CN1249913C - 预失真类型的失真补偿放大设备 - Google Patents

预失真类型的失真补偿放大设备 Download PDF

Info

Publication number
CN1249913C
CN1249913C CNB99816688XA CN99816688A CN1249913C CN 1249913 C CN1249913 C CN 1249913C CN B99816688X A CNB99816688X A CN B99816688XA CN 99816688 A CN99816688 A CN 99816688A CN 1249913 C CN1249913 C CN 1249913C
Authority
CN
China
Prior art keywords
signal
amplifier
unit
information
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB99816688XA
Other languages
English (en)
Other versions
CN1352822A (zh
Inventor
马庭透
长谷川刚
河崎义博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN1352822A publication Critical patent/CN1352822A/zh
Application granted granted Critical
Publication of CN1249913C publication Critical patent/CN1249913C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3252Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using multiple parallel paths between input and output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3258Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3294Acting on the real and imaginary components of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/78A comparator being used in a controlling circuit of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

在移动通信中提供失真补偿放大设备。在预失真类型的失真补偿放大设备(9)中,信号振幅改变处理单元(10)包括:一个奇阶部分计算单元(14),用于抽取要发送的信号中包含的振幅值的奇阶乘幂分量,然后输出它们;一个系数信息输出单元(15),能够根据来自外部的信号,选择众多系数信息中的一条信息,然后输出所选信息;一个乘法单元(16),用于将奇阶部分计算单元(14)输出的信号乘以来自系数信息输出单元(15)的系数信息,然后输出一个衰减信号;以及一个加法单元(17),用于从要发送的信号中减去衰减信号并输出结果,从而放大器能够在不超过其饱和区域的范围内运行,减少乱真信号,降低相邻信道功率,并且即使降低访问存储器的频率,也能进行失真补偿操作。

