的无线通信用基站的第十一实施例的方框图。
图36是用于说明半导体器件的输入信号功率和电流特性的分布的图。
图37是显示D/A变换器精度与放大器失真之间关系的图。
图38是按照本发明的无线通信用基站的第十二实施例的方框图。
图39是按照本发明的无线通信用基站的第十三实施例的方框图。
图40A到40C显示了限幅电平检波器和平滑电路的结构实例。
图41是限幅电平检波的说明图。
图42是用于说明限幅补偿的其它结构实例的图。
图43是按照本发明的无线通信用基站的第十四实施例的方框图。
图44A到44C是说明前同步信号实例的图。
图45是按照本发明的无线通信用基站的第十五实施例的方框图。
图46是按照本发明的无线通信用基站的第十六实施例的方框图。
图47是按照本发明的无线通信用基站的第十七实施例的方框图。
此后将参照附图说明本发明的实施例。在以下的描述中,同样的参考数字被用来表示和指明相应的或同样的部件。为了更好地了解本发明,参照图2,首先说明按照本发明的带失真补偿的放大器的原理图。
在图2中,参考数字1、2、3和4分别表示功率放大器,正交调制器,正交解调器和本地振荡器,类似于图1所示的那些部件。再者,假定图2中所有基带信号都是复数信号。乘法器60把基带输入信号X(t)和由使用自适应型算法的估算补偿系数发生器50输出的失真补偿系数相乘。
这样,使用一种自适应型算法的估算补偿系数发生器50输出一个相应于基带输入信号幅度的失真补偿系数,这是按照本发明的带失真补偿的放大器的特点。该失真补偿系数是放大器1的幅度和相位失真的函数。因此,使用自适应型算法的估算补偿系数发生器50具有相应于输入信号的幅度和功率或相应于幅度和功率的函数的失真补偿系数。
放大器1在一定幅度内的幅度和相位失真可被表示为一个复数值。所以,乘法器60把相应于每个幅度的复系数和输入基带信号X(t)相乘作为失真补偿系数,以便进行预失真。
再者,在本发明中自适应算法被用来估算失真补偿系数。自适应算法的例子将在以后说明。需要时也可能以与时间微商无关的方式更新使用自适应型算法的估算补偿系数发生器50的内容以及进行输入信号的失真补偿系数的乘法运算。
在图2中,发生器9按照任何参量通过对应的自适应算法产生一个估算补偿系数发生器50的访问信号,也就是使输入信号的功率和幅度或是它们的函数和输入到乘法器60的失真补偿系数相一致。
按照上述原理,本发明的特征是使用一种藉利用自适应算法来估算放大器1的非线性失真的、和藉数字处理来对估算的非线性失真进行预失真的失真补偿方法。由于该失真是输入幅度的非线性函数,对于量化输入信号的函数的每个值该失真是独立估算的。
这样,能使一个输出信号和一个参考信号(也就是输入信号)之间的误差最小化的一个补偿值由自适应算法来获得。更具体地,在本发明中,估算补偿系数发生器50可以具有一维失真补偿表,这是因为使用自适应型算法的估算补偿系数发生器50中所累计的值相应于输入幅度和输入功率。所以,估算补偿系数发生器50的存储器容量被减小到2n×n比特。
存储器容量值是传统方法时的1/2n。失真补偿表的容量意味着放大器1的非线性失真特性接近于折线图形的哪种程度。如果失真估算的分辨率可以小于调制信号的量化的比特数,那么还有可能减小估算补偿系数发生器50的存储器容量。
如图2所示,和图1进行比较,从以上所述的,把极坐标变换到直角坐标或把直角坐标变换到极坐标就变得不需要了。
因而,调整解调器的本地相位也变得不需要了。由于和放大器1的失真相反的特性藉乘上复数失真补偿系数的方法被加进去,按照本发明的放大器1具有调整相位旋转从0到2π的功能。
再者,由于失真补偿系数由自适应算法估算,就总有可能给同适当的预失真对付解调相位在时间上的变化,而不用调整解调相位。
如果估算补偿系数发生器50的更新根据对输入信号的乘法独立地被执行,那么就有可能总是给出适当的预失真而对一个电路环路没有影响。
可以有各种不同的熟知的自适应算法。例如,算法之一被阐述于S.Haykin所著的“自适应滤波器入门”书中,Gendai-Kogaku-sha出版,1987年9月10日。
然后,本发明的一个实施例在使用最小均方(LMS)算法和指数加权串行递归平方(RLS)算法时被阐述如下:
例如,用一条光滑曲线来接近一组输入信号,可被看作最小均方(LMS)算法,它把在时间t1,t2,…tn时输入信号定义为u(1),u(2),…u(n)以及X(ti)=u(i),i=1,2,…n。当这组值近似时,使得输入信号u(i)和X(ti)之间差值的平方成为最小,就是LMS概要。
(a)藉使用LMS算法完成的实例:
图3是按照本发明的第一实施例的方框图。图1所示的调制器和解调器在此处未示出,以便简化对图3的或以后的实施例的说明。在图3中,产生由自适应算法估算的失真补偿系数的电路,也就是估算补偿系数发生器50,包括用于存储失真补偿系数的表500,加法器501,乘法器502,503,504以及复数变换器505。
对图3中要被补偿的失真量的估算将藉如下的方程(1)到(6)来进行。hn(p)=hn-1(p)+μe(t)u*(t)           …(1)e(t)=x(t)-y(t)                         …(2)
Figure C9610999000122
y(t)=hn-1(p)x(t)f(p)                  …(5)p=|x(t)|2                             …(6)
其中X(t)是输入基带信号,f(p)是放大器1的失真函数,h(p)是要被更新的估算的失真补偿系数,以及μ是步进尺寸参量。另外,在上述的方程(1)到(6),x,y,f,h,u和e是复数,及*表示共轭复数。再者,u(t)被近似为
Figure C9610999000123
,这意味着放大器1的幅度失真并不太大。
在上述的条件下,将说明式(1)到(6)内容的意义。hn(p)是要被更新的估算的失真补偿系数,它是加到用于存储失真补偿系数的表500中的输入。复数变换器505,也就是共轭复数产生器,从放大器1的输出y(t)得出y*(t)。因此,如果在某一点之前的估算的失真补偿系数是hn-1(p),那么乘法器504的输出变成为y*(t)hn-1(p)。
乘法器503把乘法器504的输出和减法器70的输出e(t)相乘,因而输出变成y*(t)hn-1(p)e(t)。再者,乘法器502把步进尺寸参量μ乘到y*(t)hn-1(p)e(t)的结果上。
因此,要被更新的估算失真补偿系数hn(p)变成以下结果:
hn(p)=μy*(t)hn-1(p)e(t)+hn-1(p)
如果y*(t)hn-1(p)=U*(t),它就被表示为方程(1)。
e(t)是减法器70的输出,如式(2)所示,且它是输入和输出之间的误差。而且,方程(3)所示的u(t),其中放大器1的幅度失真不太大,可藉假设为方程(4)而得到近似。因此,U*(t)的共轭复数U(t)可被表示为式(3)。式(6)意思是电路9得出输入信号的功率大小。当电路9被用作为用来得出输入信号幅度的电路时,方程(6)由|x(t)|表示。再者,当方程(6)被用作为功率或幅度的函数时,方程分别被表示为g(|x(t)|2)或g(|x(t)|)。
当写入到用于存储失真补偿系数的表500或从表500读出时,电路9所得到的值变成为地址。
当分别进行更新以写入到表500和把估算的失真补偿系数与输入信号相乘时,就有可能正常地实行预失真而没有群时延的影响。
(b)藉使用限制的LMS算法完成的实例:
在图3中,为更新hn(p)在式(1)的算法中需要乘复数两次(在乘法器503和504中进行乘法)和乘实数一次(在乘法器502中和μ相乘)。图4显示了为减少乘法次数的本发明的第二实施例的方框图。
更具体地,图4显示了上述的图3的扩展例,其中失真补偿系数是按照利用解调后的复数信号的正交信息的自适应算法来估算的。图4所示的结构,除了图3所示实施例的结构外,还有作为相位旋转单元的正交检波器506和507与乘法器503和504。
