CN108227499B - 一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法 - Google Patents

一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法 Download PDF

Info

Publication number
CN108227499B
CN108227499B CN201810037361.1A CN201810037361A CN108227499B CN 108227499 B CN108227499 B CN 108227499B CN 201810037361 A CN201810037361 A CN 201810037361A CN 108227499 B CN108227499 B CN 108227499B
Authority
CN
China
Prior art keywords
harmonic
rotor
fractional
repetitive controller
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810037361.1A
Other languages
English (en)
Other versions
CN108227499A (zh
Inventor
崔培玲
高倩
张国玺
韩东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810037361.1A priority Critical patent/CN108227499B/zh
Publication of CN108227499A publication Critical patent/CN108227499A/zh
Application granted granted Critical
Publication of CN108227499B publication Critical patent/CN108227499B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • G05B13/045Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance using a perturbation signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明公开了一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法。首先建立包含不平衡质量和传感器谐波的磁悬浮转子系统动力学模型;其次,由于低通滤波器Q(s)在高频段时会有幅值衰减和相位滞后,大大降低了系统抑制扰动的能力,因而将低通滤波器Q(s)从重复控制器的反馈回路内,移动到与重复控制器相串联的支路上;再次,分数补偿环节由分数延时滤波器替代,通过并联谐波振荡器的方式来提高谐波电流抑制的收敛速度。本发明能实现磁悬浮飞轮或磁悬浮陀螺在任意额定转速下的谐波电流的精确抑制,并保持较高的电流抑制收敛速度,用于存在质量不平衡和传感器谐波的磁悬浮转子谐波电流抑制。