Description

预失真类型的失真补偿放大设备
技术领域
本发明涉及适合用于移动通信的高频电路中使用的预失真类型的失真补偿放大设备。
背景技术
在移动通信中,使用数字移动通信系统来增加频率利用等的效率。在此情况中,由功率放大器的非线性特性引起的失真干扰相邻信道,这是一个问题。为了防止对相邻信道的干扰,需要具有低相邻信道功率(ACP:相邻信道功率)的功率放大器。然而,考虑到线路规模和成本,在线性操作区内使用功率放大器总是不明智的。而是在许多场合中使用预失真(在下文中也称为失真补偿)。
预失真是在将信号输入到放大器(功率放大器:在下文中,有时将功率放大器简称为放大器)时,使用表示该放大器的输入输出特性的反向特性的功能,预先改变要放大的输入信号的一种方法。即,预失真是预先改变要放大的输入信号然后放大该信号的一种技术,从而经过线性化的信号出现在放大器的输出端。
图18表示使用预失真的无线电收发机的示例。在图18所示的无线电收发机50中,在数字信号处理器(DSP:数字信号处理器)51a中调制并预失真要传送的基带信号,其中在DSP 50a中执行失真补偿系数操作过程,以估计功率放大器50c的非线性失真。在正交调制解调部件50b中,将经过处理的基带信号升频为RF(射频)频带。在功率放大器50c中,将预定功率应用于该信号,然后通过合成器50d馈送到天线50d进行发送。
另一方面,在正交调制解调部件50b中,将从功率放大器50c输出的部分信号反馈的调制信号,降频为具有失真部分的基带信号。将转换后的信号输入到数字信号处理器50a中,其中在DSP 50a中执行失真补偿系数操作过程。因此,利用以上环路处理,从天线50e输出没有失真的RF信号。在图18所示的结构中,在基带中执行预失真。以下相对于各等式,参照图19说明基带中的信号处理。
图19表示公知预失真电路(也称为预修正电路)的示例。图19所示的正交调制器60执行失真补偿下述操作过程,正交调制器60包括存储器61和62,乘法器63a、63b、63c和63d,以及加法器64a和64b。通过在软件过程等中访问各自的存储器61和62(利用参考字符61a、61b、61c和61d表示的存储区域,与利用参考字符62a、62b、62c和62d表示的存储区域),使基带信号I和Q经受失真补偿操作过程。在存储器61和62中处理过的信号,在乘法器63a-63d中进行乘法运算,在加法器64a和64b中进行加法运算,然后输出Ipd和Qpd
如等式(1)所示,当放大器的输出为Po(t)时,利用振幅函数f(t)和相位函数g(t)的乘积,表示该输出:
Po(t)=f{Mi(t)}·exp[(-j·g{Mi(t)})·exp(ωt)...(1)
其中,Mi(t)为调制波的振幅值,ω为中心频率,t为时间,j为虚数单位,表示j2=-1。
当正交调制器60的输入信号为I(t)和Q(t)时,利用等式(2)表示输入到放大器的调制波的振幅值x(t)(图19所示的存储区域61a和62a中的操作):
X ( t ) = ( I ( t ) 2 + Q ( t ) 2 ) - - - ( 2 )
利用等式(3)表示放大器输出的调制波部分的振幅值y(t),其中G为增益:
y(t)=G·x(t)...(3)
图12表示放大器的输入输出特性的示例。图12中B1所示部分为不饱和区域,而B2所示部分为饱和区域。由于放大器的饱和特性,输入输出特性在字符A所示位置改变其特性,它是一个具有上极限的函数。为了补偿等式(3)表示的经过放大的输出信号的失真,在正交调制器60内使用振幅函数f(t)的逆函数f1(t)执行失真补偿。利用等式(4)表示经受失真补偿的放大器的输出Ppd(t):
Ppd(t)=f1(y)·exp[j·g{f1(y)}]·exp(ωt)...(4)
即,分别利用等式(5)和(6)表示作为I(t)和Q(T)之变形的Ipd(t)和Qpd(T)(以下分别缩写为Ipd和Qpd):
Ipd={f1(y)/x}·[Icos[g{f1(y)}]-Qsin[g{f1(y)}]]...(5)
Qpd={f1(y)/x}·[Qcos[g{f1(y)}]-Isin[g{f1(y)}]]...(6)
其中,将x(t)和y(t)缩写为x和y。通常,在存储器61和62中存储等式(5)和(6)的输入输出关系,作为图12所示特性的反向特性。按照数字信号的采样时间间隔,频繁引用I(t)和Q(T)的值,得到输出Ipd和Qpd
即,根据图19所示的存储区域61b中的数据确定y,然后根据y以及存储区域61c中的数据,计算等式(5)和(6)中的f1(y)/x。另外,根据存储区域62b中的数据,计算并输出等式(5)中的{f1(y)/x}·I和等式(6)中的{f1(y)/x}·Q。同样,根据存储区域62b中的数据确定y,然后根据y以及存储区域62c中的数据,计算等式(5)和(6)中的g{f1(y)}。另外,根据存储区域62d中的数据,计算并输出等式(5)中的cos[g{f1(y)}]和等式(6)中的sin[g{f1(y)}]。在乘法器63a-63d中计算这些输出的和,然后,在加法器64a和64b中计算其和,并输出变形后的Ipd和Qpd。这样,通过使用预失真电路作为正交调制器60,执行失真补偿,从而使放大器的放大特性大致为线性。
附带地,作为补偿放大器的偏压电路和电源电路(未示出)以及匹配电路的高次谐波附近的频率特性的方法,推荐采用以下方法,即根据输入信号的振幅值的微分值或积分值确定一个系数,然后利用该系数乘以原始信号以得到预失真信号。
图20表示使用输入信号的微分值或积分值的预失真电路的示例。在图20所示的预失真电路70中,在振幅计算单元70a中相对于输入信号I和Q计算解调波的振幅值,在逆函数计算单元70b中计算f1(y),在微分/积分系数信息加法单元70c中计算输入信号的振幅值的微分值或积分值,在系数表70d中获得正确系数,分别在乘法器70e和70f中乘以该系数,然后输出Ipd和Qpd
然而,当在图19和图20所示的电路中执行等式(3)表示的线性化时,失真增大。图23表示线性化放大器的输入输出特性。如图23所示,由于输入输出特性在某个位置(称为位置A)不连续,其中输出在该位置变为饱和区域,所以当输入信号进入该区域时,失真增大,这是一个问题。以下参照图21(a)、21(b)、22(a)和22(b)说明以上失真。
图21(a)表示输入振幅相等的两个波时信号波的示例。图21(b)表示图21(a)所示信号的频谱。如图21(b)所示,该信号只有频率f1和f2部分。
图22(a)表示利用具有图23所示的输入输出特性的放大器放大图21(a)所示的信号时,信号波形的示例。图22(b)表示图22(a)所示信号的频谱。正如图22(b)所示,其问题是在很宽的频率范围内,生成乱真信号。
另外,由于访问存储器的频率等于该信号的采样频率,所以当信号高速改变时,存储器访问赶不上信号,因此难以应用于高速信号。另一个问题是,当由于温度改变或放大器随时间改变而引起特性改变时,图19所示的预失真电路生成的要引用的系数有误差。
发明内容
根据上述情况,本发明提供一种预失真型失真补偿放大设备,包括:一个放大器,用于放大待发送的信号;以及一个信号处理单元,它被设置在所述放大器的前端,用于执行系数改变处理,从而改变所述待发送的信号中包含的振幅数值的乘幂分量的系数信息,并用于输出处理后的信号,其特征在于,所述信号处理单元包括:一个非线性处理单元,用于对所述待发送的信号执行预先获得的其功能表示所述放大器之输入/输出特性的相反特性的处理,并用于输出一个第二信号;一个频率部分衰减单元,用于将所述非线性处理单元输出的所述第二信号转换成为一个频域,衰减需要的频率部分,将经过衰减的信号反向转换成为时域,并输出经过转换的信号;和一个系数乘法单元,用于将所述频率部分衰减单元输出的所述经过转换的信号与所述待发送的信号相比较,将所述振幅值的奇数阶乘幂分量乘以所述需要的系数信息,输出其结果作为从所述信息处理单元输出的所述处理后的信号,所述的信号处理单元利用它所包括的上述三个单元执行所述的系数改变处理,优化所述放大器的输入/输出特性,以使奇数阶分量呈现在所述放大器的输出信号中,还通过向所述放大器输入一个第三信号作为所述的待发送信号以使所述的放大器工作在非饱和区域内,所述的第三信号是将输入信号加上一个第四信号而得出的,所述的第四信号是将奇数阶乘以所述输入信号而得到的所述奇数阶分量再与所述的系数信息相乘而得出的。
因此,能够减少在很宽频率范围内生成的乱真信号,并且降低相邻信道功率。另外,即使放大器的特性由于温度改变而改变或随时间改变,通过比较一部分输出信号和一部分输入信号,计算它们之间的误差,并且在误差较大时重写系数表,能够解决该问题。
信号处理单元对要发送的信号执行具有以下功能的过程,该功能表示放大器的输入输出特性的反向特性,执行系数改变过程,使奇次分量出现在放大器的输出信号中,并且放大器在不饱和区域中运行。
因此,能够防止乱真信号在各种频率中扩散,并且执行失真补偿,而无需具有线性放大特性的外部RF电路。它有助于降低功耗,并使电路规模紧密。另外,放大器的偏压电路、电源电路的偏压电路或匹配电路中高次谐波附近的频率特性,导致精度改善。
当执行系数改变过程时,信号处理能够降低要发送的信号中包含的振幅值的奇次幂部分的影响。
因此,能够降低引起乱真信号问题的相邻信道功率,不再需要具有线性放大特性的外部RF电路,并且能够缩小电路规模,从而有助于降低功耗,并使移动电话更小巧。访问系数表的频率等于用于切换平均输出功率的时间,因此能够利用具有较低存取速度的存储器来构造电路。
附图的简要描述
图1是应用本发明的无线电发射机的发射部件中预失真类型的失真补偿放大设备的框图;
图2是根据本发明之第一实施方式的预失真类型的失真补偿放大设备的框图;
图3是详细表示根据本发明之第一实施方式的预失真类型的失真补偿放大设备的框图;
图4是根据本发明之第一实施方式的第一修改的预失真类型的失真补偿放大设备的框图;
图5是详细表示根据本发明之第一实施方式的第一修改的预失真类型的失真补偿放大设备的框图;
图6是根据本发明之第一实施方式的第二修改的预失真类型的失真补偿放大设备的框图;
图7是详细表示根据本发明之第一实施方式的第二修改的预失真类型的失真补偿放大设备的框图;
图8是根据本发明之第一实施方式的第三修改的预失真类型的失真补偿放大设备的框图;
图9是详细表示根据本发明之第一实施方式的第三修改的预失真类型的失真补偿放大设备的框图;
图10是应用根据本发明之第二实施方式的预失真类型的失真补偿放大设备的无线电发射机的发射部件的框图;
图11是根据本发明之第二实施方式的无线电发射机的框图;
图12表示放大器的输入输出特性示例;
图13(a)表示具有由基础波和三阶部分组成的包络线的信号波形;
图13(b)表示利用放大器放大该信号波形时输出波形的信号频谱;
图14(a)表示具有由基础波、三阶和四阶部分组成的包络线的信号波形;
图14(b)表示利用放大器放大该信号波形时输出波形的信号频谱;
图15表示PDC中标准线性化与根据本实施方式的线性化之间的比较结果;
图16表示CDMA中标准线性化与根据本实施方式的线性化之间的比较结果;