在该结构中,上述的式(1)由以下的式(7)替代:hn(p)=hn-1(p)+μe(t)det[hn-1(p)]det[y(t)*]    …(7) det [ R + jX ] = 1 2 { sgn ( R ) + jsgn ( X ) } sgn ( x ) = | - 1 ( x < 0 ) 1 ( x &GreaterEqual; 0 )
为实现式(7),在图4所示的电路中,当μ=1/2n时,乘以μ的乘法应当用比特移位的方法来实行。因此,式(7)左端的第二个数变成对e(t)进行旋转0,±π/2,π的旋转运算。乘法器503和504由硬件电路构成,它包括一个用于变换正/负码的变换器和一个选择器。
再者,由用于以0为中心比较每个虚部和实部的比较单元所组成的正交检测器得出上述的式(7)所示的Sgn(R)和Sgn(X)。当输入的复数信号大于零,就输出1。当输入的复数信号小于零,就输出-1。因此,解调后的复数信号可由4个比特表示,它表明解调后的复数信号位于四个象限中的哪个象限。
(c)藉使用指数加权递归最小平方算法完成的实例。
图5显示使用指数加权递归最小平方作为自适应算法的实例的结构方框图。
用于藉使用相应于上述的实施例的自适应算法而得到估算的失真补偿系数的运算如式(8)到(11)所示。h(i)=h(i-1)+e(i)K*(i)               …(8) K ( i ) = T ( i ) v + u * ( i ) T ( i ) &CenterDot; &CenterDot; &CenterDot; ( 9 ) P(i)=λ-1P(i-1)-K(i)T*(i)          …(10)T(i)=λ-1P(i-1)u(i)                 …(11)e(i)=x(i)-y(i)
式(8)所示的估算的失真补偿系数h(i)(h(i)在存储失真补偿系数的表500中被更新)是藉助于把由减法器70所得到的误差信号e(i)和由共轭复数变换器80所得到的K的共轭值K*相乘及在加法器501中把此乘积和在某个点之前的失真补偿系数h(i-1)相加的方法算出来的。
K是按照上述的方程(9)所得出的所谓的卡尔曼(Kalman)矢量。在式(9)的分母中,v代表估算误差变量e(i),它是个小的正整数,例如,1.u*(i)是共轭复数变换器82的输出。u(i)由共轭复数变换器81和乘法器508得出,它是类似于上述的式(3)的所表示的近似值。
因此,乘法器509得出u*(i)和T(i)的乘积。加法器510把v加到此乘积上,它就成为式(9)的分母。
同时,式(9)的分子T(i)有式(11)所示的关系式。然后,在式(11)中所表示的P(i-1)具有式(10)所示的关系式。式(10)中的P(i)在本算法中是所谓的相关矩阵。
T(i)代表乘法器511的输出,它由u(i)和λ-1P(i-1)的乘积所表示,而λ-1P(i-1)是乘法器512的输出。再者,P(i)是在减法器514中把乘法器512的输出,即P(i-1)和λ的倒数λ-1的乘积,减去乘法器513的输出,即减去由共轭复数变换器83所得出的u*(i)和Kalman系数K的乘积,所得出的结果。
上述的λ是一个遗忘因子,它的范围是0<λ≤1。当λ是1,P(i)值被累加到λ。当λ值接近于0时,通过的值被清除,也就是丢失。当放大器的特性随时间或温度改变时,或所有的通过值被累加,这就导致了延时收敛的结果。因此,通常选择接近于0.9的适当值为最佳值。
回到图5,除法器使用加法器的输出为分母和T(i)为分子进行运算。根据运算,可以得出式(9)的Kalman矢量K。
图6是本发明的第四实施例的方框图。更具体地,在本实施例中,用于存储失真补偿系数的表500的容量可被减少。前提是表500容量的减少适用于一种使用图3和图4所示的LMS算法的结构,然而它并不是限制性的,也有可能适用于使用图5所示的RLS算法的实施例。
图7是图6所示实施例运行的说明图。在图6的实施例中,估算的失真补偿系数是按照根据实际的估算失真补偿系数所进行的得出附加估算值的运算而得出和进行插值的。在图6中,对该运算提供一个插值运算部分530。
现在注意到,当它是pn时,根据该算法估算的失真补偿系数是hn,它早已由存储失真补偿系数的表500说明,当它是pn+1时,系数是hn+1。此时,pn和pn+1之间的关系以一阶函数h(p)的值近似插值。
然后,所插入的值可以在插值运算部分530中按照式(12)来得出。
Figure C9610999000151
如果对于p=pn时它是hn,那么对于p在pn和pn+1之间(pn<p<pn+1)时,插值可在式(12)中得出。
所得出的插值由开关531加以切换,并被连接到图6所示的结构中的乘法器60。藉助于这一结构,可以减少用于存储失真补偿系数的表500的容量。再者,当表500的容量成为常数时,有可能给出对输入信号x(t)的更详细的补偿系数值,并实现更详细的失真补偿。
图8是按照本发明的第五实施例的结构方框图。失真补偿系数的起始值预先给出以便按照条件使用自适应算法加以更新。图8所示结构包括用于保持失真补偿系数起始值的起始值表520,以及使用图3所示的实施例作为基础。
开关521连接起始值表520,以便把作为失真补偿系数的预先准备的值乘到输入信号上。按照条件,开关521被连接到乘法器501以便以估算的补偿系数值进行更新。藉助于这种结构,可以实现收敛速度的改善。
再者,图8所示结构适用于使用LMS算法的例子。然而,这并不是限制性的,有可能以类似方式适用于使用图5所说明的RLS算法的情况。
图9是一个实施例的方框图,其中独立地进行对用于存储失真补偿系数的表500的内容的更新和失真补偿系数与输入信号的乘法运算。图9所示的结构使用图3所示LMS算法。然而,这并不是限制性的,对于图9所示的结构,当然有可能使用图5所示RLS算法。
在图9中,装有附加的失真补偿表516,它和用于存储失真补偿系数的表500是一样的。因此,输入信号和失真补偿系数值的乘法是根据用于存储失真补偿系数的表500的输出进行的。失真补偿系数值在附加的失真补偿表516中被更新。因此,有可能独立进行对失真补偿系数值的更新和失真补偿系数与输入信号的乘法。
也可能藉使用双端口RAM构成该电路,而不是装上两个像用于存储失真补偿系数值的表500和附加的失真补偿表516那样的表格的存储器。在图9中,延时电路10和11把更新失真补偿系数值和进行失真补偿系数与输入信号的乘法的时间同步到预定的时间间隔。
图10A显示按照本发明的失真补偿放大器的应用实例。当考虑调制器的输入时,对于更新失真补偿系数就需要给出相应于任选的输入幅度值的失真补偿系数h(t)。因此,应当预先得出失真补偿系数h(t)就变得很重要。
图10B所示的训练信号是重复的锯齿波,它从0逐渐升到一个恒定幅度。有可能藉使用这个训练信号提前得出在0到该恒定幅度之间范围内的失真补偿系数h(t)。因此,有可能加快收敛到自适应的失真补偿系数。
图11是本发明的第八实施例的方框图。正如以上所说明的,按照本发明的预失真器使用相应于输入幅度的失真补偿系数。当用于得出放大器输出信号的正交解调器3具有对直流偏置和Ich与Qch信道的增益偏差时,正确的补偿系数不能被估算。这就导致线性化特性的变坏。
因此,在图11所示的实施例中,实行了对译码器的偏置和增益的自动控制,以便防止特性变坏。更具体地,在估算hn(p)以前实行自动补偿,解调的相位是未知的。这样,偏置和增益偏差被测量而不依赖于解调相位。
图12是在正交解调器3中有直流偏置时的说明图。在图12中,I代表在正常情形下复数平面上的单位图,以及II代表在有直流偏置的情形下复数平面上的单位图。
在图12中,用式(13)表示的单位圆被输出。在这种情形下的I信道和Q信道的最大值被测量。当I信道和Q信道的最大值和最小值为Vimax,Vimin,Vqmax,Vqmin时,偏置ΔVi,ΔVq和增益Gi,Gq可分别由式(14)和(15)表示。 V = e i&theta; , &theta; &le; &theta; &le; 2 &pi; - - - ( 13 ) &Delta; V i = V i max + V i min 2 &Delta; V q = V c max + V c min 2 - - - ( 14 ) G i = V i max - V i min 2 G q = V c max - V c min 2 - - - ( 15 )
