CN108483487B - 一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法 - Google Patents

一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法 Download PDF

Info

Publication number
CN108483487B
CN108483487B CN201810381870.6A CN201810381870A CN108483487B CN 108483487 B CN108483487 B CN 108483487B CN 201810381870 A CN201810381870 A CN 201810381870A CN 108483487 B CN108483487 B CN 108483487B
Authority
CN
China
Prior art keywords
pbbr
solution
cesium
cspbbr
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810381870.6A
Other languages
English (en)
Other versions
CN108483487A (zh
Inventor
解仁国
黄祥冰
刘峰
张颖
杨文胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810381870.6A priority Critical patent/CN108483487B/zh
Publication of CN108483487A publication Critical patent/CN108483487A/zh
Application granted granted Critical
Publication of CN108483487B publication Critical patent/CN108483487B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法属于半导体纳米材料制备的技术领域,将羧酸铯溶液加入到N2保护的溴化铅溶液中,并在室温条件下进行反应,合成CsPbBr3纳米簇;然后将CsPbBr3纳米簇热注入到羧酸铯溶液中,得到Cs4PbBr6钙钛矿纳米晶。本发明具有操作简单,产物尺寸易调,形貌可控等优点。

Description

一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法
技术领域
本发明属于半导体纳米材料制备技术领域,涉及一种尺寸、形貌可控的 Cs4PbBr6钙钛矿纳米晶的制备方法。
背景技术
近年来,钙钛矿纳米晶尤其是卤化铅钙钛矿纳米晶因为其卓越的电荷传输性能以及良好的化学可控性,使其在太阳能电池、LED、激光和光电探测器的应用中脱颖而出,特别是在太阳能电池领域,其光电转换效率可达到20%。目前,有机无机混合型卤化铅钙钛矿纳米晶,其制备方法基本上是用强极性的DMF或者DMSO作为溶剂去合成。而纯无机的卤化铅铯钙钛矿纳米晶,则采用的是高温热注入法,通过调控不同的反应温度和有机配体等可以实现其可控制备。然而,已公开的报道却主要集中于纯无机的CsPbX3钙钛矿纳米晶,相比之下,对于 Cs4PbX6型钙钛矿纳米晶的研究还相对较少,其可控制备还远远落后。这也导致目前对于Cs4PbX6型钙钛矿纳米晶的认识还很局限,存在着还未解决的问题和缺陷,技术有待创新和改进。因此,建立一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的方法,对于纳米晶的合成以及相关材料的认识有着十分重要的意义。
发明内容
本发明要解决的技术问题是,克服背景技术存在的问题,提供一种操作简便、反应可控的新方法,实现不同尺寸、不同形貌的Cs4PbBr6钙钛矿纳米晶的可控制备。
本发明的技术问题通过以下技术方案解决:
一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法,将羧酸铯溶液加入到N2保护的溴化铅溶液中,并在室温(25℃)条件下进行反应,合成CsPbBr3纳米簇;然后将CsPbBr3纳米簇热注入到羧酸铯溶液中,得到Cs4PbBr6钙钛矿纳米晶;
在制备CsPbBr3纳米簇时,羧酸铯与溴化铅的摩尔比为1:5,在制备CsPbBr3纳米簇时所用的羧酸铯溶液为0.2M的油酸铯的十八烯溶液,溴化铅溶液为每0.2 毫摩尔的溴化铅溶解于0.5mL油胺、0.5mL油酸和3mL十八烯的混合溶液;
在制备Cs4PbBr6钙钛矿纳米晶时所用的羧酸铯溶液为0.014M的油酸铯的十八烯溶液,CsPbBr3纳米簇与羧酸铯的摩尔比为1:1.5;所述的热注入的注入温度为100~250℃。