图17是应用根据本发明之第二实施方式的第一修改的预失真类型的失真补偿放大设备的无线电发射机的发射部件的框图;
图18表示使用预失真的无线电收发机的示例;
图19表示公知预失真电路的示例;
图20表示使用输入信号的微分值或积分值的预失真电路的示例;
图21(a)表示输入具有相等振幅的两个波时信号波形的示例;
图21(b)表示该信号的频谱;
图22(a)表示利用放大器放大信号波形时信号波形的示例;
图22(b)表示该信号的频谱;以及
图23表示线性化放大器的输入输出特性。
本发明的最佳实施方式
(A)本发明第一实施方式的说明
图1是应用本发明的无线电发射机的发射部件中预失真类型的失真补偿放大设备的框图。图1所示的无线电发射机包括预失真类型的失真补偿放大设备9和天线13。预失真类型的失真补偿放大设备9,预先利用表示放大器12的输入输出特性的反向特性的功能,使外部电路输入的数字基带信号(要发送的信号)失真,然后放大该信号。预失真类型的失真补偿放大设备9包括一个信号处理单元8和放大器12。天线13发送预失真类型的失真补偿放大设备9输出的无线电信号。放大器12并不直接放大并发送从图1的左端输入的信号,而是在信号处理单元8中累加失真,然后发送。天线13也具有接收功能,本文省略其详细说明。同样,对于稍后在各种实施方式和修改中说明的所有部分,同样具有接收系统的功能,本文将省略接收功能的详细说明,仅仅说明发射系统的功能。
放大器12放大要发送的信号。将信号处理单元8部署在放大器12的前端,以执行系数改变过程,从而改变要发送的信号中包含的振幅值的乘幂分量的系数信息,并且能够输出处理后的新年耗(预失真信号)。这里,放大器12表示功率放大器。在以下说明中,“放大”将表示“功率放大”。
“振幅值”具体表示信号的振幅的数值x(t)(以下缩写为x)。振幅值的“乘幂分量”表示振幅值的三次方项A2·x3或五次方项A4·x5。系数信息为乘幂分量的系数A2或A5,系数为一个包含相位部分的复数。在以下实施方式和修改中,将在相同意义上使用这些术语。在以下说明中,将幂称为三阶或三次方,表示相同内容。
图2是根据本发明之第一实施方式的预失真类型的失真补偿放大设备9的框图。图2所示的预失真类型的失真补偿放大设备9包括一个信号处理单元8和一个放大器12。以信号振幅改变处理单元10的方式,配置信号处理单元8,以便降低要发送的信号中包含的振幅值的奇次幂部分的影响。信号振幅改变处理单元10包含一个奇次幂(奇阶)部分计算单元14,一个系数表(系数信息输出单元)15,一个乘法单元16,一个加法单元17,和一个D/A转换部件11。
奇阶部分计算单元14抽取要发送的信号中包含的振幅值的奇阶乘幂分量,然后输出它们。奇阶部分计算单元14以软件处理方式,从要发送的信号中抽取该部分。附带地,奇阶部分计算单元14包括三次方部分计算单元14a和14b,稍后说明它们。
系数表(系数信息输出单元)15能够根据来自外部的信号,选择众多系数信息中的一条信息,然后输出该信息。对于系数表15,可以使用诸如RAM(随机存取存储器)、快闪ROM(快闪只读存储器)之类的可重写存储器。作为系数信息的值,存储与作为目标的输出功率相对应的系数信息。正如稍后说明的那样,系数表15包含系数表15a和15b。
当改变输出功率时,访问与作为目标的输出功率相对应的系数信息,并乘以该系数。访问频率以切换平均输出功率的时间为单位,与发送信号的速度没有关系。鉴于此,能够利用具有较低存取速度的存储器构造该电路。因此,不要求系数表15以高速运行。
乘法单元16将奇阶部分计算单元14输出的信号乘以来自系数表15的系数信息,然后输出一个衰减信号。正如稍后说明的那样,乘法单元16包括用于每个奇阶部分的许多部分。例如,利用软件实现该功能。
加法单元17从要发送的上述信号中,减去乘法单元16(正如稍后说明的那样,许多乘法单元)输出的衰减信号,然后输出结果。例如,利用软件实现该功能。
D/A转换部件11将加法单元17输出的数字信号,转换为模拟信号,然后输出该信号。
由此,在信号振幅改变处理单元10中,相对于输入的信号(要发送的信号),利用奇阶部分计算单元14,计算输入到放大部件12中的信号中包含的振幅值的奇阶功率值。在乘法单元16中,利用系数信息对计算的值进行加权,并从此数据具有反向相位的衰减信号。另外,在加法单元17中,将加权值添加到输入信号,然后输出输入信号作为处理后的信号。将处理后的信号输入到放大部件12,然后发送。
即,在计算中确定输入信号的功率的失真部分,对获得的信号进行反相,然后乘以系数信息,将结果添加到输入信号中,接着输入到放大器12。由此,除去要输入到放大器12的信号中的奇次幂部分,从而降低输出信号中包含的相邻信道功率。
根据放大器12将发送的平均输出功率,确定系数信息。访问系数信息的频率以切换平均输出功率的时间为单位,从而不要求系数表以高速运行。
图3详细表示奇阶部分计算单元14。图3是详细表示根据本发明之第一实施方式的预失真类型的失真补偿放大设备9的框图。奇阶部分计算单元14(参照图12)包括三次方部分计算单元14a和14b(参照图3)。系数表15(参照图2)包括系数表15a和15b(参照图3)。乘法单元16(参照图2)包括乘法单元16a和16b。
图3所示的加法单元17、D/A转换部件11和放大器12与以上说明相同,因此不再赘述。
辅助奇阶部分部分计算单元27a抽取要发送的信号中包含的振幅值的三次方(三阶)部分的乘幂分量,然后输出它。辅助奇阶部分计算单元27a包括三次方部分计算单元14a,系数表15a,和乘法单元16a。三次方部分计算单元14a抽取要发送的信号中包含的振幅值的三次方部分。系数表15a能够根据来自外部的信号,选择众多系数信息中的一条信息,然后输出该信息。乘法单元16a将三次方部分计算单元14a输出的信号乘以来自系数表15a的系数信息,然后输出一个衰减信号。
同样,辅助奇阶部分部分计算单元27b抽取要发送的信号中包含的振幅值的五次方(五阶)部分的乘幂分量,然后输出它。辅助奇阶部分计算单元27b包括五次方部分计算单元14b,系数表15b,和乘法单元16b。五次方部分计算单元14b抽取要发送的信号中包含的振幅值的五次方部分。系数表15b能够根据来自外部的信号,选择众多系数信息中的一条信息,然后输出该信息。乘法单元16b将五次方部分计算单元14b输出的信号乘以来自系数表15b的系数信息,然后输出一个衰减信号。
例如,利用软件实现辅助奇阶部分部分计算单元27a和27b的功能。系数表15a和15b实际上是上述系数表15中的区域。
尽管未示出,在图3所示的信号振幅改变处理单元10中的奇阶部分计算单元14中,可以另外提供用于七次方的辅助奇阶部分计算单元(未示出),用于九次方的辅助奇阶部分计算单元(未示出),等等。其原因在于计算诸如七次方、九次方之类的高阶部分,从而提高准确性。在此情况中,用于七次方的辅助奇阶部分计算单元包括一个七次方部分计算单元,一个用于七次方的系数表,和一个用于七次方的乘法单元。同样,用于九次方的辅助奇阶部分计算单元包括一个九次方部分计算单元,一个用于九次方的系数表,和一个用于九次方的乘法单元。七次方部分计算单元和九次方部分计算单元的功能与上述三次方部分计算单元14a的功能相同,而用于七次方的系数表和用于九次方的系数表的功能与上述系数表15a的功能相同,因此不再赘述。同样,用于七次方的乘法单元和用于九次方的乘法单元与上述乘法单元16a相同,因此不再赘述。
以下使用等式(7)到(11)说明预失真类型的失真补偿放大设备9内的信号流。假设利用等式(7)表示放大器12的振幅函数f。其中Mi(t)为调制波的振幅值(对应于要发送的信号的振幅值x),G为放大器12
f [ M i ( t ) ] = G ( Σ n = 1 ∞ An · M i ( t ) n ) - - - ( 7 )
的增益,An为n次方的系数信息。附带地,
Figure C9981668800132
表示从n=1累加到无穷。
当相位失真小时,利用等式(8)表示相邻信号功率ACP:
ACP = P i ( t ) · Σ n = 1 ∞ Bn [ M i ( t ) ] - - - ( 8 )
其中,Pi(t)为输入到放大器12的信号波形,Bn[Mi(t)]为第n条系数信息。Bn[Mi(t)]为输入的调制波的振幅值Mi(t)的函数,对应于要发送的信号的振幅值x。当确定调制系统时,可使用An分析确定Bn[Mi(t)]的值。例如,在QPSK(直角相位频移键控或二次相位频移键控)中,利用等式(9)确定Bn[Mi(t)]的值:
        ACP=[(3/4)]A3x2+(1/2)A5x4+…]Pi(t)…(9)
其中A3和A5为x的三阶和五阶系数信息。实际上,由于存在相位失真,所以A3和A5变为包含相位信息的复数。另外,根据平均输出功率确定这些值。实际上,当放大器12具有固定输出时,这些值就足够了。
因此,通过预先从输入信号中减去该值,能够降低相邻信道功率。即,分别在辅助奇阶部分计算单元27a和27b(见图3)中,利用系数信息对三次方和五次方项进行加权。分别利用等式(10)和(11)表示经过变形的(经受预失真处理)的IPD和QPD信号:
       IPD={1-(3/4)A3x2(1/2)A5x4-…}·I...(10)
       QPD={1-(3/4)A3x2(1/2)A5x4-…}·Q...(11)
即,正如从等式(10)和(11)中看到的那样,振幅值的奇阶乘幂分量的影响变小。
借助以上结构,输入到预失真类型的失真补偿放大设备9的信号流如下。
在辅助奇阶部分计算单元27a中的三次方部分计算单元14a中,抽取要发送的信号中包含的振幅值x的三次方部分A3·x3。在乘法单元16a中,利用系数表15a输出的系数信息,乘以三次方部分计算单元14a输出的信号,然后输出一个衰减信号。同样,在辅助奇阶部分计算单元27b中的五次方部分计算单元14b中,抽取要发送的信号的振幅值x的五次方部分A5·x5。在乘法单元16b中,利用系数表15b输出的系数信息,乘以五次方部分计算单元14b输出的信号,然后输出一个衰减信号。在加法单元17中,从要发送的原始信号中,减去辅助奇阶部分计算单元27a和27b输出的衰减信号,从而输出一个其三次方和五次方部分之影响变小的信号。另外,在D/A转换部件11中,将加法单元17输出的数字信号转换为模拟信号,在放大器12进行功率放大,然后从天线13(见图1)发送。
这样,在计算中确定引起乱真信号问题的信号的奇次方失真部分,对信号的相位进行反相,乘以系数信息,并累加到输入信号,然后输入到放大器12,从而降低放大器12的相邻信道功率。所以,不再需要具有线性特性的外部RF电路,并且缩小电路规模,这有助于降低功耗,并使移动电话更小巧。
当改变输出功率时,根据系数表15a和15b,访问与作为目标的输出功率相对应的系数信息,并进行加权。由于访问频率以切换平均输出功率的时间为单位,访问存储器的间隔与发送信号的速度没有关系。能够利用具有较低存取速度的存储器构造该电路。(A1)本发明之第一实施方式的第一种修正的说明
上述信号处理单元8的结构可以为其他结构。以下将在第一到第三修改中说明上述信号处理单元8的修改。