Description

一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电 流抑制方法
技术领域
本发明涉及磁悬浮转子谐波电流抑制的技术领域,具体涉及一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法,用于磁悬浮陀螺或者磁悬浮飞轮的谐波电流抑制,以便为磁悬浮飞轮或磁悬浮陀螺在卫星平台上处于“超静”振动量级提供技术支持。
背景技术
磁悬浮转子采用磁轴承支撑的方式,由于磁轴承转子系统具有长寿命、无摩擦和主动振动可控等优点,适用于各种高速旋转设备,在航天、航空、核事业和机械工程领域等领域具有广泛的应用前景,特别是在磁悬浮飞轮、磁悬浮陀螺和磁悬浮分子泵等方面有良好的应用。
在实际情况中,由于机械加工精度有限和材料不均匀等因素的影响,磁悬浮转子无法避免的会出现质量不平衡,在高速转动过程中会产生与转速频率相同的同频扰动;另一方面,由于传感器检测面、检测表面电或磁特性不一致,会产生同频及倍频的扰动信号,也即是传感器谐波,传感器谐波会引发谐波电流。谐波电流进而引发磁轴承产生谐波振动,振动通过磁轴承传递到基座进而传递给航天器,影响航天器指向精度和稳定精度。
在谐波电流抑制算法中,根据算法能否同时抑制多种频率成分,可以将其归为以下两类:一类是抑制单一频率,如果要对多种频率成分的谐波信号同时进行抑制,则需要叠加该类算法,如并联多个陷波器或多个最小均方误差滤波器等。该方法复杂度和计算量大,且需考虑不同频率扰动抑制算法的收敛速度,谐波抑制性能低,不利于工程化应用。另一类算法是不需要多个算法的累加,单一算法就可实现同时抑制多种频率成分的扰动,也即是重复控制算法。重复控制算法基于内模原理,能够对周期已知、幅值不确定,包含多种频率成分的周期性扰动信号进行有效地抑制,本质是通过将外部信号的等效数学模型植入到控制器内部,从而实现对外部输入信号跟踪或抑制作用。重复控制算法具有计算量小、结构简单、占用内存小和易于实现等优点,适用于主动磁轴承系统多种倍频的抑制。但是传统重复控制算法只能针对特定的转子转速进行电流抑制,一旦采样频率与谐波干扰信号基频的比值不为整数时,无法对小数部分进行补偿,也即是无法做到在任意额定频率下对谐波扰动信号的精确抑制。
发明内容
本发明的目的:为了克服现有分数阶重复控制器收敛速度慢的不足,发明了一种谐波电流抑制方法,在采样频率与谐波电流基频的比值为分数情况下,既能有效抑制电流,同时又能保持谐波振荡器的快速收敛特性。
本发明的技术解决方案:一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法,包括以下步骤:
步骤(1)建立包含不平衡质量和传感器谐波的磁悬浮转子动力学模型
根据牛顿第二定律,磁悬浮转子在X方向的动力学方程为:
Figure BDA0001548418510000021
其中,
Figure BDA0001548418510000022
表示转子在X方向的加速度,m表示转子质量,fx表示磁轴承在X方向的轴承力,fu表示转子的不平衡力,可表示为:
fu=meΩ2cos(Ωt+φ)
其中,e表示转子几何中心与质心之间的偏差,Ω表示转子转速,t表示时间,φ表示转子不平衡质量的初始相位;
当转子围绕磁轴承中心悬浮时,磁轴承的电磁力可表示为线性化方程:
fx≈Kxx+Kii
其中,Kx和Ki分别表示磁轴承位移刚度和电流刚度,x为转子几何中心的真实坐标值,i表示磁轴承线圈控制电流;
由于机械加工精度和材料的不均匀因素的影响,磁悬浮转子的位移传感器检测面会出现圆度不理想、材质不均匀、剩磁特性不同,位移传感器的输出将会出现同频和倍频的多谐波信号,则位移传感器输出可表示为:
xs(t)=x(t)+xd(t)
其中,x(t)表示转子几何中心真实的坐标值,xs(t)表示传感器的输出值,xd(t)为传感器输出值与真实值的误差,可表示为:
Figure BDA0001548418510000023
其中,l表示谐波次数,cl表示谐波系数,n表示最高谐波次数,θl表示谐波初始相位;
将i、xd(t)、fu依次进行拉普拉斯变换可得i(s)、xd(s)、fu(s),则磁轴承电流i(s)的传递函数可表示为:
Figure BDA0001548418510000031
其中,Gc(s)是控制器的传递函数,Gw(s)是功放环节的传递函数,Gp(s)是磁悬浮转子的传递函数,R(s)表示参考输入信号,Ks表示传感器增益;
步骤(2):设计谐波振荡器并联分数阶重复控制器的谐波电流抑制算法
以系统的谐波电流作为控制目标,把功放Gw(s)输出的电流i作为谐波振荡器并联分数阶重复控制器系统的输入信号,谐波振荡器并联分数阶重复控制器系统的输出反馈至原控制系统的功放输入端,与此同时控制器Gc(s)的输出也作为Gw(s)的输入信号,经过此系统结构之后,能实现在任意额定转速下,磁悬浮转子既快速又精确的电流抑制。
当系统采样频率与谐波信号基频的比值不为整数时,为了实现对其小数部分的补偿,使用整数延时环节和分数延时环节相串联的结构作为分数补偿重复控制器,为了简化系统结构、减轻计算负担,采用基于Farrow结构的分数延时滤波器,该滤波器有n条支路,在每条支路的公共线路上串联一个单位的延时环节,从而简化系统结构;为了不受低通滤波器在高频段幅值衰减和相位滞后的影响,将低通滤波器Q(s)由重复控制器的反馈回路内,移动到与重复控制器相串联的支路上;为了提高系统电流抑制的收敛速度,把谐波振荡器并联在分数阶重复控制器两端。采用以上所述系统结构,一方面消除低通滤波器幅值衰减和相位滞后带来的影响,使得系统在高频段也能实现电流抑制;另一方面在采样频率与谐波扰动信号基频比值不为整数时,可以实现分数阶补偿,从而提高任意额定转速下磁轴承的谐波电流抑制精度;再另一方面,再通过谐波振荡器与重复控制器并联,可以提高系统的电流抑制的收敛速度。