其中ΔVi和ΔVq分别被表示为Vimax和Vimin的算术平均值以及Vqmax和Vqimn的算术平均值。再者,增益偏差可用I信道增益Gi和Q信道增益Gq的比值an=Gq/Gi得出。当a=1,就没有增益偏差,单位圆就变成为一个纯粹的圆。
Ich信道的增益Gi和Qch信道的增益Gq可分别被得出为最大值和最小值值之间的差值的一半,如式(6)所示。增益偏差的补偿,可通过例如使用Qch信道作为一个参考值时改变Ich信道的增益来进行。
图11所示的结构将被进一步说明。用于补偿直流偏置和增益偏差的补偿部分700以进行上述运行的电路的形式被提供,以用作图2所示的原理图。再者,图2所示的正交调制器2和正交解调器3,类似于其它实施例那样,在图上未示出,而在图上只显示了基带信号的结构。从放大器1分支出来的Ich和Qch信号分别被输入到Ich和Qch最大值检测器701和711,以及Ich和Qch最小值检测器702和712。再者,Ich最大值检测器701和Ich最小值检测器702的输出被输入到加法和减法电路703和704。另一方面,Qch最大值检测器711和Qch最小值检测器电路712的输出被输入到加法和减法电路713和714。
加法电路703和713的输出被输入到1/2乘法器705和715。因此,1/2乘法器705和715的输出成为式(14)中的偏置ΔVi和ΔVq
这些偏置ΔVi和ΔVq分别被输入到减法电路706和716,以便从Ich和Qch信号中被减去。因此,减法电路706和716的输出变成为从放大器1的输出中除去偏置ΔVi和ΔVq的Ich信号和Qch信号。
同时,减法电路704和714的输出被输入到除法电路720,以得出比值,也就是Gq/Gi。乘法器721把比值Gq/Gi和Ich减法电路706的输出相乘,以便藉使用Qch信号作为参考值时改变Ich增益来调整增益偏差。
如以上所述,其偏置和增益被调整的放大器1的输出y(t)变成为在错误检测器7中和输入信号x(t)进行比较的对象。
上述情况下的校正信号可按式(16)来给出。 V i = a n ( V i - &Delta; V i ) , a n = G q / G i V q = V q - &Delta; V q - - - ( 16 )
上述的增益偏差an可由实际的增益偏差被得出,如图11所示。除法电路720被用来得出增益的比值Gq/Gi。然而,通常在用数字电路执行除法的情况下该电路变成一种复杂的结构。
因此,图13显示了藉LMS算法并使用图11所示的除法电路720中的实数除法估算Gq/Gi的估算值an,以便使Gq和Gi之间的差值为零的实施例。估算值an可按照式(17)和(18)由图13所示的估算电路730来得出。
    an=an-1+μeGi    (17)
    e=Gq-Gian+1      (18)
被输入到具有存储器功能的Gq/Gi置位存储器电路731的Gq和Gi的估算值an是误差电路734的输出。然后,乘法器732和733把步进参量μ和减法电路704的输出Gi以及在式(17)中所表示的e相乘。μeGi相乘的结果和Gq/Gi置位电路731的输出an-1在加法电路735中被相加。
估算电路730的工作方式是使误差电路734的输出e为零。实际上,在乘法器721中作乘法的估算值an按照式(18)的关系可以是和Gq与Gi的比值同样的值。
在图11和13所示的实施例中,说明了输入信号幅度是恒定值时的情形。在这种情形中,因为补偿值只是从Ich和Qch调制的信号的最大值和最小值被得出,藉助于把测量时间取得更长一些,可使这种情形适用于随机输入信号。因此,藉助于使用上述测量的平均值作为补偿值的方法,就可使补偿具有更高的精确度。
然而,有一个问题是要化费更多时间。图14显示了对付上述问题的本发明的第十实施例。在第十实施例的结构中,装有用于输出单位圆作为训练信号的单位圆发生器110。如果把意境圆发生器110的输出代替x(t)输入到该训练周期补偿系数可藉输出绕单位圆转的信号来得出。
有可能藉把相应于以后进入的实部和虚部的正弦和余弦值存储在ROM表中来构成。
正如按照上述实施例所说明的,按照本发明的用于实行失真补偿的放大器带来如下效果:
(a)用数字处理的预失真器的失真补偿表的容量可被减小少于1/2n(n代表输入信号的量化比特数)。所以,在使用具有较大动态范围的信号时,虽然在现有技术中对于具有该电路的一个适当的规模存在一些问题,但可以使存储器容量大大减小。
再者,当对便携式终端等的空间或电源消耗有约束限制时,有可能使用线性化器,它可改进内部RAM(诸如单片LSI或DSP)的容量。
(b)没有必要使用为控制解调相位的移相器和实行相位旋转算法,这样就不需要按照温度变化和时间变化进行补偿。因此,可正常地得出稳定的失真补偿特性。
(c)由于对解调组的不完全状态有很宽的允许范围,有可能减少硬件的成本以及减少调整步骤。
(d)有可能实行理想的预失真,而没有使放大器和滤波器等产生延时的影响。
图15显示了作为本发明的一个目的的无线通信用基站的配置。在作为本发明的一个目的的无线通信用基站的实例中,基站被连接到公共通信网100,并且终端接收在数字服务单元(DSU)中的公共通信网100发出的光多路信号,此DSU是数据电路终端设备。
端接到DSU101的光多路信号被变换成电信号,且变换的信号被输入到多路传输器/多路分路器102。多路传输器/多路分路器102对该变换了的信号进行多路传输/多路分路处理并把它发送出去。被多路传输/多路分路的信号通过TDMA部分103、调制解调器104和射频部分105从天线153被发送出去。调制解调器104包括用于对向天线153方向行进的多个信道的下行信号进行集总和调制的集总和调制器140,以及用于把集总和调制器140的输出变换成模拟信号的D/A变换器141。
射频部分105中的一个功率放大器150放大并通过天线153输出D/A变换器141的模拟输出。然后,集总和调制器140对于功率放大器150具有线性化功能,用于藉预先把补偿值给信号的方法来消除失真。
在使用该线性化功能时的补偿值的大小藉反馈一部分功率放大器150的输出和参考反馈信号的电平的方法来确定。再者,由于线性化功能是以数字化处理的,此功能就要有一个用于把来自功率放大器150的一部分输出的模拟信号变换成数字信号的A/D变换器142。
另一方面,由天线153所接收的上行射频信号藉在分路器152中的分流,被输入到低噪声放大器151。在放大器151中放大的信号在A/D变换器144中被变换成数字信号,多个信道信号在解调器143中被解调。
然后,信号受到与对上述的流向天线153的下行信号的处理相反的处理,并通过TDMA部分(时分多址)103,MUX/DMUX(多路传输/多路分路)部分102和光的DSU部分101,被发送到公共通信网100。
在图15中,CCU106把时钟信号供给MUX/DMUX部分102、TDMA部分103、集总和调制器104和集总和解调器143,并且控制工作时序。现参照图16,显示按照本发明的无线通信用基站结构的说明图。也显示主要说明调制解调部分104的集总和调制器140的详细结构方框图。再者,TDMA部分103的结构将被省略。
在图16中,参考数字400是转换式多路调制器,它是包含集总和调制器140的群调制器。转换式多路调制器400包括载波信号振荡器412、Ich/Qch信号发生器410和用于多个载波中的每个载波的调制器411。由于转换式多路调制器400,例如藉使用FET,产生进行数字信号处理的多个载波,因此模拟振荡器或调制器就没有用处。这样,输出是数字信号。然而,图16显示模拟群,作为容易理解这种结构的例子。转换式多路调制器400的输出被输入到集总和调制器140的一部分的线性化电路402。