图4是根据本发明之第一实施方式的第一修改的预失真类型的失真补偿放大设备9a的框图。图4所示的预失真类型的失真补偿放大设备9a包括一个信号处理单元8a和一个放大器12。信号处理单元8a包括一个信号振幅改变处理单元10和一个控制单元20。
如上所述,信号振幅改变处理单元10输出一个信号,以致降低要发送的信号中包含的振幅值的奇阶乘幂分量的影响。信号振幅改变处理单元10包括一个奇阶部分计算单元14,一个系数表15,一个乘法单元16,一个加法单元17,和一个D/A转换部件11。在奇阶部分计算单元14中,从要发送的信号中抽取振幅值的奇阶部分,输出根据该值计算的信号,通过将该输出信号乘以具有该输出信号的相反相位的系数信息,获得衰减信号,并输出该衰减信号。附带地,除奇阶部分计算单元14之外,系数表15、乘法单元16、加法单元17和D/A转换部件11,均与以上说明的部件相同,因此不再赘述。放大器12也与以上说明的部件相同,因此也不再赘述。
控制单元20除向信号振幅改变处理单元10输入用于选择奇阶乘幂分量的系数信息的第一地址信号之外,还可变地调整处理后的信号的数值,然后将其输入到放大器12。控制单元20包括一个可变衰减单元19和一个输出功率控制单元18。
可变衰减单元19能够利用输出功率控制单元18可变地调整处理后的信号的数值,然后将其输入到放大器12。例如,利用可变电阻实现此功能。
输出功率控制单元18除向信号振幅改变处理单元10输入用于选择系数信息的第一地址信号之外,还能够控制可变衰减单元19。例如,利用软件实现此功能。输出功率控制单元18按照来自主控制单元(未示出)的正确定时,将第一地址信号,输入到信号振幅改变处理单元10内的系数表15,从而从系数表15输出正确的系数信息。附带地,根据放大器12将要发送的平均输出功率,确定该系数信息,从而不要求系数表15以与采样间隔一样的速度运行。
在图5中,更详细地表示信号振幅改变处理单元10。图5是详细表示根据本发明之第一实施方式的第一修改的预失真类型的失真补偿放大设备9a的框图。图5所示的预失真类型的失真补偿放大设备9a包括信号处理单元8a和放大器12。信号处理单元8a中的信号振幅改变处理单元10包括:辅助奇阶部分计算单元27a和27b,加法单元17,和D/A转换部件11。
辅助奇阶部分计算单元27a包括一个三次方部分计算单元14a,一个系数表15a和一个乘法单元16a。辅助奇阶部分计算单元27b包括一个五次方部分计算单元14b,一个系数表15b和一个乘法单元16b。这些部件与以上所述部件相同,因此不再赘述。
为了通过计算诸如七次方、九次方之类的高阶部分以提高准确性,可以在图5所示的信号振幅改变处理单元10中,另外提供用于七次方的辅助奇阶部分计算单元(未示出),用于九次方的辅助奇阶部分计算单元(未示出),等等。在此情况中,用于七次方的辅助奇阶部分计算单元包括一个七次方部分计算单元,一个用于七次方的系数表,和一个用于七次方的乘法单元,而用于九次方的辅助奇阶部分计算单元包括一个九次方部分计算单元,一个用于九次方的系数表,和一个用于九次方的乘法单元。七次方部分计算单元和九次方部分计算单元的功能与上述三次方部分计算单元14a的功能相同,而用于七次方的系数表和用于九次方的系数表的功能与上述系数表15a的功能相同,因此不再赘述。用于七次方的乘法单元和用于九次方的乘法单元与上述乘法单元16a相同,因此不再赘述。
在图5中,相同参考字符表示具有相同或相似功能的相同或相应部分,因此不再赘述。
在辅助奇阶部分计算单元27a中,利用三次方部分计算单元14a,计算已经输入到信号振幅改变处理单元10的、要发送的信号中包含的振幅值的三阶乘幂分量的值,并从乘法单元16a输出通过将该计算值乘以系数信息获得的信号。同样,在辅助奇阶部分计算单元27b中,利用五次方部分计算单元14b,计算该信号中包含的振幅值的五阶乘幂分量的值,并从乘法单元16b输出通过将该计算值乘以系数信息获得的信号。在加法单元17中,累加乘法单元16a和16b输出的加权信号与该输入信号,并输出其结果作为处理后的信号。在D/A转换部件11中,将处理后的信号从数字转换为模拟。接着,在控制单元20中的可变衰减单元19中,将该信号调整为适当数值,输入到放大部件12中,然后从天线13(见图1)发送。
借助上述结构,能够降低要发送的信号中包含的振幅值的奇阶乘幂分量的影响,并控制放大器12的输出功率值。即,在计算中确定要发送的信号的失真功率部分,然后从输入信号中减去通过将该部分乘以具有相反相位的系数信息所获得的信号。
根据来自主控制单元(未示出)的指令,利用输出功率控制单元18输出的信号,调整输出功率的数值。在可变衰减单元19中,将处理后的信号调整为适当数值,然后输入到放大器12。当改变输出功率的数值时,根据系数表15(或15a或15b),访问与作为目标的输出功率相对应的系数信息,并进行加权。
这样,能够降低引起乱真信号问题的相邻信道功率。因此,不再需要具有线性特性的外部RF电路,并且能够缩小电路规模。所以,有助于降低功耗,并使移动电话更小巧。由于访问系数表15(或15a或15b)的频率以用于切换平均输出功率的时间为单位,因此能够利用具有较低存取速度的存储器来构造电路。
(A2)本发明之第一实施方式的第二种修正的说明
图6是根据本发明之第一实施方式的第二修改的预失真类型的失真补偿放大设备9b的框图。图6所示的预失真类型的失真补偿放大设备9b包括一个信号处理单元8b和一个放大器12。将检测部件22部署在放大器12的输出端。信号处理单元8b包括一个信号振幅改变处理单元10和一个控制单元20,以及一个振幅信息比较单元21和一个A/D转换器23。
如上所述,信号振幅改变处理单元10输出一个处理后的信号,以致降低要发送的信号中包含的振幅值的奇阶乘幂分量的影响。信号振幅改变处理单元10包括一个奇阶部分计算单元14,一个系数表15,一个乘法单元16,一个加法单元17,和一个D/A转换部件11。这些部件与以上所述部件相同,因此不再赘述。在奇阶部分计算单元14中,从要发送的信号中抽取振幅值的奇阶部分,输出根据该值计算的信号,通过将该信号乘以具有该输出信号的相反相位的系数信息,获得衰减信号,并输出该衰减信号。
如上所述,控制单元20除向信号振幅改变处理单元10输入用于选择奇阶乘幂分量的系数信息的第一地址信号之外,还可变地调整处理后的信号的数值,然后将其输入到放大器12。控制单元20包括一个可变衰减单元19和一个输出功率控制单元18。这些部件的功能与以上所述功能相同,因此不再赘述。输出功率控制单元18按照来自主控制单元(未示出)的正确定时,将第一地址信号,输入到信号振幅改变处理单元10内的系数表15,从而从系数表15输出正确的系数信息。附带地,根据放大器12将要发送的平均输出功率,确定该系数信息。不要求系数表15以高速运行。
A/D转换器23将模拟信号转换为数字信号。
振幅信息比较单元21,能够将根据要发送的信号以及放大器12输出的信号生成的第一选择信号,输入到信号振幅改变处理单元10。振幅信息比较单元21包括一个输入振幅计算单元21a,一个输出振幅计算单元21c和一个比较重写部件21b。
输入振幅计算单元21a从要发送的信号中抽取振幅值,然后输出输入振幅信息。输出振幅计算单元21c从放大器12输出的信号中抽取振幅值,然后输出输出振幅信息。
比较重写部件21b能够根据输出振幅信息和输入振幅信息之间的误差,将第一选择信号输入到信号振幅改变处理单元10。当输入振幅信息小于输出振幅信息时,比较重写部件21b将第一选择信号输入到信号振幅改变处理单元10,以便重写系数表15中的系数信息,以致该系数信息变得较大。当输入振幅信息大于输出振幅信息时,比较重写部件21b将第一选择信号输入到信号振幅改变处理单元10,以便重写系数表15中的系数信息,以致该系数信息变得较小。从而校正存储器的误差。
检测部件22监视放大器12的输出信号的数值,降低放大器12放大的信号的增益,然后输出它。通过使用一个方向耦合器22a实现此功能。方向耦合器22a能够将放大器12放大的信号的增益降低例如20dB,然后输出该信号。将一个50Ω的输出终结器22b连接到方向耦合器22a。尽管检测部件22使用方向耦合器22a,但本发明并不限于此示例,也可以采用不同的检测方法。
在A/D转换器23中,将检测部件22输出的模拟信号转换为数字信号,然后输入到输出振幅计算单元21c,在部件21c中监视输出信号的数值。即,分流一部分输入信号,分流放大器12的一部分输出,然后在比较重写部件21b中比较该输入部分和输出部分。当它们之间的误差较大时,输出第一选择信号,从而重写系数表15。因此,能够处理放大器12的特性由于温度改变而改变或随时间改变。其目的是改正存储器的误差,比该信号的采样时间长的时间间隔足以访问系数表15。
在图7中,更详细地表示信号振幅改变处理单元10。图7是详细表示根据本发明之第一实施方式的第二修改的预失真类型的失真补偿放大设备9b的框图。信号处理单元8b中的信号振幅改变处理单元10包括:辅助奇阶部分计算单元27a和27b,以及加法单元17和D/A转换部件11。
辅助奇阶部分计算单元27a包括一个三次方部分计算单元14a,一个系数表15a和一个乘法单元16a。辅助奇阶部分计算单元27b包括一个五次方部分计算单元14b,一个系数表15b和一个乘法单元16b。这些部件与以上所述部件相同,因此不再赘述。
为了通过计算诸如七次方、九次方之类的高阶部分以提高准确性,可以在图7所示的信号振幅改变处理单元10中,另外提供用于七次方的辅助奇阶部分计算单元(未示出),用于九次方的辅助奇阶部分计算单元(未示出),等等。在此情况中,用于七次方的辅助奇阶部分计算单元包括一个七次方部分计算单元,一个用于七次方的系数表,和一个用于七次方的乘法单元,而用于九次方的辅助奇阶部分计算单元包括一个九次方部分计算单元,一个用于九次方的系数表,和一个用于九次方的乘法单元。七次方部分计算单元和九次方部分计算单元的功能与上述三次方部分计算单元14a的功能相同,而用于七次方的系数表和用于九次方的系数表的功能与上述系数表15a的功能相同,因此不再赘述。用于七次方的乘法单元和用于九次方的乘法单元与上述乘法单元16a相同,因此不再赘述。
在图7中,相同参考字符表示与以上所述相同或具有相同功能的部分,因此不再赘述。
在信号振幅改变处理单元10中,计算输入到放大器12的发送信号中包含的振幅值的三阶和五阶乘幂分量的值,将计算的值乘以系数信息,从而进行加权。在加法单元17中,将加权后的值累加到输入信号,从而获得处理后的信号。在控制单元20中的可变衰减单元19中,衰减处理后的信号,将其输入到放大器12,然后进行发送。
在输出振幅计算单元21c中,计算放大器12的输出信号的振幅值的数值,然后输出输出振幅信息。在输入振幅计算单元21a中,抽取要发送的信号的振幅值的数值,然后输出输入振幅信息。在比较重写部件21b中,比较输出振幅信息和输入振幅信息。当输入振幅信息小于输出振幅信息时,比较重写部件21b根据输出振幅信息和输入振幅信息之间的误差,输入第一选择信号,以便重写信号振幅改变处理单元10中系数表15(或15a或15b)中的系数信息,从而该系数信息变得较大。当输入振幅信息大于输出振幅信息时,比较重写部件21b输入第一选择信号,以便重写信号振幅改变处理单元10中系数表15(或15a或15b)中的系数信息,从而该系数信息变得较小。正如图7所示,将第一选择信号输入到不同次幂的系数表15a和15b中。