更进一步的,所述步骤(2)谐波振荡器并联分数阶重复控制器有:
重复控制器和谐振控制器基于内部模型控制理论,如果周期性参考信号的模型是稳定的闭环系统的一部分,则可以实现零稳态跟踪误差。重复控制器可以抑制多种频率成分的谐波信号,但动态特性缓慢;而谐振控制器具有更快的动态特性,但只能抑制单一频率成分的谐波信号。混合重复控制器/谐振控制器控制方法可以具有两个特性。
以外部参考输入信号R(s)和谐波扰动等效信号D(s)作为输入,以磁轴承线圈电流i(s)作为输出,加入谐波振荡器并联分数阶重复控制器时的灵敏度函数S2(s)可表示如下:
Figure BDA0001548418510000041
其中,
Figure BDA0001548418510000042
表示未加重复控制器时系统的灵敏度函数,
Figure BDA0001548418510000043
表示谐波振荡器的表达式,kir是控制器的增益,ω0是谐振频率,ωcr是控制器的带宽。N表示采样频率与谐波信号基频的比值,N1表示采样的整周期数,N2表示超前相位补偿周期数,A表示小数补偿周期数,并且N=N1+N2+A,说明当N为分数时,也能使得灵敏度函数S2(s)幅值为零,并且不受低通滤波器的影响。Kf(s)为相位补偿函数和Krc为增益调节参数,低通滤波器Q(s)的截止频率ωc大于有效谐波扰动的最高频率ωmax,在ω∈(0,ωmax)范围内Q(s)的幅值衰减和相位滞后很小,|Q(s)|≈1,arg[Q(s)]s=jω≈0。
本发明基本原理:由于质量不平衡和传感器谐波的存在,主动磁轴承会产生谐波电流,从而引起谐波振动,影响磁悬浮转子的工作状态。通过建立包含质量不平衡和传感器谐波的磁悬浮转子动力学模型,分析系统的谐波电流,提出了一种谐波振荡器并联分数阶重复控制器,从而实现磁悬浮转子高转速下谐波电流抑制,重点从三个方面进行研究:分数阶延时环节的设计,引入基于Farrow结构的分数延时滤波器替代分数延时环节,当转子的转速发生改变的时候,可通过在线改变分数延时滤波器的系数实现小数部分精确补偿;在引入分数补偿之后,电流抑制的收敛速度明显减慢,为了提高电流抑制的收敛速度,引入谐波振荡器,与分数阶重复控制器相并联,从而提高电流抑制的收敛速度;通过设计相位补偿环节以保证稳定性,最终实现任意转速下磁悬浮转子谐波电流的精确抑制。
本发明与现有技术相比的优点在于:把低通滤波器从反馈回路内移动到与重复控制器相串联的支路上,有效的消除了由于低通滤波器幅值衰减和相位滞后带来的影响;引入基于Farrow结构的分数延时滤波器,使得系统在具有分数补偿能力的同时,又简化了系统结构,减轻计算负担;引入与分数阶重复控制器相并联的谐波振荡器,提高电流抑制的收敛速度,使得系统能在任意额定的采样频率下,能实现对谐波扰动信号的精确抑制。
附图说明
图1为本发明一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法的流程图;
图2为磁悬浮转子系统结构示意图,其中,1为磁轴承,2为转子,3为惯性主轴,4为几何轴;
图3为X通道磁轴承转子控制系统方框图;
图4为传统重复控制器系统方框图;
图5为谐波振荡器并联分数阶重复控制器系统方框图;
图6为简化后的谐波振荡器并联分数阶重复控制器系统方框图。
具体实施方式
下面结合附图以及具体实例进一步说明本发明。
如图1所示,一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法的实施过程是:首先建立包含质量不平衡和传感器谐波的磁悬浮转子动力学模型,然后设计一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法。
磁悬浮转子系统由位移传感器Ks、控制器Gc(s)、功率放大器Gw(s)和磁悬浮转子Gp(s)组成,位移传感器测量出转子位移并反馈至控制器,控制器输出控制量至功率放大器,功率放大器输出电流到磁轴承线圈,磁轴承产生力和力矩使转子稳定悬浮。由于机械加工精度有限,磁悬浮转子无法避免的会出现质量不平衡;由于传感器检测面、检测表面电或磁特性不一致,会产生同频及倍频的扰动信号,也即是传感器谐波。
步骤(1)建立包含不平衡质量和传感器谐波的磁悬浮转子的数学模型
磁悬浮转子除了由电机控制的轴向旋转自由度外,其他五个自由度均是由主动磁轴承来控制。其系统结构示意图如图2所示,两个径向通道的平动被主动磁轴承控制。C表示转子的质心,N表示磁轴承定子的几何中心,以N为中心建立惯性坐标系NXY。O表示转子的几何中心,以O为中心建立旋转坐标系Oεη。由于转子结构是对称的,所以转子在X和Y方向有相同的数学模型,根据牛顿第二定律,磁悬浮转子在X方向的动力学方程为:
Figure BDA0001548418510000051
其中,
Figure BDA0001548418510000052
表示转子在X方向的加速度,m表示转子质量,fx表示磁轴承在X方向的轴承力,fu表示转子的不平衡力,可表示为:
fu=meΩ2cos(Ωt+φ)
其中,e表示转子几何中心与质心之间的偏差,Ω表示转子转速,t表示时间,φ表示转子不平衡质量的初始相位;
当转子围绕磁轴承中心悬浮时,磁轴承转子的电磁力可表示为线性化方程:
fx≈Kxx+Kii