再者,图16只显示了流向天线153的下行线性化电路402。再者,图16显示了用于变换成射频的上变频器406和用于从射频进行变换的下变频器407。
线性化电路402包括数字信号处理器403和比较电路404。延时电路405控制数字信号处理器403中的处理时间。比较电路404把延时电路405和下变频器407的输出的相位幅度和由A/D变换器142被变换到数字信号的输出的相位幅度进行比较。
数字信号处理器403把补偿失真给输入信号,以便根据比较电路404的比较结果,提前补偿功率放大器150的失真。在本发明中,使用数字信号处理器403的结构被采用。再者,在本发明中,可被改进为使A/D变换器142和D/A变换器141的运算速度的最大值为几十兆赫。
图17是按照本发明的无线通信用基站的第一实施例的方框图。更具体地说,图17只显示了线性化电路402,和按照本发明为线性化电路402进行加法的加法电路。
如上所述,在图16所示的结构中,需要进行变频,因为A/D变换器142和D/A变换器141的输出频率的最大值为几十兆赫。因此,按照本发明的无线通信用基站使用像上述的上变频器406和下变频器407那样的镜频干扰抑制型变频器,以便很容易地压缩无用的边带,增加处理功率3dB,以及抑制失真的产生。
然而,当使用镜频干扰抑制型变频器时,需要一个90°移相器。在图17中,上变频器406由上变频器416和426构成。数字信号处理器403的输出再通过90°移相器418和D/A变换器417被输入到上变频器416。另一方面,数字信号处理器403的输出再通过D/A变换器427被输入到上变频器426。
如果特定基带很宽,就很难用无源电路来构成90°移相器418。但很容易用数字电路构成移相器。因此,在本发明中,90°移相器418由数字处理器构成,以获得模拟信号,它们分别藉D/A变换器417和427由Ich/Qch信号得出,并把这些信号输入到镜频干扰抑制型上变频器416和426。
在图17中,在无用信号被滤波器419全部去除以后,镜频干扰抑制型上变频器416和426的输出被输入到功率放大器150。
再者,振荡器408振荡产生二者之间具有90°相位差的本地信号,它们是被输入到上变频器416和426以及下变频器407的载波信号。
构成线性化电路402(此后把它贴切地称为线性化器)的数字信号处理器可以用构成具有失真补偿的放大器的电路来实现,如以上的对于图2到14所描述的那样。线性化器将参照图3再次被说明如下。
图3显示藉使用最小均方(LMS)算法而构成的线性化器的结构。在图3中,相应于图3所示的参考数字1的、在图15到图17中所示的功率放大器150的失真函数被当作为f(p)使用。存储器500存储了对功率放大器150的失真函数f(p)所估算的失真补偿系数h(p)。
再者,参考数字60和502到504是乘法器,501是加法器。参考数字9是一个得出输入的基带信号x(t)的绝对值的电路,505是用于得到A/D变换器142的输出的共轭值的电路。比较电路70是用于输出在两个输入的基带信号x(t)和功率放大器150或图3的电路1的输出之间的差值的减法器。
藉助于图3所示的结构,线性化器实现以上所述的式(1)到(6)。再者,在这些式中,x(t)代表输入的基带信号,f(p)代表功率放大器的失真函数,h(p)是估算的失真补偿系数,以及μ代表步进尺寸参量。再者,x,y,f,h,u和e是复数,以及*表示共轭复数。
u(t)被用作为hn-1(p)h*n-1(p)=1,这表示高频功率放大器150的幅度失真不大。
构成线性化电路402的数字信号处理器并不限于图3所示的结构。当然,应当看到,在图2到14中所描述的带失真补偿的放大器的所有实施例对于按照本发明的无线通信用基站来说是在可应用的范围内。
图18A是图17所示90°移相器418的一个结构性实例的方框图,而图18B显示了移相器的工作波形。在图18A中,Qch信号被输入到90°移相器418中。另一方面,用于控制90°移相器418中的延时的延时电路被插入在Ich信号的一侧路径中,以协调Ich和Qch信号之间的延时。
90°移相器418基本上是由横向滤波器构成。横向滤波器55的延时电路是由移位寄存器构成。该移位寄存器55在每一级的输出被输入到乘法器561到56n,这些输出分别被乘以加权系数a1,a2,…,an
加权系数a1,a2,…,an如图18B所示那样被确定。H(w)是一个函数,它在-fs/2和fs/2之间移相p/2到-p/2。在图18A中,加权系数a1,a2,…,an被选择在所需要的频段58中,以便找到在以下的式(19)中所示的函数h(t)。 h ( t ) = &Integral; - fs 2 - fs 2 H ( w ) e jwt dw - - - ( 19 )
图19A显示了镜频干扰抑制型上变频器416和426的结构性实例,及图19B显示了工作说明图。下变频器407具有和上变频器同样的结构。然而,只是输入方向是相反的。
在图19A中,镜频干扰抑制型上变频器416和426包括一对双平衡型调制器40与41和90°移相器42与43。例如,100MHz的信号被输入到90°移相器42,它也是一个分配器。90°移相器42产生带90°相位差的信号,并把信号输入到双平衡型调制器40和41。
双平衡型调制器40和41分别接收来自载波信号振荡器44的1GHz的载波信号,并把所接收的载波信号乘以90°移相器42的输出,作为混合器的90°移相器43混合并输出它们。
图19B显示了上述结构的频谱。100MHz的信号和1GHz的信号相混频,且只有上边带USB被从90°移相器43输出。
图20A和20B显示了双平衡型调制器40和41的结构性实例,它具有二极管D1到D4和每个都带有中间抽头的变压器T1与T2。由载波信号振荡器44发出的载波被输入到变压器T1的初级端。再者,在图19A的实例中,IF(中频)信号,也就是100MHz的信号被输入到两个变压器40和41的中间抽头之间。
如图20B所示,上边带USB和下边带LSB由变压器41的输出端OUT输出。如图19A所说明的,变压器40和41的输出被输入到90°移相器43,并在其中混合,其中每个都有90°的相移。因此,图20B所示的下边带LSB就被抵消了,而只有上边带被输出。
图21显示了按照本发明的无线通信用基站的第二实施例。该实施例藉助于按照图17同样的原理使用镜频干扰抑制型变换器507和517作为下变频器(参考图16)以处理由天线153送到分路器154的上行信号的方法来做成的。
因此,接收A/D变换器528的输出的90°移相器529被做成为图18A所示的数字处理电路。
图22显示了无线通信用基站的第三实施例。其结构藉组合图17和21所示的结构以及装有对上行和下行信号的镜频干扰抑制型变频器416、426、507和517与使用数字处理器的90°移相器418和529的方法来构成的。
在图22所示的结构中,对于上行和下行信号,有可能在数字信号处理器403中生成主放大器150(也就是功率放大器)的具有高精确度的失真补偿分量。
在上述的使用数字信号处理器403的数字线性化方法中,D/A变换器的输出信号的D/U(信号带宽失真比)取决于D/A变换器的比特精度,也就是比特数。再者,在输入信号是模拟信号的情况下,要求进行A/D变换,把信号数字化。然而,A/D变换的噪声被混合进去,因而带来D/U的变坏。
在这种情况下,有可能藉助于和前馈相组合的方法来改善失真。这是指前馈方法藉分出一部分输入信号以及得出与放大器的一部分输出的差值来获得失真失量。再藉助于把失真分量和放大器的输出以相反方向相加的方法来去掉失真分量。
图23显示了按照本发明的无线通信用基站的第四实施例。在该实施例中,使用了上述的前馈方法。
由调制器组400给出的输出被分支出一路,分支路输出的一部分通过A/D变换器401被输入到线性化电路402。分支路输出的其余部分通过延时电路602被输入到减法器601。减法器得出分支路输入分量和功率放大器150的输出之间的差值,且失真放大器(具有低失真的放大器,其放大比做得较低)把它加以放大。定向耦合器605从功率放大器150的输出中除去放大失真分量。