利用以上结构,在计算中确定信号的奇次方的失真部分,对该部分的相位进行反相,乘以系数信息,并将结果累加到输入信号中,然后将该输入信号输入到放大器12。从而降低要发送的信号中包含的振幅值的奇阶乘幂分量的影响。
另一方面,控制放大器12中输出功率的数值。根据来自主控制单元(未示出)的指令,利用输出功率控制单元18输出的信号,调整输出功率的数值。即,在可变衰减单元19中,将处理后的信号调整为适当数值,然后输入到放大器12。另外,当改变输出功率的数值时,根据系数表15(或15a或15b),访问与作为目标的输出功率相对应的系数信息,并进行加权。
比较放大器12的输入部分和输出部分。重写系数表15(或15a或15b),以致当输入较小时,该系数信息变得较大,而当输入较大时,该系数信息变得较小。从而校正要输出的值。
这样,降低了发送信道中引起乱真信号问题的相邻信道功率。另外,能够在不需要外部RF电路的情况下构造失真补偿电路,从而有助于降低功耗,并使移动电话更小巧。
通过比较输入和输出信号的振幅值的数值,校正存储器的误差,从而能够以比该信号之采样时间长的时间间隔,访问系数表15(或15a或15b)。因此,能够利用具有较低存取速度的存储器构造该电路。
(A3)本发明之第一实施方式的第三修改的说明
图8是根据本发明之第一实施方式的第三修改的、图8所示的预失真类型的失真补偿放大设备9c的框图。预失真类型的失真补偿放大设备9c包括一个信号处理单元8c和一个放大器12。将检测部件22安装在放大器12的输出端。信号处理单元8c包括一个信号振幅改变处理单元10a,一个控制单元20,一个振幅信息比较单元21,一个微分/积分系数信息加法单元26和一个A/D转换器23。
信号振幅改变处理单元10a能够输出一个处理后的信号,以致降低要发送的信号中包含的振幅值的奇阶乘幂分量的影响。信号振幅改变处理单元10a包括一个奇阶部分计算单元14,一个系数表15,一个乘法单元16,一个加法单元17,和一个D/A转换部件11。另外,信号振幅改变处理单元10a还包括一个部署在加法单元17之输出端的乘法单元25。乘法单元25将加法单元17输出的信号,乘以微分/积分系数信息加法单元26输出的第二系数信息。在图9中,更详细地表示奇数次数部分计算单元14。
图9是详细表示根据本发明之第一实施方式的第三修改的预失真类型的失真补偿放大设备9c的框图。图9所示的信号处理单元10a包括:辅助奇阶部分计算单元27a和27b,以及加法单元17,D/A转换部件11和乘法单元25。加法单元17、D/A转换部件11以及乘法单元25与以上所述部件相同,因此不再赘述。
为了提高操作的准确性,信号振幅改变处理单元10a可以另外包括用于七次方的辅助奇阶部分计算单元(未示出),用于九次方的辅助奇阶部分计算单元(未示出)。在此情况中,用于七次方的辅助奇阶部分计算单元包括一个七次方部分计算单元,一个用于七次方的系数表,和一个用于七次方的乘法单元,而用于九次方的辅助奇阶部分计算单元包括一个九次方部分计算单元,一个用于九次方的系数表,和一个用于九次方的乘法单元。七次方部分计算单元和九次方部分计算单元的功能与上述三次方部分计算单元14a的功能相同,而用于七次方的系数表和用于九次方的系数表的功能与上述系数表15a的功能相同,因此不再赘述。用于七次方的乘法单元和用于九次方的乘法单元与上述乘法单元16a相同,因此不再赘述。
即,在信号振幅改变处理单元10a中,在乘法单元16a中将三次方部分计算单元14a输出的信号,乘以具有相反相位的系数信息,而在乘法单元16b中将五次方部分计算单元14b输出的信号,乘以具有相反相位的系数信息。在信号振幅改变处理单元10a的加法单元17中,运用乘法器16a和16b的输出,然后输出一个衰减信号。将该衰减信号乘以从微分/积分系数信息加法单元26输入的第二系数信息,然后输出处理后的信号。
另一方面,微分/积分系数信息加法单元26能够根据要发送的信号的振幅值,计算第一微分/积分信息,根据放大器12输出的信号的振幅值,计算第二微分/积分信息,然后将根据上述第一微分/积分信息和上述第二微分/积分信息获得的第二系数信息,输入到信号振幅改变处理单元10a。
微分/积分信息是一个微分系数,如信号的振幅值数值的差分值,固定时间内信号的振幅值的积分值,其组合等。
第二系数信息表示微分/积分系数信息加法单元26输出的系数信息,用于补偿放大器12的偏压电路(未示出)、或电源电路中的偏压电路、抑或匹配电路中高频附近的频率特性。附带地,区分第二系数信息与上述系数表15(或15a或15b)输出的系数信息。在以下说明中,以上系数信息相同。
微分/积分系数信息加法单元26包括一个第一微分/积分信息计算单元26a,一个第二微分/积分信息计算单元26d,一个第二系数表(第二系数信息输出单元)26c,和一个第二比较重写部件26b。
第一微分/积分信息计算单元26a,除能够将根据要发送的信号的振幅值获得的第二地址信号输入到第二系数表26c之外,还能够根据要发送的信号的振幅值,计算第一微分/积分信息。第二微分/积分信息计算单元26d根据放大器12输出的信号的振幅值,计算第二微分/积分信息,然后输出该信息。
第二系数表26c能够根据第二地址信号,选择众多系数信息中的一条信息,并作为第二系数信息,输出到信号振幅改变处理单元10a。
第二比较重写部件26b根据上述第一微分/积分信息和上述第二微分/积分信息之间的误差,重写第二系数信息。第二比较重写部件26b比较第一微分/积分信息和上述第二微分/积分信息,并重写第二系数信息,以致它们之间的误差变得较小。例如,根据为要发送的信号的一部分并且为放大器12的输出信号的一部分的信号,计算这些信号的振幅值的二次方的正负微分系数的绝对值,并重写第二系数信息,以使它们之间的误差为零。附带地,作为重写方法,可以采样除上述方法之外的其他方法。
在微分/积分信息加法单元26中的第一微分/积分信息计算单元26a中,计算输入信号振幅值数值的微分系数或积分系数。将根据该微分系数或积分系数的数值确定的第二系数信息,从第二系数表26c输入到信号振幅改变处理单元10a中的乘法器25。在乘法单元25中,将加法单元17的输出端的衰减信号乘以第二系数信息,并作为处理后的信号输出。处理后的信号用于补偿放大器12的偏压电路(未示出)、电源电路的偏压电路(未示出)或匹配电路中高频附近的频率特性。
在图8和9中,相同参考字符表示其功能与以上所述功能相同或相似的部件,因此不再赘述。
在信号振幅改变处理单元10a中,计算将要输入到放大器12的发送信号中包含的振幅值的奇阶乘幂的值,将计算的值乘以系数信息,从而进行加权。将加权后的值累加到输入信号,然后从加法单元17输出该输入信号,作为处理后的信号。在控制单元20中的可变衰减单元19中,衰减处理后的信号,将其输入到放大器12,然后进行发送。
按照来自主控制单元(未示出)的正确定时,输出功率控制单元18将第一地址信号,输入到信号振幅改变处理单元10a中系数表15a和15b,从而从系数表15a和15b输出正确系数信息。根据放大器12将发送的平均输出功率,确定该系数信息。不要求系数表15a和15b以高速运行。
将经过分流的一部分输入,输入到第一微分/积分信息计算单元26a。将根据该计算值导出的第二系数信息,从第二系数表26c输入到信号振幅改变处理单元10a。在乘法单元25中,将来自加法单元17的处理后的信号,乘以第二系数信息,然后经过D/A转换部件11,输出该结果。在可变衰减单元19中,将该结果调整为适当数值,将其输入到放大器12,然后从天线13(见图1)发送。
另一方面,在检测部件22中,降低放大器12的输出信号部分的增益,然后经由A/D转换部件23,将该部分输出信号,输入到振幅信息比较单元21,以及微分/积分系数信息加法单元26。在振幅信息比较单元21中,比较输入部分和输出部分。当它们之间的误差较大时,重写系数表15a和15b中的系数信息。
在微分/积分系数信息加法单元26中,根据放大器12的输入部分和输出部分,计算二次方的正负微分系数的绝对值。重写第二系数表26c中的第二系数信息,以使它们之间的差值为零。
利用以上结构,能够降低要发送的信号中包含的振幅值的奇阶乘幂分量的影响,并控制放大器12的输出功率值。即,在计算中确定要发送的信号的功率的失真部分,然后从输入信号中减去通过将该部分乘以具有相反相位的系数信息所获得的信号。根据从输入信号和输出信号中检测的误差,校正经过减法运算获得的值,然后输入到放大器12。
根据来自主控制单元(未示出)的指令,利用输出功率控制单元18输出的控制信号,将输出功率调整为适当数值,然后输出到放大器12。当改变输出功率时,根据系数表15a和15b,访问与作为目标的输出功率相对应的系数信息,并进行加权。
另外,比较放大器12的输入部分和输出部分。校正系数表15a和15b输出的值,以致当输入较小时,系数信息变得较大,而当输入较大时,系数信息变得较小。
如上所述,能够降低引起乱真信号问题的发送信道的相邻信道相功率。另外,能够在不需要外部RF电路的情况下构造失真补偿电路,从而有助于降低功耗,并使移动电话更小巧。
如上所述,由于重写系数表15a和15b,以及第二系数表26c,由此校正存储器的误差,所以能够处理放大器12的特性由于温度改变而改变或随时间改变。由于比信号的采样时间更长的时间间隔足以访问系数表15a和15b,以及第二系数表26c,所以能够利用具有较低存取速度的存储器构造该电路。
微分/积分系数信息加法单元26,比较通过使用输入信号的微分值、积分值或二者获得的值与通过使用输出信号的微分值、积分值或二者获得的值,从而重写第二系数表26c,以使它们之间的误差变小。因此,能够处理放大器12的特性由于温度改变而改变或随时间改变。
如上所述,补偿放大器12的偏压电路(未示出)、电源电路的偏压电路(未示出)或匹配电路中高频附近的频率特性,从而提高准确性。另外,能够处理放大器12的特性由于温度改变而改变或随时间改变。
(B)本发明之第二实施方式的说明
图10是应用根据本发明之第二实施方式的预失真类型的失真补偿放大设备的无线电发射机的发射部件的框图。图10所示的无线电发射机包括一个预失真类型的失真补偿放大设备9d和一个天线13。
预失真类型的失真补偿放大设备9d包括一个信号处理单元30和一个放大器12。信号处理单元30对要发送的信号,执行其功能表示放大器12之输入输出特性的相反特性的过程,执行系数改变过程,从而奇阶部分出现在放大器12的输出信号中。因此,放大器12在不饱和区域中运行。这里,“放大器12在不饱和区域中运行”表示放大器12在放大器12的输入输出特性的不饱和区域范围内运行,稍后说明其细节。信号处理单元30包括一个非线性处理单元41,一个预失真处理单元32和一个D/A转换部件11。