在本发明的一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法中,当所述的热注入的注入温度为100~200℃时,得到尺寸为9.8~22nm的Cs4PbBr6纳米粒子;注入温度为210~230℃时,得到22nm×50nm~22nm×150nm的Cs4PbBr6纳米棒;注入温度为240~250℃时,得到直径为22nm,长度为4~10μm的Cs4PbBr6纳米线。
本发明所提出的这种新的合成方法,最终合成的Cs4PbBr6钙钛矿纳米晶,其形貌包括纳米粒子、纳米棒和纳米线。对于Cs4PbBr6纳米棒和纳米线,目前还没有相应的文献报道,本发明首次制备了Cs4PbBr6纳米棒和纳米线,对理解不同组成的卤化铅铯钙钛矿纳米晶的合成奠定了坚实的基础。
综上,本发明具有以下有益效果:
本发明具有操作简单,产物尺寸易调,形貌可控等优点。
附图说明:
图1是实施例1制备的CsPbBr3纳米簇的吸收光谱图。
图2是实施例2制备的尺寸为9.8nm的Cs4PbBr6纳米粒子的电镜照片。
图3是实施例3制备的尺寸为16nm的Cs4PbBr6纳米粒子的电镜照片。
图4是实施例4制备的尺寸为22nm的Cs4PbBr6纳米粒子的电镜照片。
图5是实施例5制备的尺寸为22×50nm的Cs4PbBr6纳米棒的电镜照片。
图6是实施例6制备的尺寸为22×150nm的Cs4PbBr6纳米棒的电镜照片。
图7是实施例7制备的尺寸为22×4um的Cs4PbBr6纳米线的电镜照片。
图8是实施例4制备的Cs4PbBr6纳米粒子、实施例6制备的纳米棒和实施例7制备的纳米线的吸收光谱图。
图9是实施例4制备的Cs4PbBr6纳米粒子、实施例6制备的纳米棒和实施例7制备的纳米线的XRD图。
具体实施方式
下面结合附图对本发明做进一步说明。
其中附图仅用于示例性说明,不能理解为对本专利的限制。
实施例1:
首先,制备油酸铯溶液。取2mmol(0.648g)的碳酸铯粉末、10mmol(3.35mL) 的OA(油酸)以及6.65mL的ODE(十八烯)混合,氮气保护条件下加热至150 ℃使碳酸铯溶解,降温至100℃,配制成0.2M的油酸铯溶液,呈淡黄色透明溶液。
然后取0.2mmol的溴化铅固体粉末,0.5mL油胺、0.5mL油酸和3mL十八烯加入到三颈瓶中,于50℃抽真空30分钟,充氮气保护,然后升温至150℃,待溴化铅溶解后,降至室温25℃,然后注入0.2mL的0.2M油酸铯的十八烯溶液,反应30分钟,得到0.04mmol吸收峰位在402nm的CsPbBr3纳米簇,其吸收图谱见图1,将所得产物在10000r/min的条件下离心5分钟进行提纯,再分散到 1mL十八烯中备用。
实施例2:
把0.3mL的0.2M油酸铯的十八烯溶液用4mL十八烯进行稀释,加热到100 ℃,再将实施例1制备的1mL CsPbBr3纳米簇的十八烯分散液注入到上述100℃的油酸铯溶液中,反应1分钟,得到尺寸为9.8nm的Cs4PbBr6纳米粒子,其电镜照片见图2,整个过程不需要氮气条件的保护。
实施例3:
把0.3mL的0.2M油酸铯的十八烯溶液用4mL十八烯进行稀释,加热到150 ℃,再将实施例1制备的1mL CsPbBr3纳米簇的十八烯分散液注入到上述150℃的油酸铯溶液中,反应1分钟,得到尺寸为16nm的Cs4PbBr6纳米粒子,其电镜照片见图3,整个过程不需要氮气条件的保护。
实施例4:
把0.3mL的0.2M油酸铯的十八烯溶液用4mL十八烯进行稀释,加热到200 ℃,再将实施例1制备的1mL CsPbBr3纳米簇的十八烯分散液注入到上述200℃的油酸铯溶液中,反应1分钟,得到尺寸为22nm的Cs4PbBr6纳米粒子,其电镜照片见图4,其吸收光谱见图8,其XRD见图9,整个过程不需要氮气条件的保护。
实施例5:
把0.3mL的0.2M油酸铯的十八烯溶液用4mL十八烯进行稀释,加热到210 ℃,再将实施例1制备的1mL CsPbBr3纳米簇的十八烯分散液注入到上述210℃的油酸铯溶液中,反应1分钟,得到尺寸为22×50nm的Cs4PbBr6纳米棒,其电镜照片见图5,整个过程不需要氮气条件的保护。
实施例6:
把0.3mL的0.2M油酸铯的十八烯溶液用4mL十八烯进行稀释,加热到230 ℃,再将实施例1制备的1mL CsPbBr3纳米簇的十八烯分散液注入到上述230℃的油酸铯溶液中,反应1分钟,得到尺寸为22×150nm的Cs4PbBr6纳米棒,其电镜照片见图6,其吸收光谱见图8,其XRD见图9,整个过程不需要氮气条件的保护。
实施例7:
把0.3mL的0.2M油酸铯的十八烯溶液用4mL十八烯进行稀释,加热到250 ℃,再将实施例1制备的1mL CsPbBr3纳米簇的十八烯分散液注入到上述250℃的油酸铯溶液中,反应1分钟,得到尺寸为22nm×4um的Cs4PbBr6纳米线,其电镜照片见图7,其吸收光谱见图8,其XRD见图9,整个过程不需要氮气条件的保护。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (1)