在上述的每个实施例中,藉助于使用数字线性化器402,失真可被急剧地减少。同时,在使用具有最小失真的放大器的耗费功率时有可能进一步把失真压缩10到20dB。
无线通信用基站的上述的每个实施例使用了预失真方法。因此,如果参量关系到要被补偿的器件的线性度,在失真补偿数据一旦被取得以后,就不需要藉反馈来更新数据。
因此,在只有慢变化的情况下,例如随着时间的温度变化,失真补偿参量必须被更新。这就是说,断续地使用反馈是没有问题的。所以,有可能减小失真补偿部分的耗费功率。
图24显示了本发明的无线通信用基站的第五实施例的方框图,它实行断续性的反馈。和图16与17所示的结构相比较,分别在延时电路405和比较电路404之间装有门电路409和在A/D变换器142和比较电路404之间装有门电路410。
再者,断续工作的控制器710断续地控制门电路409和410与A/D变换器142的工作,并且断续地进行失真补偿。
图25是对用于断续控制失真补偿工作的结构的说明图。在图25中,断续工作控制器710由相关器170、定时发生器171和时钟发生器172构成。
时钟a0,a1,a2藉使用由时钟发生器172发出的时钟CL作为一种参照而被产生的。再者,当相关器170的输入和输出是a3和a4时,每个时钟的相互关系如图27A到27E所示。
当由功率放大器150发出的反馈集的断续工作的占空比是1/10,例如,停止工作9秒,及开始工作1秒,由定时发生器71发出的时钟a0,a1和a2的产生就在时间t0处为接通,在时间t0+1处关断,在时间t0+9再次接通。
A/D变换器142,与门409和411在时间t0和t0+9处工作。因此,即使输入信号具有相移,例如图27C所示的a3的①和②,仍有可能正确地保持定时到a3①的输入信号。
相关器170检测,由放大器150反馈的数据与下行发送数据的哪个部分相关。如图26所示,相关器170包括多个乘法器811到81n,用来把沿X方向的移位寄存器801的每级输出和沿Y方向移位寄存器802的每级输出相乘,沿X方向的移位寄存器就是数据,例如MSB,通过延时线415所输入到的移位寄存器,而沿Y方向的移位寄存器就是由放大器150反馈的数据的MSB所输入到的移位寄存器,沿X方向的移位寄存器801和沿Y方向的移位寄存器802以及波组合电路803,用于组合多个乘法器811到81n的输出。
因此,当发送数据和由波组合电路803(参照图26B和27D)给出的反馈数据相一致时,就出现峰值输出a4。峰值输出a4被输入到定时发生器171,且定时信号a1和a2在该时间被输出(参照图27E)。
以模拟光纤直接发送射频的方法被实际用作为连接无线基站和处理射频的前置基站的方法。然而,通常在E/O(电/光)或O/E(光/电)变换器中产生失真,因而它不能用大功率和许多波被发送。
这样,和由功率放大器150发出的反馈信号一样,可使用复原带有模拟光纤传输路径的射频功率放大级,例如包括E/O变换器,光纤和O/E变换器的系统,或包括E/O变换器,光纤,O/E变换器和功率放大器150的系统,以及类似地非线性补偿带有模拟光纤传输路径的功率放大器所发出的反馈信号的方法。藉此,就有可能对光传输路径的失真和大功率放大器的失真进行非线性补偿。
图28显示了按照本发明的无线通信用基站的第六实施例的方框图。更具体地,它显示了如上所述的其中把射频功率放大级复原到模拟光纤传输路径的结构实例。在图28中,E/O变换器151把D/A变换器141的输出变换成下行方向的光信号。再者,在前置基站中,O/E变换器152把通过模拟光纤250送来的光信号变换成电信号,此被变换后的信号输入到功率放大器150。
在前置基站中,E/O变换器151把由功率放大器150分路的反馈信号变换成光信号。此变换后的信号通过模拟光纤250被送到无线基站一侧,并由O/E变换器152变换成电信号。
图29是按照本发明的无线通信用基站的第七实施例的方框图。在图28所示的实施例中,由功率放大器150送出的反馈信号沿着类似于主路径的模拟光纤250被传送。然而,当同样的失真产生时,反馈信号被A/D变换器142变换成数字数据,如图29所示。数字数据被变换成光信号,并藉数字光纤254被传送。这就可解决失真问题。
再者,在用于传送模拟信号到光纤的方法中,构成E/O或O/E变换器的元件,如激光二极管,光电二极管等,都具有非线性特性。因此,由于很大的失真,不可能发送大功率。为此,如图30所示,上行和下行路径都由数字光纤254构成。
数字光纤传输路径254被连接到在由功率放大器150发出的反馈信号的A/D变换器142和线性化电路403之间的接口电路,例如D/A变换器41的12比特的总线。
用这种方法可以解决模拟电路所特有的不稳定性或失真的问题。
用上述的采用光纤传输路径的方法,有可能实现非线性补偿。然而,通常数据很庞大,例如12×50=600Mbp。虽然数字电路比模拟电路便宜,但是传送几公里并不经济。
这样,在图31所示的按照本发明的无线通信用基站的第九实施例中,配备了多根光纤用于传输。通过分路器154的光信号沿多条低速光纤传输路径传输。再者,在前置基站中,从多条低速光纤传输路径送出的光信号在波组合电路155前被变换成电信号后,变换后的信号在波组合电路155中被组合成具有原先的时钟速度的信号。
在其它的模式中,如图32所示,有可能藉使用FIFO(先进先出)存储器把高速信号变换成低速信号。在图32所示的结构中,FIFO存储器156把由A/D变换器142在一恒定间隔内以原先预定的时钟速度进行变换所得到的输出的数字数据变换成低速信号,例如600Mbps的信号在一秒内被采样,而被采样的信号在100秒内以6Mbps速度被传输,速度是原先的1/100。
由于在6Mbps范围内的数字电路的成本非常便宜,这就使制造出更便宜的前置基站成为现实。
图33显示了使用速度变换的实施例,也就是相应于图32的更详细的方框图。再者,相应于图33的每种定时的时间图示于图34A到34F。
A/D变换器142以由与门174的输出的时钟a0的时序进行工作。在其运行时,数据被累加在FIFO存储器156中。然后,被累加的数据以a20的时序被读出,并在间隔a10期间以低速读数。
从FIFO存储器156读出的数据由E/O变换器151被变换成光信号,并通过数字光纤253被送出。再者,O/E变换器152把被变换成的光信号变换成电信号写进FIFO存储器157。然后,信号在a21的时序内被读出,并在a11的时间上结束读数。
在图33中,从图34A到34F所示的时间图上明显看到,除了上述运行的其它运行和图25与图27所示的运行相同,因此为简单起见其说明将予以省略。
当把光纤用作为一个传输路径时,就需要把传输路径埋入地下。然而,如果传输可以用微波线路,例如亚毫米波来实现,那么就不需把路径埋入地下,而系统可用低成本来构成。图35是显示上述系统的实施例的方框图。
上述实施例和图35所示实施例之间的差别在于使用微波线路160和161作为传输路径。当用微波线路传输时,如果使用变换由带有模拟微波线路的功率放大器150发出的反馈信号的方法,就有可能有失真的影响。因此,在图35的实例中,使用数字微波线路161沿下行方向发送数字数据。
再者,高速数字数据在射频信道中的传输造成器件的高成本,因而是不实用的。因此,在图35中,类似于图24所示的按照本发明的无线通信用基站的第五实施例,有可能藉提供断续工作的定时电路180和181来降低传输速度。
在考虑多载波共用放大器时,在达到所有载波矢量都一致时的功率之前,不需要设置功率放大器的饱和功率。再者,据报道,随着所想要的失真(D/U)总量,饱和功率可被减小。例如,这是载于[RCS-90-4:用于移动通信的超低失真多频率共用放大器—自调整型前馈放大器(SAFF-A)Nogima,Narahashi]。