非线性处理单元41对要发送的信号,执行预先获得的其功能表示放大器12之输入输出特性的相反特性的过程,然后输出该信号。预失真处理单元32将非线性处理单元41处理的输出,乘以预定系数信息,然后输出其结果作为处理后的信号。在非线性处理单元41和预失真处理单元32中,执行数字处理。D/A转换部件11将数字信号转换为模拟信号。附带地,放大器12和天线13与以上所述部件相同,因此不再赘述。
图11是根据本发明之第二实施方式的无线电发射机的框图。图11所示的预失真处理单元32包括一个频率部分衰减单元33,和一个系数乘法单元34,频率部分衰减单元33将非线性处理单元41输出的信号,转换为频域,衰减所需的频率部分,将经过衰减的信号反向转换为时域,并输出经过转换的信号,系数乘法单元34(表示为图11中的多项式逼近),比较频率部分衰减单元33输出的经过转换的信号与要发送的信号,将振幅值的奇阶乘幂分量乘以所需的系数信息,然后输出其结果作为处理后的信号。
频率衰减单元33包括一个快速傅立叶变换部件33a,一个过滤器33b和一个反向快速傅立叶变换部件33c,部件33a将非线性处理单元41输出的信号转换为频域,过滤器33b衰减所需的频率部分,然后输出它,部件33c将经过衰减的信号反向转换为时域,然后输出它。
以下参照图11,说明在预失真部件32中确定有关非线性部分的系数信息的方法。首先,利用y=Gx计算理想输入波形的变形,从而使其相邻信道功率变大(指利用A1表示的帧)。接着,使用FFT(快速傅立叶变换)将变形结果转换到频域(指利用A2表示的帧),过滤希望降低其漏泻功率的频率部分以进行衰减(指利用A3表示的帧),使用反向FFT将该结果恢复到时域,比较时间波形与输入波形,使用多项式逼近该输入输出,从而确定系数信息。
图12表示放大器的输入输出特性示例。图12中的水平轴表示输入功率(dB),二垂直轴表示输出功率(dB)。B1表示的部分为不饱和区域,而B2表示的部分为饱和区域。
“在不饱和区域中运行”的含义为:图12所示的放大器12的输入输出特性在某个点(指A)不连续,其中输出在该位置变为饱和区域(指B2)。在对放大器12进行线性化的情况中,为了消除高阶部分在不连续点的失真的影响,在对放大器12进行线性化时,微弱保留三阶、五阶、或奇阶非线性部分,从而优化其输入输出特性。放大器12在不饱和区域(指B1)中运行,以防止乱真信号在各种频率中传播。
图13(a)表示具有由基础波和三阶部分组成的包络线的信号波形。正如图13(a)所示,如果将该三阶部分信号累加到具有相等振幅值的两个波的信号中,则放大器12进行放大时,能够创建其输出电平不超过饱和区域的信号。由于三阶部分是通过将该信号自乘到三次幂创建的,所以将该信号的三次幂乘以正确的系数信息,然后将该结果累加到原始信号中。
图13(b)表示利用具有图12所示输入输出特性的放大器12放大图13(a)所示的信号波形时,输出波形的信号频谱。正如图13(b)所示,信号频谱不会溢出饱和区域,不会产生多种频率的乱真部分。即,在保持三阶非线性部分时,通过按上述方式优化放大器12的输入输出特性,防止乱真部分在多种频率中传播。
图14(a)表示具有由基础波、三阶和四阶部分组成的包络线的信号波形。正如图14(a)所示,如果将该三阶和五阶部分信号累加到具有相等振幅值的两个波的信号中,则放大器12进行放大该信号时,能够创建其输出电平不超过饱和区域的信号。由于三阶部分是通过将该信号自乘到三次幂创建的,而五阶部分是通过将该信号自乘到五次幂创建的,所以将该信号的三次幂和五次幂乘以正确的系数信息,然后将该结果累加到原始信号中。
图14(b)表示利用具有图12所示输入输出特性的放大器12放大图14(a)所示的信号波形时,具有输出波形的信号频谱。正如图14(b)所示,不会产生多种频率的乱真部分。即,在保持三阶和五阶非线性部分时,通过按上述方式优化放大器12的输入输出特性,就不会超过饱和区域。
在图11中,在非线性处理单元41中,对输入的基带信号,执行预先获得的其功能表示放大器12之输入输出特性的相反特性的过程,然后输出。在频率部分衰减单元33中过滤该输出信号,然后输出。在系数乘法单元34中,比较输入的基带信号和频率部分衰减单元33输出的信号,将振幅值的奇阶乘幂分量乘以所需的系数,然后通过D/A转换部件11输出该结果,作为处理后的信号。在放大器12中,对处理后的信号进行功率放大,然后从天线13(参见图10)无线发射。
利用以上结构,按以下方式使用放大器12,即根据本实施方式,放大器12在不饱和区域中运行。例如,以下将以PDC(个人数字蜂窝电信系统)和CDMA(码分多址)为例,参照图15和16进行说明。
以下为将PDC应用于移动电话标准的示例。即,按照等式(12)对输入输出特性(参见图12)进行变形:
y=G(x-9.5858×10-2x3+6.2532×10-3x5-2.0519×10-4x7+2.5791×10-6x9)…(12)
其中,y为输出的调制波分量的数值,G为放大器12的增益。
图15表示PDC中标准线性化与根据本实施方式的线性化之间的比较结果。图15中的水平轴表示放大器12的输出功率,而垂直轴表示输出功率的相邻信道功率。利用图15所示的差号标记的曲线表示采用y=Gx的标准变形,而利用圆圈标记的曲线表示采用等式(12)的变形。利用圆圈标记的曲线比利用差号标记的曲线更能降低相邻信道的功率。
利用等式(13)表示其频道非常接近CDMA的通信系统的情况。附带地,其输入输出特性如图12所示。
                y=G(x-3×10-2x3)…(13)
图16表示CDMA中标准线性化与根据本实施方式的线性化之间的比较结果。正如图16所示,本实施方式比利用y=Gx进行变形的情况更能降低相邻信道的功率。在图16中,尽管ACP1降级,同时满足ACP1和ACP2的根据本实施方式的输出更大。
如上所述,通过将添加三次幂部分、五次幂部分所获得的结果,或通过将三次幂部分和五次幂部分添加到输入信号中所获得的结果,输入到放大器12,放大器12能够在不超过其饱和区域的范围内运行。即使利用具有图12所示的输入输出特性的放大器12放大该输入信号,也能够防止生成各种频率的乱真信号。
同时,能够在不需要具有线性放大特性的外部RF电路的情况下,补偿失真。因此,能够降低电路尺寸,有助于降低功耗,并使移动电话更小巧。
(B1)本发明之第二实施方式的第一修改的说明
图17是应用根据本发明之第二实施方式的第一修改的预失真类型的失真补偿放大设备的无线电发射机的发射部件的框图。在图17所示的预失真类型的失真补偿放大设备9e中,将微分/积分系数信息加法单元26添加到预失真类型的失真补偿放大设备9d(参见图10)中。即,预失真类型的失真补偿放大设备9e包括一个信号处理单元30,一个放大器12和微分/积分系数信息加法单元26。将检测部件22连接到放大器12的输出端。
信号处理单元30对要发送的信号,执行其功能表示放大器12之输入输出特性的相反特性的过程,执行系数改变过程,从而奇阶部分出现在放大器12的输出信号中。因此,放大器12在不饱和区域中运行。信号处理单元30中的非线性处理单元41、预失真处理单元32和D/A转换部件11,与第一和第二实施方式中的所述部分相同,因此不再赘述。另外,放大器12和检测部件22与以上所述相同,因此也不再赘述。
微分/积分系数信息加法单元26,能够根据放大器12输出的信号的振幅值,计算第一微分/积分信息,根据要发送的信号的振幅值,计算第二微分/积分信息,然后将根据上述第一微分/积分信息和上述第二微分/积分信息导出的第二系数信息,输入到信号处理单元30中的系数乘法单元34中。微分/积分系数信息加法单元26包括:一个第一微分/积分信息计算单元26a,一个第二微分/积分信息计算单元26d,一个第二系数表26c和一个第二比较重写部件26b。
第一微分/积分信息计算单元26a,能够根据要发送的信号的振幅值,计算第一微分/积分信息,然后输出该信息,并且将根据要发送的信号的振幅值获得的第二地址信号,输入到第二系数表26c。第二微分/积分信息计算单元26d,根据放大器12输出的信号的振幅值,计算第二微分/积分信息,然后输出该信息。第二系数表26c能够根据第二地址信号,选择众多系数信息中的一条信息,并作为第二系数信息,输出到信号处理单元30。
第二比较重写部件26b,根据上述第一微分/积分信息和上述第二微分/积分信息之间的误差,重写第二系数信息。第二比较重写部件26b,比较第一微分/积分信息和第二微分/积分信息,并重写第二系数信息,以致其误差变得较小。
例如,根据为要发送的信号的一部分并且为放大器12的输出信号的一部分的信号,计算这些信号的振幅值的二次方的正负微分系数的绝对值,并重写第二系数信息,以使它们之间的误差为零。可以采样其他方法作为以上重写方法。
在图17中,在非线性处理单元41中,对输入的基带信号,执行预先获得的其功能表示放大器12之输入输出特性的相反特性的过程,然后输出该信号。利用频率部分衰减单元33过滤该输出信号,然后输出。在系数乘法单元34中,比较输入的基带信号和频率部分衰减单元33输出的信号,将振幅值的奇阶乘幂分量乘以所需的系数信息,然后输出该结果,作为处理后的信号。在D/A转换部件11中,将处理后的信号从数字转换为模拟,在放大器12中进行功率放大,然后通过检测部件22从天线13无线发射。
利用以上结构,通过将三次幂部分、五次幂部分抑或三次幂部分和五次幂部分添加到输入信号中所获得的结果,输入到放大器12,在放大器12的输出端轻微保留三阶、五阶或奇阶非线性部分,从而放大器12能够在不超过其饱和区域(参见图13和14)的范围内运行。
根据输入信号的振幅值的微分值/积分值,确定第二系数信息,然后将原始信号乘以第二系数信息。输出该结果作为预失真信号。比较输入信号与输出信号的微分值、积分值、或二者,重写第二系数表26c,以减小它们之间的误差,从而校正输入到放大器12的信号。
如上所述,当对放大器12进行线性化时,消除高阶部分在不连续点的失真的影响,从而能够防止乱真信号在各种频率中传播。因此,能够在不需要具有线性放大特性的外部RF电路的情况下,进行失真补偿,这有助于降低功耗,并且缩小电路规模。
补偿放大器12的偏压电路(未示出)、或电源电路中的偏压电路(未示出)、抑或匹配电路中高谐波附近的频率特性,所以能够提高准确性。同时,能够处理放大器12的特性由于温度改变而改变或随时间改变。
(C)其他
在上述实施方式和修改中,除无线发射机之外,本发明同样适用于无线收发机。
本发明并不限于以上实施方式和修改,而是能够以各种方式修改本发明,而并不背离本发明的范围。
例如,作为要发送的信号的频率,可使用各种频带,只要根据要使用的频带预先计算系数信息即可。
对于确定误差以给出系数表15(或15a或15b)或第二系数表26c的第一选择信号或第二选择信号,可以根据设计环境设置各种值。可以分别配置系数表15a和15b。
作为系数信息,可以各种方式组合并使用相位信息。
工业适用性
如上所述,本发明解决在各种频率中生成的乱真信号问题,防止增加电路规模,有助于减小体积,并降低诸如移动电话之类的移动通信领域中的设备功耗。由于即使访问存储器的频率较低,也能够进行失真补偿,所以能够重写系数表,并且能够处理放大器的特性由于温度改变而改变或随时间改变。