1.一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法,将羧酸铯溶液加入到N2保护的溴化铅溶液中,并在室温条件下进行反应,合成CsPbBr3纳米簇;然后将CsPbBr3纳米簇热注入到羧酸铯溶液中,得到Cs4PbBr6钙钛矿纳米晶;
在制备CsPbBr3纳米簇时,羧酸铯与溴化铅的摩尔比为1:5,在制备CsPbBr3纳米簇时所用的羧酸铯溶液为0.2M的油酸铯的十八烯溶液,溴化铅溶液为每0.2毫摩尔的溴化铅溶解于0.5mL油胺、0.5mL油酸和3mL十八烯的混合溶液;
在制备Cs4PbBr6钙钛矿纳米晶时所用的羧酸铯溶液为0.014M的油酸铯的十八烯溶液,CsPbBr3纳米簇与羧酸铯的摩尔比为1:1.5;所述的热注入的注入温度为100~200℃时,得到尺寸为9.8~22nm的Cs4PbBr6纳米粒子;注入温度为210~230℃时,得到22nm×50nm~22nm×150nm的Cs4PbBr6纳米棒;注入温度为240~250℃时,得到直径为22nm,长度为4~10μm的Cs4PbBr6纳米线。
CN201810381870.6A 2018-04-26 2018-04-26 一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法 Expired - Fee Related CN108483487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810381870.6A CN108483487B (zh) 2018-04-26 2018-04-26 一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810381870.6A CN108483487B (zh) 2018-04-26 2018-04-26 一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法

Publications (2)

Publication Number Publication Date
CN108483487A CN108483487A (zh) 2018-09-04
CN108483487B true CN108483487B (zh) 2019-12-13

Family

ID=63314172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810381870.6A Expired - Fee Related CN108483487B (zh) 2018-04-26 2018-04-26 一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法

Country Status (1)