这就意味着,多频组合电平近似等于瑞利(Rayleigh)分布,信号功率大于某一电平时就成为瞬间值,其出现频率是很小的,因而输入信号可被限制在一个恒定电平内。
作为一个例子,当功率放大器由FET(场效应管)构成时,栅压和栅流可被考虑如下。在图36中,横坐标轴表示栅压(Vgs),及纵坐标轴表示栅流(Igs)。在图36中,I是输入信号的功率分布的瑞利分布。输入信号功率的电平分布呈现对称的深度曲线和浅曲线的分布,并以工作点(0P)为中心(对称移动)。
当加上比击穿电压1P更高的电压时,栅流急剧增加,这就导致栅极击穿。如果把D/A变换器的最大电压(MSB)2P设置在正好是栅流急剧增加的这一点之前,那么加到功率放大器150的FET器件的功率总是小于2P,这样,就可避免器件的损坏。如果在使用工作点0P作为对称移动时加上对称于2P的2P′,当然应当使2P′正好是在击穿点1P′前的一点。
再者,图37是显示了由拟合D/A变换器的精度(比特数)和失真(D/U)之间的关系所得出的结果。当在相当小电平的情况下出现截顶时,也就是OBO(输出补偿)很小时,D/U被恶化。在这种情况下,可以看到,即使D/A变换器的精度增加,D/U也不能被改善。
另一方面,当OBO的数量较大时,在改进D/A变换器的精度时,D/U将按照精度而被改善。
从上述结果可明显得出,对于所要求的D/U,可使用合适的D/A和A/D变换器,它们不是具有更高精度的昂贵的A/D和D/A变换器。根据这种关系,更有效的器件可藉设计A/D和D/A变换器的精度(比特数)来获得。
另一方面,在传统的用于移动通信的无线基站中,每个波有一个发射机以产生多个载波。发射机部分可藉使用群调制器由几个LSI构成。由于群调制器的输出是,例如,12比特的数字信号,所以数字信号被变换成要被输入到大功率放大器去的模拟信号。
藉此,当使用群调制器时,就有可能藉助于正好在D/A变换器之前插入数字线性化器,而不是插入模拟式线性化器,例如前向型线性化器的方法使调制部分,载波组合部分,功率放大部分和线性化电路做得更紧凑,重量轻和低成本。
图38显示了本发明的第十二实施例的方框图,它是采用上述概念被构成的。数字数据总线501把群调制器900的输出连接到数字信号处理器403,数字信号处理器403把失真补偿值加到输出上,并把相加后的输出输入到功率放大器150。
再者,群调制器900可用,例如,转换式多路调制器和数字正交调制器构成。
通常,功率放大器150对大于OBO的总量的电平给出限制。因此,谱的瞬间值比起平均值恶化20到30dB。瞬间值可藉把频谱仪切换成峰值保持模式来进行测量。
频谱通常是以平均值进行测量的。因此,就没有瞬间值问题。然而,如果可以使瞬间值减小,那么平均的D/U可进一步被改善。
由于数字处理器可判定输入信号的电平,当电平超过D/A变换器的最大电平时,此处假定D/A变换器的MSB被设置为电饱和功率,进一步地有可能平滑地整形限幅波形来有效地改善频谱的瞬间值。
图39是为了得到上述有效性的本发明的无线通信用基站的第十三实施例的方框图。和图38所示的结构相比较,图39所示的电路在群调制器900和数字信号处理器403之间还有限幅电平检测器902和平滑电路901。再者,延时电路903把平滑电路901的工作时间调整到限幅电平检测器902的处理时间。
图40A是显示图39所示的延时电路903,平滑电路901和限幅电平检测器902的结构实例的方框图。图40B和40C分别显示系数a0和a±1…a±n的水平。在图40中,平滑电路901基本上构成横向滤波器。
图41是用于说明限幅电平检测的图。如图41所示,当输入电压幅度I超过限幅电平CL时,电平检测器902检测超出的电平。
另一方面,平滑电路901包括乘法器91n…910…92n(该乘法器用于乘上由抽头加权控制器904所得出的加权系数an,an-1,…a1,a0,a-1…a-n)、对n次移位寄存器905的每一步进行运算的一个累加器907和一个乘法器906、一个抽头加权控制器904以及一个移位寄存器905。
当电平检测器902检测出输入电压幅度I超过限幅电平CL时,预定的加权系数就从抽头加权控制器904输出。然后,移位寄存器905的每一步的值和预定的加权系数相乘,并把输出值输入到累加器907加以组合。结果,组合值被平滑成如图41的虚线II所示的波形。
再者,累加器907的输出被输入到乘法器906以便和系数b相乘。系数b使一个抽头的一个中心电平a0为1/n,如曲线I所示。此电平和该抽头的前后电平a1,a-1…an,a-n相一致。
在图27所示的上述的模式中,需要高速数字横向滤波器。图42显示了限幅补偿的另一个结构。在图42所示的结构中,电平检测器902总是监测由采样速率变换器420、频率多路调制器422、信道滤波器423和正交调制器424构成的群调制器的输出。
当弄清楚幅度电平超过D/A变换器的MSB时,每个载波的幅度以相等的或不相等的方式被减小。在上述结构中,使用了抽头加权控制器904,它也被用于图40A中,然后采样速率变换器520的乘法器800到80n把控制器904的输出与变换部分522的输出相乘。
这样,在滚降滤波器524的前级,实现了幅度的减小。由于藉使用了每个载波的基带滚降滤波器实行对波的带宽的限制,有可能以低速进行处理。由于也进行了理想的电压限幅,就有可能充分压缩在峰值保持模式下瞬间谱的恶化。
再者,如图3所示的结构实例中所显示的,线性化器402的数字信号处理器403把失真补偿数据存储在RAM存储器中。然而,失真补偿数据的初始值并不是恒定的,所以正好在运行起始后一刻的失真不能被补偿。
因此,在按照本发明的无线通信用基站的第十四实施例中,提供永久性存储器719存储数据,如图43所示。当从工厂递送装置给用户时,提前进行了测试操作以得出最终数据。最终数据被存储在永久性存储器719中。然后,最终数据正好在实际运行前一刻被装载到存储器,例如是在线性化器403所提供的RAM。藉此,就有可能使实际运行以非常短的时间收敛。
再者,有一种情况是在运行时失真数据随时间变化。在这种情况下,在正好是由于由控制器进行周期性的维修保养等引起的停止运行前的一刻,控制器718把RAM中的数据提取到永久性存储器719中以补偿在下一次运行时的平滑运行。
当输入信号是具有突发信号的TDMA信号(1个载波)时,在正好是突发信号开始前的一刻,发送了较短的前同步突发脉冲,并按照前同步突发脉冲产生线性化的数据。如图44A到44C所示,数据以非常短的时间按照简单的增长函数被得出,此函数具有一个在0到最大值之间的取值范围或是一个阶梯波。
图44A显示了在前同步间隔I和主突发间隔II之间的关系。图44B显示了线性增长和减小的三角波函数的例子。再者,图44C显示了在采用阶梯波函数的情况下的例子。
然而,经济的办法是在前置基站进行对放大器失真补偿的线性化运行,这是因为不需要把信号通过传输路径反馈到主基站。图45是显示本发明的第十五实施例的方框图。
在装有天线53的前置基站上,配有数字信号处理器403。
再者,如图46所示,该图显示了按照本发明的无线通信用基站的第十六实施例,空间分集用多条模拟光纤传输路径254把上行信号传送到基站。再者,上行信号的的传输路径也可由模拟微波传输路径提供,而不用模拟光传输路径。藉此,有可能改善超小型无线基站。
再者,如图47所示,如果可以获得A/D变换器441的高精度和高速度,就有可能用数字传输路径253替代模拟传输路径254。因此,就有可能以低成本,高稳定度和高质量构成传输路径。
正如按照上述实施例所说明的,按照本发明的无线通信用基站使用镜频干扰抑制型变频器作为上下变频器,以便易于压缩无用的边带。再者,镜频干扰抑制型变频器需要90°移相器。如果射频基带比很大,就很给使用无源电路。然而,在本发明中,有可能藉使用数字信号电路很容易地构成基站。
本发明可以其它特定形式体现出来,而不背离其精神或基本特征。因此,本实施例可在所有方面被看作为说明性的而不是限制性的,本发明的范围宁可由所附的权利要求来表示而不用以上的描述来表示,因而在权利要求等价的意义和范围内所作的所有变动是要被包括在其中的。