Claims (4)

1.一种预失真型失真补偿放大设备,包括:
一个放大器(12),用于放大待发送的信号;以及
一个信号处理单元(30),它被设置在所述放大器(12)的前端,用于执行系数改变处理,从而改变所述待发送的信号中包含的振幅数值的乘幂分量的系数信息,并用于输出处理后的信号,
其特征在于,所述信号处理单元(30)包括:
一个非线性处理单元(41),用于对所述待发送的信号执行预先获得的其功能表示所述放大器(12)之输入/输出特性的相反特性的处理,并用于输出一个第二信号;
一个频率部分衰减单元(33),用于将所述非线性处理单元(41)输出的所述第二信号转换成为一个频域,衰减需要的频率部分,将经过衰减的信号反向转换成为时域,并输出经过转换的信号;和
一个系数乘法单元(34),用于将所述频率部分衰减单元(33)输出的所述经过转换的信号与所述待发送的信号相比较,将所述振幅值的奇数阶乘幂分量乘以所述需要的系数信息,输出其结果作为从所述信息处理单元(30)输出的所述处理后的信号,
所述的信号处理单元(30)利用它所包括的上述三个单元执行所述的系数改变处理,优化所述放大器(12)的输入/输出特性,以使奇数阶分量呈现在所述放大器(12)的输出信号中,还通过向所述放大器(12)输入一个第三信号作为所述的待发送信号以使所述的放大器(12)工作在非饱和区域内,所述的第三信号是将输入信号加上一个第四信号而得出的,所述的第四信号是将奇数阶乘以所述输入信号而得到的所述奇数阶分量再与所述的系数信息相乘而得出的。
2.根据权利要求1所述的预失真型失真补偿放大设备,其特征在于,所述信号处理单元(30)包括:
一个微分/积分系数信息加法单元(26),该部件能够根据所述待发送的信号的振幅值,计算第一微分/积分信息,根据所述放大器(12)输出的信号的振幅值,计算第二微分/积分信息,并将根据所述第一微分/积分信息和所述第二微分/积分信息获得的第二系数信息输入到所述系数乘法单元(34)。
3.根据权利要求1的预失真型失真补偿放大设备,其特征在于,还包括:一个微分/积分系数信息加法单元(26),所述的微分/积分系数信息加法单元(26)包括:
一个第一微分/积分信息计算单元(26a),该部件能够根据所述待发送的信号的振幅值,计算第一微分/积分信息,输出所述第一微分/积分信息,并且将根据所述待发送的信号的振幅值获得的第二地址信号,输入到一个第二系数信息输出单元(26c);
一个第二微分/积分信息计算单元(26d),用于根据所述放大器(12)输出的信号的振幅值,计算第二微分/积分信息,输出所述第二微分/积分信息;
一个第二系数信息输出单元(26c),该部件能够根据所述第二地址信号,选择众多系数信息中的一条信息,并作为第二系数信息,将所选信息输出到所述系数乘法单元(34);以及
一个第二比较重写部件(26b),该部件根据所述第一微分/积分信息和所述第二微分/积分信息之间的误差,重写所述第二系数信息。
4.根据权利要求3所述的预失真型失真补偿放大设备,其特征在于,所述第二比较重写部件(26b)将所述第一微分/积分信息和所述第二微分/积分信息相比较,重写所述第二系数信息,以使它们之间的误差变得较小些。
CNB99816688XA 1999-05-28 1999-05-28 预失真类型的失真补偿放大设备 Expired - Fee Related CN1249913C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/002824 WO2000074232A1 (fr) 1999-05-28 1999-05-28 Amplificateur de compensation de distorsion du type predistorsion