Country Link
CN (1) CN108483487B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109810701B (zh) * 2019-01-23 2021-03-30 陕西科技大学 一种溶液法制备全无机钙钛矿Cs4PbBr6纳米线的方法及其应用
CN111500288B (zh) 2019-01-31 2023-06-02 隆达电子股份有限公司 钙钛矿纳米发光晶体的制造方法
CN110156071A (zh) * 2019-04-26 2019-08-23 复旦大学 一种高度有序的全无机钙钛矿纳米团簇组装体的制备方法
CN110015685B (zh) * 2019-05-30 2021-06-15 吉林大学 一种低温合成尺寸均一CsPbBr3钙钛矿纳米棒的方法
CN110144217A (zh) * 2019-06-13 2019-08-20 中国药科大学 一种CsPbBr3/Cs4PbBr6复合钙钛矿材料及其制备方法
CN110395762A (zh) * 2019-07-27 2019-11-01 南京理工大学 一种尺寸可控的Cs4PbBr6纳米晶的制备方法
CN111960461A (zh) * 2020-07-20 2020-11-20 齐鲁工业大学 一种可以对激光性能调控的零维钙钛矿Cs4PbBr6微米晶及其制备方法
CN113881431B (zh) * 2021-10-11 2022-09-27 南京工业大学 一种手性钙钛矿Cs4PbBr6纳米棒及其制备方法
CN114735746B (zh) * 2022-05-16 2023-03-21 浙江大学 一种微米级三维416型钙钛矿结构及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523581A (zh) * 2016-02-25 2016-04-27 吉林大学 一种单尺寸CsPbX3钙钛矿纳米晶的制备方法
CN107099290A (zh) * 2017-07-05 2017-08-29 向爱双 制备核壳结构钙钛矿量子点的方法
WO2018037387A1 (en) * 2016-08-26 2018-03-01 King Abdullah University Of Science And Technology Compositions and methods relating to luminescent structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523581A (zh) * 2016-02-25 2016-04-27 吉林大学 一种单尺寸CsPbX3钙钛矿纳米晶的制备方法
CN105523581B (zh) * 2016-02-25 2017-06-09 吉林大学 一种单尺寸CsPbX3钙钛矿纳米晶的制备方法
WO2018037387A1 (en) * 2016-08-26 2018-03-01 King Abdullah University Of Science And Technology Compositions and methods relating to luminescent structures
CN107099290A (zh) * 2017-07-05 2017-08-29 向爱双 制备核壳结构钙钛矿量子点的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals;Zeke Liu et al.;《J. Am. Chem. Soc.》;20170330;第5309-5312页 *

Also Published As

Publication number Publication date
CN108483487A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108483487B (zh) 一种尺寸、形貌可控的Cs4PbBr6钙钛矿纳米晶的制备方法
Ramasamy et al. Upconversion nanophosphors for solar cell applications
CN110255606B (zh) 一种放射状全无机钙钛矿纳米材料及其制备方法
CN108238631B (zh) 一种二十六面体CsPbX3钙钛矿纳米晶的制备方法
Murugadoss ZnO/CdS nanocomposites: synthesis, structure and morphology
Li et al. Synthesis and investigation of novel ZnO–CuO core-shell nanospheres
Jin et al. Continuous synthesis of SnTe nanorods
Li et al. A review on the synthesis methods of CdSeS-based nanostructures
CN113620339B (zh) 一种大尺寸超薄全无机铅卤钙钛矿纳米片及其制备方法和应用
CN108675339B (zh) 一种棒状自组装成球状的锌镉硫固溶体材料的制备方法
CN102515245A (zh) 一种溶剂热可控合成纳米氧化锌的方法
Yao et al. Advances in green colloidal synthesis of metal selenide and telluride quantum dots
Zhao et al. Fabrication of symmetric hierarchical hollow PbS microcrystals via a facile solvothermal process
CN101774633B (zh) 水溶液中制备CdS:Mn纳米颗粒的方法
CN110040777B (zh) 一种单斜相六边形铜锑硫纳米片及铜锑硫纳米片可控的制备方法
CN108793099B (zh) 一种辐射状硒纳米管及其制备方法
CN108996478B (zh) 一种MNx超级晶体及其制备方法和应用
CN115072768B (zh) 一种CsPbI3钙钛矿纳米线及其制备方法和应用
Gao et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly (MMA-co-MQ)
KR100672811B1 (ko) 산화인듐 나노 입자의 제조방법 및 이에 의해 제조된가용성 산화인듐 나노 입자
Wang et al. Perovskite nanogels: synthesis, properties, and applications
Jin et al. Doped colloidal ZnO nanocrystals
CN100465358C (zh) 油溶性二氧化钛纳米线的制备方法
CN114735745B (zh) 一种螺旋式125型钙钛矿纳米片及其制备方法和应用
CN114763270B (zh) 一种均匀分散的氧化镍量子点的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191213

Termination date: 20200426

CF01 Termination of patent right due to non-payment of annual fee