其中,Kx和Ki分别表示磁轴承位移刚度和电流刚度,x为转子几何中心的真实坐标值,i表示磁轴承线圈控制电流;
由于机械加工精度和材料的不均匀等因素的影响,磁悬浮转子的位移传感器检测面会出现圆度不理想、材质不均匀、剩磁特性不同,位移传感器的输出将会出现同频和倍频的多谐波信号,则位移传感器的输出可表示为:
xs(t)=x(t)+xd(t)
其中,x(t)表示转子几何中心真实的坐标值,xs(t)表示传感器的输出值,xd(t)为传感器输出值与真实值的误差,可表示为:
Figure BDA0001548418510000061
其中,l表示谐波次数,cl表示谐波系数,n表示最高谐波次数,θl表示谐波初始相位。式中,当l=1时,表示位移传感器输出中存在同频信号,而当l=2、3、4……时,表示位移传感器中包含倍频信号,也即是系统中存在多次谐波。
磁悬浮转子在Y方向的动力学方程为:
Figure BDA0001548418510000062
其中,
Figure BDA0001548418510000063
表示转子在Y方向的加速度,m表示转子质量,fy表示磁轴承在Y方向的轴承力,fu表示转子的不平衡力,可表示为:
fu=meΩ2cos(Ωt+φ)
其中,e表示转子几何中心与质心之间的偏差,Ω表示转子转速,t表示时间,φ表示转子不平衡质量的初始相位;
当转子围绕磁轴承中心悬浮时,磁轴承转子的电磁力可表示为线性化方程:
fy≈Kyy+Kii
其中,Ky和Ki分别表示磁轴承位移刚度和电流刚度,y为转子几何中心的真实坐标值,i表示磁轴承线圈控制电流;
则位移传感器的输出可表示为:
ys(t)=y(t)+yd(t)
其中,y(t)表示转子几何中心真实的坐标值,ys(t)表示传感器的输出值,yd(t)为传感器输出值与真实值的误差,可表示为:
Figure BDA0001548418510000071
其中,l表示谐波次数,cl表示谐波系数,n表示最高谐波次数,θl表示谐波初始相位。式中,当l=1时,表示位移传感器输出中存在同频信号,而当l=2、3、4……时,表示位移传感器中包含倍频信号,也即是系统中存在多次谐波。
将i、xd(t)、fu依次进行拉普拉斯变换可得i(s)、xd(s)、fu(s)。从图3可看出,此时未加重复控制算法,以外部参考信号R(s)为输入,通过只由Gc(s)、Gw(s)、Gp(s)和Ks反馈回路组成的系统,最终输出信号还叠加了fu和xd(t)/yd(t)引起的输出,由此可得磁轴承电流i(s)的传递函数可表示为:
Figure BDA0001548418510000072
Figure BDA0001548418510000073
其中,Gc(s)是控制器的传递函数,Gw(s)是功放环节的传递函数,Gp(s)是磁悬浮转子的传递函数,R(s)表示参考输入信号,Ks表示传感器增益;
结合以上分析可得,转子质量不平衡以及传感器误差会使得磁轴承产生谐波控制电流,从而产生谐波振动,振动通过磁轴承会传递给航天器,从而影响航天器的姿态控制精度,因而需要加以控制。
步骤(2):设计谐波振荡器并联分数阶重复控制器的谐波电流抑制算法
针对步骤(1)所述,磁轴承线圈中存在谐波电流从而引发磁悬浮转子振动这一问题,本发明采用一种谐波振荡器并联分数阶重复控制器的方法对谐波电流进行抑制。以X轴方向的电流抑制为例,X轴方向谐波振荡器并联分数阶重复控制器系统框图如图5所示,以系统的谐波电流作为控制目标,把功放Gw(s)输出的电流i作为谐波振荡器并联分数阶重复控制器系统的输入信号,谐波振荡器并联分数阶重复控制器系统的输出反馈至原控制系统的功放输入端,与此同时控制器Gc(s)的输出也作为功放Gw(s)的输入信号,经过此系统结构之后,能实现在任意额定转速下,磁悬浮转子既快速又精确的电流抑制。
重复控制器基于内模原理,能消除输入信号中的谐波分量,在实际的磁轴承控制系统中,当系统采样频率与谐波信号基频的比值不为整数时,为了实现对其小数部分的补偿,使用整数延时环节和分数延时环节相串联的结构作为分数补偿重复控制器,为了简化系统结构、减轻计算负担,本专利中引入基于Farrow结构的分数延时滤波器,该滤波器有n条支路,在每条支路的公共线路上串联一个单位的延时环节,从而简化系统结构;为了不受低通滤波器在高频段幅值衰减和相位滞后的影响,将低通滤波器Q(s)由重复控制器的反馈回路内,移动到与重复控制器相串联的支路上;为了提高系统电流抑制的收敛速度,把谐波振荡器并联在分数阶重复控制器两端。采用以上所述系统结构,一方面消除低通滤波器幅值衰减和相位滞后带来的影响,使得系统在高频段也能实现电流抑制;另一方面在采样频率与谐波扰动信号基频比值不为整数时,可以实现分数阶补偿,从而提高任意额定转速下磁轴承的谐波电流抑制精度;在另一方面,重复控制器和谐振控制器基于内部模型控制理论,其中如果周期性参考信号的模型是稳定的闭环系统的一部分,则可以实现零稳态跟踪误差。重复控制器可以抑制多种频率成分的谐波信号,但动态响应缓慢;而谐振控制器具有更快的动态响应,但只能抑制单一频率成分的谐波信号。混合重复控制器/谐振控制器控制方法可以具有两个特性,因此让谐波振荡器与重复控制器并联,不仅可以精确抑制谐波电流,还可以提高系统的电流抑制的收敛速度。
以外部参考输入信号R(s)和谐波扰动等效信号D(s)作为输入,以磁轴承线圈电流i(s)作为输出,加入谐波振荡器并联分数阶重复控制器时的灵敏度函数S2(s)可表示如下:
Figure BDA0001548418510000081
其中,
Figure BDA0001548418510000082