Publications (2)

Publication Number Publication Date
CN1352822A CN1352822A (zh) 2002-06-05
CN1249913C true CN1249913C (zh) 2006-04-05

Family

ID=14235826

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB99816688XA Expired - Fee Related CN1249913C (zh) 1999-05-28 1999-05-28 预失真类型的失真补偿放大设备

Country Status (4)

Country Link
US (1) US6577192B2 (zh)
EP (1) EP1193866A4 (zh)
CN (1) CN1249913C (zh)
WO (1) WO2000074232A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2356992B (en) * 1999-12-02 2004-07-14 Wireless Systems Int Ltd Control scheme for distorton reduction
DE19962340B4 (de) * 1999-12-23 2005-11-03 Robert Bosch Gmbh Sender zum Versenden von Signalen über Funkkanäle und Verfahren zum Senden von Signalen über Funkkanäle
US7058369B1 (en) * 2001-11-21 2006-06-06 Pmc-Sierra Inc. Constant gain digital predistortion controller for linearization of non-linear amplifiers
DE60213193T2 (de) * 2002-01-11 2007-06-21 Mitsubishi Electric Information Technology Centre Europe B.V. Verfahren für eine Aufwärtsstrecken-Vorverzerrung für ein MC-CDMA-Telekommunnikationssystem
ATE343880T1 (de) * 2002-01-11 2006-11-15 Mitsubishi Electric Inf Tech Vorverzerrungsverfahren für einen mehrträger-cdma-aufwärtskanal
US6801086B1 (en) 2002-04-03 2004-10-05 Andrew Corporation Adaptive digital pre-distortion using amplifier model that incorporates frequency-dependent non-linearities
CN1177449C (zh) * 2002-04-23 2004-11-24 华为技术有限公司 基于基带数字预失真技术的提高射频功率放大器效率的方法
JP4230272B2 (ja) * 2002-06-05 2009-02-25 パナソニック株式会社 歪補償装置
US6674335B1 (en) * 2002-06-28 2004-01-06 Qualcomm Incorporated Blind linearization using cross-modulation
US6930547B2 (en) * 2002-08-09 2005-08-16 Andrew Corporation Linearizing LINC amplifiers using pre-distortion
JP4142384B2 (ja) * 2002-10-01 2008-09-03 松下電器産業株式会社 送信装置
AU2003301930A1 (en) * 2002-11-14 2004-06-03 Hitachi Kokusai Electric Inc. Distortion compensation circuit, distortion compensation signal generating method, and power amplifier
JP4559983B2 (ja) * 2002-12-10 2010-10-13 株式会社エヌ・ティ・ティ・ドコモ 線形電力増幅器及びそのディジタルプリディストータ設定方法
US7170342B2 (en) 2002-12-10 2007-01-30 Ntt Docomo, Inc. Linear power amplification method and linear power amplifier
AU2003289380A1 (en) * 2002-12-17 2004-07-09 Matsushita Electric Industrial Co., Ltd. Distortion compensation table creation method and distortion compensation method
US7720171B2 (en) * 2003-06-13 2010-05-18 Alcatel-Lucent Usa Inc. Coefficient estimation method and apparatus
US7561635B2 (en) * 2003-08-05 2009-07-14 Stmicroelectronics Nv Variable coder apparatus for resonant power conversion and method
US7330517B2 (en) 2003-11-24 2008-02-12 P-Wave Ltd. Amplifier linearization using non-linear predistortion
US7366252B2 (en) * 2004-01-21 2008-04-29 Powerwave Technologies, Inc. Wideband enhanced digital injection predistortion system and method
JP4255849B2 (ja) * 2004-01-29 2009-04-15 株式会社エヌ・ティ・ティ・ドコモ べき級数型ディジタルプリディストータ
JP4505238B2 (ja) * 2004-02-25 2010-07-21 株式会社日立国際電気 歪補償回路
JP4598414B2 (ja) * 2004-02-27 2010-12-15 株式会社エヌ・ティ・ティ・ドコモ べき級数型プリディストータの制御方法及び装置
US7336725B2 (en) * 2004-03-03 2008-02-26 Powerwave Technologies, Inc. Digital predistortion system and method for high efficiency transmitters
CN102035788B (zh) * 2004-08-05 2013-04-03 松下电器产业株式会社 无线发送装置和方法以及无线接收装置和方法
JP2006108937A (ja) * 2004-10-01 2006-04-20 Matsushita Electric Ind Co Ltd 送信装置及び歪補償方法
FI20055012A0 (fi) * 2005-01-07 2005-01-07 Nokia Corp Lähetyssignaalin leikkaaminen
JP2006314087A (ja) * 2005-04-08 2006-11-16 Matsushita Electric Ind Co Ltd 増幅回路及び無線装置
CN100576724C (zh) 2005-05-18 2009-12-30 株式会社Ntt都科摩 幂级数型前置补偿器及其控制方法
CN100527602C (zh) 2005-06-06 2009-08-12 株式会社Ntt都科摩 多频带用型幂级数型前置补偿器
JP4720468B2 (ja) * 2005-12-07 2011-07-13 日本電気株式会社 非線形歪み補償回路及びその方法並びにそれを用いた無線送信システム
EP2117117B1 (en) * 2006-12-27 2016-08-10 Sharp Kabushiki Kaisha Modulation digital-analog converter, digital signal processing method, and av device
JP4766061B2 (ja) * 2008-02-05 2011-09-07 住友電気工業株式会社 プリディストータ、拡張型プリディストータ及び増幅回路
JP5176692B2 (ja) * 2008-05-28 2013-04-03 日本電気株式会社 歪補償回路及び歪補償方法
US8000661B2 (en) * 2008-08-26 2011-08-16 Mediatek Inc. Communication system with frequency-adaptive predistorter design
JP5228723B2 (ja) * 2008-09-10 2013-07-03 富士通株式会社 歪補償装置及び方法
JP5233651B2 (ja) * 2008-12-18 2013-07-10 富士通株式会社 歪補償装置及び方法
US8595278B2 (en) * 2009-03-03 2013-11-26 Broadcom Corporation Method and system for unconstrained frequency domain adaptive filtering
JP4918572B2 (ja) * 2009-07-02 2012-04-18 株式会社日立国際電気 プリディストーション方式歪補償機能付き増幅器
BR112015005676B1 (pt) 2012-09-25 2022-02-08 Hitachi Kokusai Electric Inc Circuito de compensação de distorção e dispositivo de transmissão usando circuito de compensação de distorção e amplificador de potência de alta frequência
CN104301268B (zh) * 2013-07-19 2019-05-21 中兴通讯股份有限公司 多通道预失真方法及装置
US9509350B1 (en) * 2015-06-11 2016-11-29 Infineon Technologies Ag Devices and methods for adaptive crest factor reduction in dynamic predistortion
CN105024960B (zh) * 2015-06-23 2018-11-09 大唐移动通信设备有限公司 一种dpd系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3142199A1 (de) * 1980-11-03 1982-06-16 Naamloze Vennootschap Philips' Gloeilampenfabrieken, 5621 Eindhoven Schaltungsanordnung zur verstaerkung elektrischer signale, die mit einer schaltung zum ausgleichen einer unerwuenschten komponente versehen ist
FR2507026A1 (fr) * 1981-05-26 1982-12-03 Thomson Csf Dispositif de correction d'intermodulation produite par un amplificateur de signaux hautes frequences
FR2520957A1 (fr) * 1982-01-29 1983-08-05 Thomson Csf Dispositif de correction d'intermodulation produite par un amplificateur de signaux haute frequence regule en niveau crete
FR2652969A1 (fr) * 1989-10-06 1991-04-12 Philips Electronique Lab Dispositif de predistorsion pour systeme de transmission numerique.
IT1236905B (it) * 1989-12-21 1993-04-26 Sistema per la messa a punto dei trasmettitori nei ponti radio digitali a grande capacita'
GB9002788D0 (en) * 1990-02-08 1990-04-04 Marconi Co Ltd Circuit for reducing distortion produced by an r.f.power amplifier
JPH0416006A (ja) * 1990-05-10 1992-01-21 Kokusai Electric Co Ltd 共通増幅器の歪補償制御方法
EP0465709A1 (de) * 1990-07-12 1992-01-15 Thomcast Ag Verfahren zur Kompensation von Nichtlinearitäten einer Verstärkerschaltung
US5798854A (en) * 1994-05-19 1998-08-25 Ortel Corporation In-line predistorter for linearization of electronic and optical signals
JPH0983417A (ja) * 1995-09-20 1997-03-28 Hitachi Denshi Ltd 無線機
WO1998023068A1 (fr) * 1996-11-19 1998-05-28 Matsushita Electric Industrial Co., Ltd. Emetteur
US6240278B1 (en) * 1998-07-30 2001-05-29 Motorola, Inc. Scalar cost function based predistortion linearizing device, method, phone and basestation
US6118335A (en) * 1999-05-06 2000-09-12 Nortel Networks Corporation Method and apparatus for providing adaptive predistortion in power amplifier and base station utilizing same

Also Published As

Publication number Publication date
CN1352822A (zh) 2002-06-05
WO2000074232A1 (fr) 2000-12-07
US6577192B2 (en) 2003-06-10
EP1193866A4 (en) 2007-02-07
EP1193866A1 (en) 2002-04-03
US20020079965A1 (en) 2002-06-27

Similar Documents

Publication Publication Date Title
CN1249913C (zh) 预失真类型的失真补偿放大设备
CN1601892A (zh) 带预畸变方式畸变补偿功能的放大器
CN1188945C (zh) 放大器的校准装置及校准方法
CN101080868A (zh) 前置补偿器
CN1649257A (zh) 预失真器
CN1700591A (zh) 预失真器
CN1409497A (zh) 失真补偿装置
CN1270492C (zh) 用于补偿功率放大器的预失真的设备和方法
CN1084986C (zh) 带有失真补偿的放大器及使用此放大器的无线通信基站
CN1285169C (zh) 预失真数字线性化电路及其增益控制方法
US8649746B2 (en) Apparatus and method for processing reduced bandwidth envelope tracking and digital pre-distortion
CN1547801A (zh) 混合失真补偿方法和混合失真补偿装置
CN1643799A (zh) 低功耗高线性接收机的直接转换
CN1118148C (zh) 非线性引起的失真补偿系统
CN1969459A (zh) 用于使得具有非线性增益特性和记忆效应的rf功率放大器线性化的数字预失真系统和方法
CN1255938C (zh) 线性功率放大方法和线性功率放大器
CN101056288A (zh) 预失真模型装置和信号的预失真处理装置、系统及方法
CN1864322A (zh) 用于发射系统的自适应预矫正
US20130259154A1 (en) Wireless apparatus and distortion compensating method
CN1870614A (zh) 对基带数字信号进行预失真处理的通用装置
CN1578284A (zh) 用于线性化带有不对称特性的功率放大器的数字预失真
CN1649260A (zh) 幂级数展开型数字式预矫正器
CN1661928A (zh) 失真补偿电路、功率放大器和失真补偿信号生成方法
CN1750531A (zh) 失真补偿正交调制器和无线发送器
CN1599265A (zh) 发送机

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060405