Claims (19)

1.一种带失真补偿的放大器,其特征在于,包括:
一个放大器电路,用于放大输入信号;
一个误差检测电路,用于得出在进到放大器电路的输入信号和来自放大器电路的输出信号之间的误差信号;
一个系数发生电路,用于按照自适应型算法,根据误差信号产生补偿系数以补偿放大器电路特性的失真分量;
一个第一输出电路,用于输出相应于输入信号所产生的补偿系数;以及一个乘法电路,用于把所产生的补偿系数乘到输入信号上并把相乘后的系数输入到放大器电路。
2.按照权利要求1的放大器,
其特征在于,所述第一输出电路输出一个相应于输入信号幅度的失真补偿系数。
3.按照权利要求1的放大器,
其特征在于,所述第一输出电路输出一个相应于输入信号功率的失真补偿系数。
4.按照权利要求1的放大器,其特征在于,所述第一输出电路输出一个相应于输入信号幅度的函数的失真补偿系数。
5.按照权利要求1的放大器,
其特征在于,所述第一输出电路输出一个相应于输入信号功率的函数的失真补偿系数。
6.按照权利要求1的放大器,
其特征在于,相应于输入信号的失真补偿系数以一个复数形式被输出。
7.按照权利要求1的放大器,
其特征在于,自适应型算法是一种LMS自适应算法。
8.按照权利要求1的放大器,
其特征在于,自适应型算法是一种RLS自适应算法。
9.按照权利要求1的放大器,其特征在于,还包括:
在放大器电路输入侧的一个正交信号调制器;以及
一个正交信号解调器,用于解调从放大器电路的输出分支出的信号;
其中自适应型算法是使用一种由正交信号解调器输出的一个被解调的复数信号的象限信息的自适应算法。
10.按照权利要求1的放大器,其特征在于,还包括:
一个有效地连接到系数发生电路的电路,该电路用于按照预定的函数计算由系数发生电路产生的补偿系数,以及用由计算得出的补偿系数对所产生的补偿系数进行插值。
11.按照权利要求10的放大器,
其特在于,是预定函数是一个初级函数。
12.按照权利要求1的放大器,其特征在于,还包括:
一个第二输出电路,该电路用于输出失真补偿系数的一个起始值,并且在第一输出电路输出相应于输入信号的所产生的补偿系数之前,把该初始值乘到输入信号上。
13.按照权利要求1的放大器,其特征在于,包括:
一个控制电路,该电路用于控制实行对由系数发生电路产生的补偿系数的更新以及与时间无关地把补偿系数乘到输入信号上。
14.按照权利要求13的放大器,
其特征在于,所述控制电路包括一个双端口RAM,把补偿系数更新到双端口RAM和从双端口RAM读出补偿系数是以与时间无关的方式进行的。
15.按照权利要求1的放大器,其特征在于,还包括一个振荡器,该振荡器用于产生其波形为逐渐上升到预定电平的一个训练信号,以及一个估算电路,该电路用于在训练期间重复接收训练信号和在一个预定范围内扫描训练信号的幅度以估算一个失真补偿系数。
16.按照权利要求1的放大器,其特征在于,还包括:
装在放大器电路输入一侧的一个正交信号调制器;
装在放大器电路输出一侧的一个正交信号解调器,用于解调从放大器电路分支出的反馈信号;以及
一个补偿电路,用于得出与补偿在包括正交信号解调器在内的一组中的直流偏差,和在I和Q信道之间的增益偏移,它们是根据由正交信号解调器输出的解调信号的最大值与最小值得到的。
17.按照权利要求16的放大器,
其特征在于,直流偏差和在I与Q信道之间的增益偏移是根据藉由正交信号解调器输出一个单位圆和检测I与Q信道的最大与最小值而得出的最大值与最小值来补偿的。
18.按照权利要求17的放大器,
其特征在于,在I与Q信道之间的增益偏移藉使用一种自适应算法来检测。
19.按照权利要求16的放大器,其特征在于,还包括:一个振荡器,该振荡器用于产生在一个复平面上一个单位圆的一个训练信号,以及一个估算电路,该估算电路用于在一个训练期间内重复接收训练信号和在预定范围内扫描该训练信号的幅度以估算失真补偿系数。
CN96109990.9A 1995-08-18 1996-08-15 带有失真补偿的放大器及使用此放大器的无线通信基站 Expired - Fee Related CN1084986C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP210870/95 1995-08-18
JP21087095A JP3537228B2 (ja) 1995-08-18 1995-08-18 無線通信用基地局
JP22416995A JP3560398B2 (ja) 1995-08-31 1995-08-31 歪補償を有する増幅器
JP224169/95 1995-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN01135835.1A Division CN1214670C (zh) 1995-08-18 2001-10-24 带有失真补偿的放大器及使用此放大器的无线通信基站