表示未加重复控制器时系统的灵敏度函数,Grsc(s)表示谐波振荡器。N表示采样频率与干扰信号基频的比值,N1表示采样的整周期数,N2表示超前相位补偿周期数,A表示小数补偿周期数,并且N=N1+N2+A,说明当N为分数时,也能使得灵敏度函数S2(s)幅值为零,并且不受低通滤波器的影响。Kf(s)为相位补偿函数和Krc为增益调节参数,低通滤波器Q(s)的截止频率ωc大于有效谐波扰动的最高频率ωmax,在ω∈(0,ωmax)范围内Q(s)的幅值衰减和相位滞后很小,|Q(s)|≈1,arg[Q(s)]s=jω≈0。
1.分数延时环节分析
如图5所示,
Figure BDA0001548418510000091
是采样周期的整数延时环节,
Figure BDA0001548418510000092
重复控制器的相位超前补偿环节,
Figure BDA0001548418510000093
是采样周期的分数阶延时环节,由分数延时滤波器替代得到。本专利中引入如图5所示的分数延时滤波器的结构,结构简单、计算量小。当谐波电流基频发生改变时,会得到一个新的小数,把小数带入分数延时滤波器确定分数延时滤波器的系数,从而实现分数延时滤波器的系数更新,进而可实现对小数部分进行补偿,
定义N为系统采样频率与谐波信号基频的比值,同时N的大小可体现出分数阶重复控制器的控制分辨率的高低,一般采样频率越高意味着控制精度越高。由于
Figure BDA0001548418510000094
并且N1+N2=int[N]作为N的整数部分,所以有A=N-(N1+N2),0<A<1作为N的分数部分。在工程实际应用中,分数延时环节无法直接实现,需要找到一种替换形式。分数阶延时环节
Figure BDA0001548418510000095
可用一种拉格朗日插值多项式来表示:
Figure BDA0001548418510000096
其中,系数Dl可表示如下:
Figure BDA0001548418510000097
根据拉格朗日插值方法,多项式
Figure BDA0001548418510000098
与分数延时环节
Figure BDA0001548418510000099
的差值Rn可表示如下:
Figure BDA00015484185100000910
其中,ξ∈[Tk,Tk+1],Tk和Tk+1分别代表第k个和第k+1个的采样时刻,随着拉格朗日插值多项式阶数n的增大,近似余项Rn逐渐减小,即拉格朗日插值多项式的近似程度逐渐升高,但是,随着n的增大,算法计算量将大幅度增大。在实际工程中,应该综合考虑差值Rn和算法计算量两个因素,本发明中选用n=1,则有
Figure BDA00015484185100000911
2.谐波振荡器分析
Figure BDA00015484185100000912
为谐波振荡器的最佳形式。其中,kir是控制器的增益,ω0是谐振频率,ωcr是控制器的带宽。谐波振荡器能调节控制器的谐振频率相位,增加了设计的灵活性,具有三个独立的自由度:控制器增益、带宽和相位等;
3.系统稳定性分析
保持系统的稳定性是加入抑制算法后能正常运行的关键,以下将针对谐波振荡器并联分数阶重复控制器的谐波电流抑制算法进行分析。图5经过简化得到图6,图6中分数延时环节已经被分数延时滤波器替代,且与
Figure BDA0001548418510000101
高频段的相位补偿相串联,其中相位补偿函数C(s)可以表示为:
Figure BDA0001548418510000102
其中,Krc表示改进重复控制器增益,Kf(s)表示在低频段和中频段的相位补偿函数,
Figure BDA0001548418510000103
表示高频段的相位补偿函数。
由图6可以得到加入谐波振荡器并联分数补偿重复控制器后系统的闭环特征方程如下:
Figure BDA0001548418510000104
其中:
M(s)=1-Gw(s)Grsc(s)+Gc(s)Gw(s)Gp(s)Ks
Figure BDA0001548418510000105
为了便于系统的稳定性分析,引入改进重复控制器后的重构谱,重构谱的定义如下:
Figure BDA0001548418510000106
重构谱函数可以作为判断系统稳定性的一种依据:根据最小增益理论可知,对于一个稳定系统,如果加入重复控制器后系统重构谱函数能满足R(ω)<1,ω∈(0,ωc),则新系统也是稳定的。
定义系统函数F(s):
Figure BDA0001548418510000107
其中,|F(s)|s=jω=L(ω)ejθ(ω),加入重复控制器后系统的重构谱函数为:
Figure BDA0001548418510000108
其中,
Figure BDA0001548418510000109
取λ(ω)=θ(ω)+θb(ω)+(N2+A)Tsω,上式通过欧拉公式可得:
|1+KrcL(ω)·Kb(ω)cosλ(ω)+jKrcL(ω)·Kb(ω)sinλ(ω)|<1
对上式两边分别进行取模的平方,可以得到:
[KrcL(ω)·Kb(ω)]2<-2KrcL(ω)·Kb(ω)cosλ(ω)
因为重复控制器的增益Krc>0,且L(ω)>0,Kb(ω)>0,所以上式可简化为:
KrcL(ω)·Kb(ω)<-2cosλ(ω)
要使得上式恒成立,必须保证cosλ(ω)<0,也即是:
90°<λ(ω)<270°
Figure BDA0001548418510000111
综上所述,通过串联合适的相位补偿函数和增益系数,可以保证加入算法后系统的稳定性。
本发明未详细阐述部分属于本领域专业人员公知的现有技术。

Claims (1)

1.一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法,其特征在于:包括如下步骤:首先建立包含质量不平衡和传感器谐波的磁悬浮转子动力学模型,然后设计一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法;
磁悬浮转子系统由位移传感器Ks、控制器Gc(s)、功率放大器Gw(s)和磁悬浮转子Gp(s)组成,位移传感器测量出转子位移并反馈至控制器,控制器输出控制量至功率放大器,功率放大器输出电流到磁轴承线圈,磁轴承产生力和力矩使转子稳定悬浮,由于机械加工精度有限,磁悬浮转子无法避免的会出现质量不平衡;由于传感器检测面、检测表面电或磁特性不一致,会产生同频及倍频的扰动信号,也即是传感器谐波;
步骤(1)建立包含不平衡质量和传感器谐波的磁悬浮转子的数学模型
磁悬浮转子除了由电机控制的轴向旋转自由度外,其他五个自由度均是由主动磁轴承来控制,两个径向通道的平动被主动磁轴承控制,C表示转子的质心,M表示磁轴承定子的几何中心,以M为中心建立惯性坐标系MXY,O表示转子的几何中心,以O为中心建立旋转坐标系Oεη,由于转子结构是对称的,所以转子在X和Y方向有相同的数学模型,根据牛顿第二定律,磁悬浮转子在X方向的动力学方程为:
Figure FDA0002866514170000011
其中,
Figure FDA0002866514170000012
表示转子在X方向的加速度,m表示转子质量,fx表示磁轴承在X方向的轴承力,fu表示转子的不平衡力,可表示为:
fu=meΩ2cos(Ωt+φ)
其中,e表示转子几何中心与质心之间的偏差,Ω表示转子转速,t表示时间,φ表示转子不平衡质量的初始相位;
当转子围绕磁轴承中心悬浮时,磁轴承转子的电磁力可表示为线性化方程:
fx≈Kxx+Kii
其中,Kx和Ki分别表示磁轴承位移刚度和电流刚度,x为转子几何中心的真实坐标值,i表示磁轴承线圈控制电流;
由于机械加工精度和材料的不均匀因素的影响,磁悬浮转子的位移传感器检测面会出现圆度不理想、材质不均匀、剩磁特性不同,位移传感器的输出将会出现同频和倍频的多谐波信号,则位移传感器的输出可表示为:
xs(t)=x(t)+xd(t)
其中,x(t)表示转子几何中心真实的坐标值,xs(t)表示传感器的输出值,xd(t)为传感器输出值与真实值的误差,可表示为:
Figure FDA0002866514170000021
其中,l表示谐波次数,cl表示谐波系数,n表示最高谐波次数,θl表示谐波初始相位,式中,当l=1时,表示位移传感器输出中存在同频信号,而当l=2、3、4……时,表示位移传感器中包含倍频信号,也即是系统中存在多次谐波;
磁悬浮转子在Y方向的动力学方程为:
Figure FDA0002866514170000022
其中,
Figure FDA0002866514170000023
表示转子在Y方向的加速度,m表示转子质量,fy表示磁轴承在Y方向的轴承力,fu表示转子的不平衡力,可表示为:
fu=meΩ2cos(Ωt+φ)
其中,e表示转子几何中心与质心之间的偏差,Ω表示转子转速,t表示时间,φ表示转子不平衡质量的初始相位;
当转子围绕磁轴承中心悬浮时,磁轴承转子的电磁力可表示为线性化方程:
fy≈Kyy+Kii
其中,Ky和Ki分别表示磁轴承位移刚度和电流刚度,y为转子几何中心的真实坐标值,i表示磁轴承线圈控制电流;
则位移传感器的输出可表示为:
ys(t)=y(t)+yd(t)
其中,y(t)表示转子几何中心真实的坐标值,ys(t)表示传感器的输出值,yd(t)为传感器输出值与真实值的误差,可表示为:
Figure FDA0002866514170000024
其中,l表示谐波次数,cl表示谐波系数,n表示最高谐波次数,θl表示谐波初始相位,式中,当l=1时,表示位移传感器输出中存在同频信号,而当l=2、3、4……时,表示位移传感器中包含倍频信号,也即是系统中存在多次谐波;
将i、xd(t)、fu依次进行拉普拉斯变换可得i(s)、xd(s)、fu(s),此时未加重复控制算法,以外部参考信号R(s)为输入,通过只由Gc(s)、Gw(s)、Gp(s)和Ks反馈回路组成的系统,最终输出信号还叠加了fu和xd(t)/yd(t)引起的输出,由此可得磁轴承电流i(s)的传递函数可表示为:
Figure FDA0002866514170000031
Figure FDA0002866514170000032
其中,Gc(s)是控制器的传递函数,Gw(s)是功放环节的传递函数,Gp(s)是磁悬浮转子的传递函数,R(s)表示参考输入信号,Ks表示传感器增益;
结合以上分析可得,转子质量不平衡以及传感器误差会使得磁轴承产生谐波控制电流,从而产生谐波振动,振动通过磁轴承会传递给航天器,从而影响航天器的姿态控制精度,因而需要加以控制;
步骤(2):设计谐波振荡器并联分数阶重复控制器的谐波电流抑制算法
针对步骤(1)所述,磁轴承线圈中存在谐波电流从而引发磁悬浮转子振动这一问题,本发明采用一种谐波振荡器并联分数阶重复控制器的方法对谐波电流进行抑制,对于X轴方向的电流抑制,对于X轴方向谐波振荡器并联分数阶重复控制器系统,以系统的谐波电流作为控制目标,把功放Gw(s)输出的电流i作为谐波振荡器并联分数阶重复控制器系统的输入信号,谐波振荡器并联分数阶重复控制器系统的输出反馈至原控制系统的功放输入端,与此同时控制器Gc(s)的输出也作为功放Gw(s)的输入信号,经过此系统结构之后,能实现在任意额定转速下,磁悬浮转子既快速又精确的电流抑制;
重复控制器基于内模原理,能消除输入信号中的谐波分量,在实际的磁轴承控制系统中,当系统采样频率与谐波信号基频的比值不为整数时,为了实现对其小数部分的补偿,使用整数延时环节和分数延时环节相串联的结构作为分数补偿重复控制器,为了简化系统结构、减轻计算负担,引入基于Farrow结构的分数延时滤波器,该滤波器有n条支路,在每条支路的公共线路上串联一个单位的延时环节,从而简化系统结构;为了不受低通滤波器在高频段幅值衰减和相位滞后的影响,将低通滤波器Q(s)由重复控制器的反馈回路内,移动到与重复控制器相串联的支路上;为了提高系统电流抑制的收敛速度,把谐波振荡器并联在分数阶重复控制器两端,采用以上所述系统结构,一方面消除低通滤波器幅值衰减和相位滞后带来的影响,使得系统在高频段也能实现电流抑制;另一方面在采样频率与谐波扰动信号基频比值不为整数时,可以实现分数阶补偿,从而提高任意额定转速下磁轴承的谐波电流抑制精度;在另一方面,重复控制器和谐振控制器基于内部模型控制理论,其中如果周期性参考信号的模型是稳定的闭环系统的一部分,则可以实现零稳态跟踪误差,重复控制器可以抑制多种频率成分的谐波信号,但动态响应缓慢;而谐振控制器具有更快的动态响应,但只能抑制单一频率成分的谐波信号,混合重复控制器/谐振控制器控制方法可以具有两个特性,因此让谐波振荡器与重复控制器并联,不仅可以精确抑制谐波电流,还可以提高系统的电流抑制的收敛速度;