Publications (2)

Publication Number Publication Date
CN1154023A CN1154023A (zh) 1997-07-09
CN1084986C true CN1084986C (zh) 2002-05-15

Family

ID=26518311

Family Applications (2)

Application Number Title Priority Date Filing Date
CN96109990.9A Expired - Fee Related CN1084986C (zh) 1995-08-18 1996-08-15 带有失真补偿的放大器及使用此放大器的无线通信基站
CN01135835.1A Expired - Fee Related CN1214670C (zh) 1995-08-18 2001-10-24 带有失真补偿的放大器及使用此放大器的无线通信基站

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN01135835.1A Expired - Fee Related CN1214670C (zh) 1995-08-18 2001-10-24 带有失真补偿的放大器及使用此放大器的无线通信基站

Country Status (2)

Country Link
US (1) US5870668A (zh)
CN (2) CN1084986C (zh)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903823A (en) * 1995-09-19 1999-05-11 Fujitsu Limited Radio apparatus with distortion compensating function
EP0891041B1 (de) * 1997-07-08 2004-03-03 Siemens Aktiengesellschaft Sendeeinrichtung
US6282247B1 (en) * 1997-09-12 2001-08-28 Ericsson Inc. Method and apparatus for digital compensation of radio distortion over a wide range of temperatures
JP2000022658A (ja) * 1998-06-26 2000-01-21 Hitachi Denshi Ltd 複数搬送波変調方式
US6118335A (en) * 1999-05-06 2000-09-12 Nortel Networks Corporation Method and apparatus for providing adaptive predistortion in power amplifier and base station utilizing same
US6246286B1 (en) * 1999-10-26 2001-06-12 Telefonaktiebolaget Lm Ericsson Adaptive linearization of power amplifiers
JP4014343B2 (ja) * 1999-12-28 2007-11-28 富士通株式会社 歪補償装置
US6831954B1 (en) * 2000-02-01 2004-12-14 Nokia Corporation Apparatus, and associated method, for compensating for distortion introduced upon a send signal by an amplifier
JP4502291B2 (ja) * 2000-04-17 2010-07-14 国立大学法人横浜国立大学 移動体通信システム及びこのシステムに使用する基地局
US6628923B1 (en) * 2000-05-03 2003-09-30 Nokia Networks Oy Adaptive phase and amplitude linearization method and apparatus
US6615148B2 (en) * 2000-05-17 2003-09-02 Tektronix, Inc. Streaming distributed test and measurement instrument
US6801581B1 (en) * 2000-09-13 2004-10-05 Intel Corporation DC offset cancellation
US7053702B2 (en) * 2000-11-20 2006-05-30 Soma Networks, Inc. Feed forward amplifier
US6340915B1 (en) 2000-11-20 2002-01-22 Soma Networks, Inc. Feed forward amplifier
CN100423458C (zh) * 2001-01-08 2008-10-01 张火荣 线性调制器及其通信
JP4271444B2 (ja) * 2001-01-31 2009-06-03 富士通株式会社 歪補償装置
WO2002067521A1 (en) 2001-03-29 2002-08-29 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
WO2002101919A1 (fr) * 2001-06-12 2002-12-19 Fujitsu Limited Dispositif de compensation de distorsion
GB2376584B (en) * 2001-06-15 2005-02-16 Wireless Systems Int Ltd Signal correction techniques
JP3835595B2 (ja) * 2001-06-29 2006-10-18 富士ゼロックス株式会社 無線通信装置
GB2377837A (en) * 2001-07-20 2003-01-22 Univ Bristol Mixer linearisation using frequency retranslation
US6614298B2 (en) 2001-08-13 2003-09-02 Soma Networks, Inc. Apparatus and method for controlling adaptive circuits
JP3876408B2 (ja) 2001-10-31 2007-01-31 富士通株式会社 歪補償装置及び歪補償方法
US7657241B2 (en) * 2002-02-01 2010-02-02 Qualcomm, Incorporated Distortion reduction calibration
JP3874688B2 (ja) * 2002-03-29 2007-01-31 富士通株式会社 歪補償装置
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
US8472897B1 (en) 2006-12-22 2013-06-25 Dali Systems Co. Ltd. Power amplifier predistortion methods and apparatus
US6985704B2 (en) * 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
JP3502087B2 (ja) * 2002-05-14 2004-03-02 松下電器産業株式会社 ハイブリッド歪補償方法およびハイブリッド歪補償装置
US7058796B2 (en) * 2002-05-20 2006-06-06 Airdefense, Inc. Method and system for actively defending a wireless LAN against attacks
EP1499027B1 (en) * 2002-05-31 2010-12-01 Fujitsu Limited Distortion compensation apparatus
US6959355B2 (en) * 2003-02-24 2005-10-25 Standard Microsystems Corporation Universal serial bus hub with shared high speed handler
US7349490B2 (en) * 2003-04-16 2008-03-25 Powerwave Technologies, Inc. Additive digital predistortion system employing parallel path coordinate conversion
JP4175503B2 (ja) * 2003-04-18 2008-11-05 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 歪み補償回路及び送信装置
US7720171B2 (en) * 2003-06-13 2010-05-18 Alcatel-Lucent Usa Inc. Coefficient estimation method and apparatus
JP4505238B2 (ja) * 2004-02-25 2010-07-21 株式会社日立国際電気 歪補償回路
EP1751851B1 (en) * 2004-05-19 2010-11-03 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Adaptive predistortion method and arrangement
CN100362747C (zh) * 2005-04-07 2008-01-16 上海华为技术有限公司 抑制本振泄漏的电路
TWI289809B (en) * 2005-07-05 2007-11-11 Compal Electronics Inc A method for undistorting image frame
JP4935677B2 (ja) * 2005-09-28 2012-05-23 富士通株式会社 歪補償装置
GB2432981B (en) * 2005-11-30 2007-12-27 Motorola Inc Apparatus and method for amplitude variation reduction of a signal
JP4951238B2 (ja) * 2005-12-27 2012-06-13 パナソニック株式会社 極座標変調送信装置及び適応歪補償処理システム並びに極座標変調送信方法及び適応歪補償処理方法
CN101479956B (zh) 2006-04-28 2013-07-31 大力系统有限公司 用于无线通信的高效率线性化功率放大器
JP5242024B2 (ja) * 2006-06-08 2013-07-24 株式会社東芝 歪補償装置、増幅装置、送信装置、歪補償方法
CN102017553B (zh) 2006-12-26 2014-10-15 大力系统有限公司 用于多信道宽带通信系统中的基带预失真线性化的方法和系统
CN101141201B (zh) * 2007-02-28 2012-06-20 中兴通讯股份有限公司 光放大器增益噪声补偿方法和装置
KR101098134B1 (ko) * 2007-03-28 2011-12-26 후지쯔 가부시끼가이샤 왜곡 보정 제어 장치 및 왜곡 보정 제어 방법
KR101099228B1 (ko) * 2007-03-28 2011-12-27 후지쯔 가부시끼가이샤 왜곡 보정 제어 장치 및 왜곡 보정 제어 방법
CN101141203B (zh) * 2007-05-23 2011-10-26 中兴通讯股份有限公司 光传输系统中光放大器增益噪声补偿装置和方法
JP5590547B2 (ja) * 2007-09-20 2014-09-17 国立大学法人富山大学 信号解析方法
EP2051390A3 (en) * 2007-10-18 2011-10-19 Fujitsu Limited A radio transmission apparatus
US8706062B1 (en) * 2008-12-19 2014-04-22 Scintera Networks, Inc. Self-adaptive power amplification
JP5251565B2 (ja) * 2009-02-05 2013-07-31 富士通株式会社 プリディストータ及びその遅延調整方法
US20100323641A1 (en) * 2009-06-22 2010-12-23 Qualcomm Incorporated Method and apparatus for using pre-distortion and feedback to mitigate nonlinearity of circuits
JP5158034B2 (ja) * 2009-08-12 2013-03-06 富士通株式会社 無線装置及び信号処理方法
CN102055503B (zh) * 2009-11-02 2014-04-09 中兴通讯股份有限公司 一种适用于时分双工模式的数字预失真补偿方法及装置
CN103597807B (zh) 2010-09-14 2015-09-30 大理系统有限公司 远程可重新配置的分布式天线系统和方法
JP5459158B2 (ja) 2010-09-21 2014-04-02 富士通株式会社 送信装置及び歪補償方法
JP6207806B2 (ja) * 2011-05-10 2017-10-04 富士通株式会社 歪補償装置及び歪補償方法
CN102510264A (zh) * 2011-11-08 2012-06-20 东南大学 数字下变频器及其实现方法
CN103379504B (zh) * 2012-04-16 2018-08-14 中兴通讯股份有限公司 一种分布式基站系统及其数据处理的方法
CN102664684B (zh) * 2012-04-23 2015-04-08 电子科技大学 一种60GHz RoF接入系统的无线终端收发机
JP6064374B2 (ja) 2012-05-30 2017-01-25 富士通株式会社 歪補償装置、および、歪補償方法
JP2014239309A (ja) * 2013-06-06 2014-12-18 富士通オプティカルコンポーネンツ株式会社 光送信装置、光受信装置、および光送受信装置
US9379744B2 (en) 2014-09-16 2016-06-28 Honeywell International Inc. System and method for digital predistortion
JP6358024B2 (ja) 2014-10-02 2018-07-18 富士通株式会社 光送信器および波形歪みを補正する方法
JP6413795B2 (ja) * 2015-01-23 2018-10-31 富士通株式会社 歪補償装置
CN104811215B (zh) * 2015-04-14 2017-10-10 华南理工大学 一种iq不平衡补偿装置和方法
JP2017098711A (ja) * 2015-11-20 2017-06-01 富士通株式会社 歪補償装置および歪補償方法
JP6206545B1 (ja) * 2016-06-17 2017-10-04 Nttエレクトロニクス株式会社 伝送特性補償装置、伝送特性補償方法及び通信装置
CN106571778A (zh) * 2016-11-01 2017-04-19 航天恒星科技有限公司 一种Ka波段上变频装置和上变频方法
JP6699901B2 (ja) * 2016-12-27 2020-05-27 株式会社東芝 通信装置および通信装置の直交誤差測定方法
CN107977044B (zh) * 2018-01-17 2023-09-01 优利德科技(中国)股份有限公司 一种dds信号发生器及其线性插值方法
CN111200403B (zh) * 2018-11-19 2023-07-07 深南电路股份有限公司 相位补偿电路、方法及运算放大器
US11592339B2 (en) * 2019-12-27 2023-02-28 Intel Corporation Device and method for determining a model related to a temperature shift
CN114374315B (zh) * 2022-01-13 2023-07-11 扬州海科电子科技有限公司 面向小型化开关稳压器的调制器
CN115684694A (zh) * 2022-10-31 2023-02-03 无锡核力电科技术有限公司 一种提高加速器束流强度测量信噪比的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114847A (zh) * 1993-08-20 1996-01-10 莫托罗拉公司 具有功率放大器线性化电路的无线电发射机
GB9320078D0 (en) * 1993-09-29 1993-11-17 Linear Modulation Tech Cartesian amplifier power control and related applications
US5574992A (en) * 1994-04-29 1996-11-12 Motorola, Inc. Method and apparatus for reducing off-channel interference produced by a linear transmitter
US5579342A (en) * 1994-09-22 1996-11-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Communications Pre-compensated frequency modulation (PFM)

Also Published As

Publication number Publication date
US5870668A (en) 1999-02-09
CN1154023A (zh) 1997-07-09
CN1214670C (zh) 2005-08-10
CN1395438A (zh) 2003-02-05

Similar Documents

Publication Publication Date Title
CN1084986C (zh) 带有失真补偿的放大器及使用此放大器的无线通信基站
CN1409497A (zh) 失真补偿装置
CN1188945C (zh) 放大器的校准装置及校准方法
CN1255938C (zh) 线性功率放大方法和线性功率放大器
CN100345401C (zh) 抑制多载波发送信号峰值的方法和多载波发送信号发生电路
CN1210863C (zh) n端口接线装置和用于处理已调制数字射频信号的方法
CN1249932C (zh) 通信装置及通信方法
CN101076004A (zh) 无线通信装置
CN1111986C (zh) 测量接收的信噪比的方法、设备及传输功率控制系统
CN1750531A (zh) 失真补偿正交调制器和无线发送器
CN1249913C (zh) 预失真类型的失真补偿放大设备
CN1593005A (zh) 非线性建模方法
CN1700591A (zh) 预失真器
CN1465151A (zh) 自动增益控制电路及其方法以及利用它们的解调装置
CN101080868A (zh) 前置补偿器
CN1921325A (zh) 无线通信系统内对接收信号预测的系统和方法
CN1380778A (zh) Ofdm信号传输系统、ofdm信号发送装置及ofdm信号接收装置
CN1547801A (zh) 混合失真补偿方法和混合失真补偿装置
CN1524351A (zh) 无线通信系统中用自适应算法调整组合器权重的方法和装置
CN1488209A (zh) 多径干扰消除设备和多径干扰消除方法
CN1853351A (zh) 放大电路及放大方法
CN1125023A (zh) 基准按照时间规律调制的通信系统的信令包
CN1649254A (zh) 传输电路
CN101039298A (zh) 频分复用收发器设备、波数分割复用收发器设备及其方法
CN1194481C (zh) 无线装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020515

Termination date: 20130815