以外部参考输入信号R(s)和谐波扰动等效信号D(s)作为输入,以磁轴承线圈电流i(s)作为输出,加入谐波振荡器并联分数阶重复控制器时的灵敏度函数S2(s)可表示如下:
Figure FDA0002866514170000041
其中,
Figure FDA0002866514170000042
表示未加重复控制器时系统的灵敏度函数,Grsc(s)表示谐波振荡器,N表示系统采样频率与谐波信号基频的比值,N1表示采样的整周期数,N2表示超前相位补偿周期数,A表示小数补偿周期数,并且N=N1+N2+A,说明当N为分数时,也能使得灵敏度函数S2(s)幅值为零,并且不受低通滤波器的影响,Kf(s)为相位补偿函数和Krc为增益调节参数,低通滤波器Q(s)的截止频率ωc大于有效谐波扰动的最高频率ωmax,在ω∈(0,ωmax)范围内Q(s)的幅值衰减和相位滞后很小,|Q(s)|≈1,arg[Q(s)]s=jω≈0;
1.分数延时环节分析
Figure FDA0002866514170000043
是采样周期的整数延时环节,
Figure FDA0002866514170000044
重复控制器的相位超前补偿环节,
Figure FDA0002866514170000045
是采样周期的分数阶延时环节,由分数延时滤波器替代得到,当谐波电流基频发生改变时,会得到一个新的小数,把小数带入分数延时滤波器确定分数延时滤波器的系数,从而实现分数延时滤波器的系数更新,进而可实现对小数部分进行补偿,
定义N为系统采样频率与谐波信号基频的比值,同时N的大小可体现出分数阶重复控制器的控制分辨率的高低,一般采样频率越高意味着控制精度越高,由于
Figure FDA0002866514170000046
并且N1+N2=int[N]作为N的整数部分,所以有A=N-(N1+N2),0<A<1作为N的分数部分,分数阶延时环节
Figure FDA0002866514170000051
可用一种拉格朗日插值多项式来表示:
Figure FDA0002866514170000052
其中,系数Dl可表示如下:
Figure FDA0002866514170000053
根据拉格朗日插值方法,多项式
Figure FDA0002866514170000054
与分数延时环节
Figure FDA0002866514170000055
的差值Rn可表示如下:
Figure FDA0002866514170000056
其中,ξ∈[Tk,Tk+1],Tk和Tk+1分别代表第k个和第k+1个的采样时刻,随着拉格朗日插值多项式阶数n的增大,近似余项Rn逐渐减小,即拉格朗日插值多项式的近似程度逐渐升高,但是,随着n的增大,算法计算量将大幅度增大,综合考虑差值Rn和算法计算量两个因素,选用n=1,则有
Figure FDA0002866514170000057
2.谐波振荡器分析
Figure FDA0002866514170000058
为谐波振荡器的最佳形式,其中,kir是控制器的增益,ω0是谐振频率,ωcr是控制器的带宽,谐波振荡器能调节控制器的谐振频率相位,增加了设计的灵活性,具有三个独立的自由度:控制器增益、带宽和相位;
3.系统稳定性分析
保持系统的稳定性是加入抑制算法后能正常运行的关键,以下将针对谐波振荡器并联分数阶重复控制器的谐波电流抑制算法进行分析,分数延时环节已经被分数延时滤波器替代,且与
Figure FDA0002866514170000059
高频段的相位补偿相串联,其中相位补偿函数C(s)可以表示为:
Figure FDA00028665141700000510
其中,Krc表示改进重复控制器增益,Kf(s)表示在低频段和中频段的相位补偿函数,
Figure FDA00028665141700000511
表示高频段的相位补偿函数;
加入谐波振荡器并联分数补偿重复控制器后系统的闭环特征方程如下:
Figure FDA00028665141700000512
其中:
M(s)=1-Gw(s)Grsc(s)+Gc(s)Gw(s)Gp(s)Ks
Figure FDA0002866514170000061
为了便于系统的稳定性分析,引入改进重复控制器后的重构谱,重构谱的定义如下:
Figure FDA0002866514170000062
重构谱函数可以作为判断系统稳定性的一种依据:根据最小增益理论可知,对于一个稳定系统,如果加入重复控制器后系统重构谱函数能满足R(ω)<1,ω∈(0,ωc),则新系统也是稳定的;
定义系统函数F(s):
Figure FDA0002866514170000063
其中,|F(s)|s=jω=L(ω)ejθ(ω),加入重复控制器后系统的重构谱函数为:
Figure FDA0002866514170000064
其中,
Figure FDA0002866514170000065
取λ(ω)=θ(ω)+θb(ω)+(N2+A)Tsω,上式通过欧拉公式可得:
|1+KrcL(ω)·Kb(ω)cosλ(ω)+jKrcL(ω)·Kb(ω)sinλ(ω)|<1
对上式两边分别进行取模的平方,可以得到:
[KrcL(ω)·Kb(ω)]2<-2KrcL(ω)·Kb(ω)cosλ(ω)
因为重复控制器的增益Krc>0,且L(ω)>0,Kb(ω)>0,所以上式可简化为:
KrcL(ω)·Kb(ω)<-2cosλ(ω)
要使得上式恒成立,必须保证cosλ(ω)<0,也即是:
90°<λ(ω)<270°
Figure FDA0002866514170000066
综上所述,通过串联合适的相位补偿函数和增益系数,可以保证加入算法后系统的稳定性。
CN201810037361.1A 2018-01-16 2018-01-16 一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法 Active CN108227499B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810037361.1A CN108227499B (zh) 2018-01-16 2018-01-16 一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810037361.1A CN108227499B (zh) 2018-01-16 2018-01-16 一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法

Publications (2)

Publication Number Publication Date
CN108227499A CN108227499A (zh) 2018-06-29
CN108227499B true CN108227499B (zh) 2021-04-27

Family

ID=62641893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810037361.1A Active CN108227499B (zh) 2018-01-16 2018-01-16 一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法

Country Status (1)

Country Link
CN (1) CN108227499B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062274B (zh) * 2018-09-03 2021-09-10 河南工业大学 一种基于复变量有限维重复控制的磁轴承振动力矩抑制方法
CN110058528A (zh) * 2019-06-04 2019-07-26 南京工业大学 飞轮储能用磁轴承传感器端扰动自适应迭代学习控制方法
CN110647132B (zh) * 2019-08-28 2021-02-26 浙江工业大学 一种网络化运动控制系统频域分区攻击检测方法
CN111473049B (zh) * 2020-04-17 2021-08-20 河海大学 一种实心定子磁悬浮励磁电流的控制方法
CN111752153B (zh) * 2020-06-24 2021-09-14 北京航空航天大学 一种基于1.5阶混合重复控制器的谐波电流抑制方法
CN112467744B (zh) * 2020-12-11 2022-06-17 东北电力大学 面向配网频率偏移的apf抗频扰谐波指令电流预测方法
CN113258615B (zh) * 2021-06-08 2021-10-08 西南石油大学 并网逆变器频率自适应控制方法、装置、设备及存储介质
CN114326409B (zh) * 2022-01-07 2024-04-12 北京航空航天大学 基于双通道谐波重构的磁悬浮转子直接振动力抑制方法
CN114509970B (zh) * 2022-01-12 2023-02-28 武汉理工大学 一种通用的多周期多谐振控制器设计方法及控制器
CN115016267B (zh) * 2022-05-30 2024-04-30 北京航空航天大学 一种磁悬浮转子奇次谐波振动力抑制方法
CN115016266B (zh) * 2022-05-30 2024-04-30 北京航空航天大学 一种基于分数阶重复控制的磁悬浮转子系统振动力抑制方法
CN116733847B (zh) * 2023-06-19 2024-01-09 浙江大学 基于lms幅值相位搜索的转子振动抑制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570361B1 (en) * 1999-02-22 2003-05-27 Borealis Technical Limited Rotating induction apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624357B (zh) * 2012-03-19 2014-10-15 上海交通大学 一种分数延迟数字滤波器的实现结构
CN103475029B (zh) * 2013-09-27 2015-04-08 重庆大学 基于极点配置的三相lcl型并网逆变器控制系统及方法
CN104503238B (zh) * 2014-12-15 2017-03-22 北京航空航天大学 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
CN105006825B (zh) * 2015-06-04 2017-04-05 广西电网有限责任公司电力科学研究院 一种高电能质量输出的电力电子变压器及其控制方法
CN105159342B (zh) * 2015-09-06 2017-06-20 北京航空航天大学 一种基于并联相移滤波器的磁悬浮转子谐波电流抑制方法
CN106773673A (zh) * 2016-11-23 2017-05-31 北京航空航天大学 一种基于频率自适应的分数补偿重复控制器的磁悬浮转子谐波电流抑制方法
CN106444390B (zh) * 2016-12-06 2019-03-29 北京航空航天大学 一种基于fir滤波器和分数阶重复控制器的磁悬浮转子谐波电流抑制方法
CN106647843B (zh) * 2016-12-29 2018-05-04 北京航空航天大学 一种基于复合分数重复控制器的磁悬浮转子谐波电流抑制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570361B1 (en) * 1999-02-22 2003-05-27 Borealis Technical Limited Rotating induction apparatus

Also Published As

Publication number Publication date
CN108227499A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN108227499B (zh) 一种谐波振荡器并联分数阶重复控制器的磁悬浮转子谐波电流抑制方法
CN106647843B (zh) 一种基于复合分数重复控制器的磁悬浮转子谐波电流抑制方法
CN106886152B (zh) 一种基于二阶奇次重复控制器的磁悬浮转子奇次谐波电流抑制方法
CN108897218B (zh) 一种基于混合奇次重复控制器的磁悬浮转子奇次谐波振动抑制方法
CN107870568B (zh) 一种基于二阶双模重复控制的磁悬浮转子谐波电流抑制方法
CN106444390B (zh) 一种基于fir滤波器和分数阶重复控制器的磁悬浮转子谐波电流抑制方法
CN104503238B (zh) 一种基于自适应重复控制器的磁悬浮转子系统电流谐波抑制方法
Cui et al. Harmonic current suppression of an AMB rotor system at variable rotation speed based on multiple phase-shift notch filters
CN106773673A (zh) 一种基于频率自适应的分数补偿重复控制器的磁悬浮转子谐波电流抑制方法
CN106610586B (zh) 一种基于并行forc和相位滞后-超前补偿的磁悬浮转子谐波电流抑制方法
CN106896726B (zh) 一种磁悬浮转子谐波电流抑制方法
CN108106611B (zh) 一种基于多重相移准谐振控制的磁悬浮转子谐波电流抑制方法
Fang et al. Adaptive complete suppression of imbalance vibration in AMB systems using gain phase modifier
CN111650975B (zh) 一种基于多阶重复控制器的磁悬浮转子谐波电流抑制方法
CN111752153B (zh) 一种基于1.5阶混合重复控制器的谐波电流抑制方法
CN107844052B (zh) 基于并联式有限维重复控制的磁轴承系统谐波电流抑制方法
CN111624888B (zh) 基于重复控制器和补偿的磁悬浮转子振动力抑制方法及系统
CN106873655A (zh) 一种基于有限维重复控制的磁轴承系统多谐波振动抑制方法
CN105159342A (zh) 一种基于并联相移滤波器的磁悬浮转子谐波电流抑制方法
CN112525180B (zh) 一种基于混合重复控制器的谐波振动力矩抑制方法
CN106289208B (zh) 一种基于非线性自适应算法的磁轴承系统惯性轴辨识方法
CN114326409A (zh) 基于双通道谐波重构的磁悬浮转子直接振动力抑制方法
CN111708278B (zh) 一种基于最小均方差前馈补偿算法的同频振动力抑制方法
CN114371622B (zh) 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法
CN113670288B (zh) 一种基于多速率准谐振控制器的磁悬浮转子谐波振动抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant