CN108120578A - A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures - Google Patents

A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures Download PDF

Info

Publication number
CN108120578A
CN108120578A CN201711355463.XA CN201711355463A CN108120578A CN 108120578 A CN108120578 A CN 108120578A CN 201711355463 A CN201711355463 A CN 201711355463A CN 108120578 A CN108120578 A CN 108120578A
Authority
CN
China
Prior art keywords
piezoelectric ceramics
sleeve
mems micro
loaded
coupling block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711355463.XA
Other languages
Chinese (zh)
Other versions
CN108120578B (en
Inventor
佘东生
于震
魏洪峰
周建壮
刘继行
王天
王天一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201711355463.XA priority Critical patent/CN108120578B/en
Publication of CN108120578A publication Critical patent/CN108120578A/en
Application granted granted Critical
Publication of CN108120578B publication Critical patent/CN108120578B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The invention discloses a kind of triple axle exciting banks that shock loading can be loaded to MEMS micro-structures, including sleeve, stack piezoelectric ceramics, pressure sensor, upper and lower coupling block and MEMS micro-structures;The electric threaded shaft transmission mechanism being connected in sleeve equipped with support plate and screw with lower connection block;The spherical surface hill and spherical groove of mutual cooperation are respectively equipped on upper and lower coupling block;Piezoelectric ceramics is stacked to be clamped between pressure sensor and elastic supporting member for supporting optical member;Bulb plunger is evenly equipped on upper coupling block, outer end is headed into the rectangular recess of sleeve lining, and the guiding axis through lower connection block is evenly equipped in sleeve.The device more flexible can apply different size of pretightning force to stacking piezoelectric ceramics, make obtained pretightning force measured value more accurate, the adjusting process that compensation stacks two working surface parallelism error of piezoelectric ceramics can be made to become more smooth and smooth, the shearing force stacked between each layer of piezoelectric ceramics is reduced, convenient for testing the dynamic characteristic parameter of MEMS micro-structures.

Description

A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures
Technical field
The invention belongs to micromachine electronic system technology field, more particularly to one kind can load MEMS micro-structures and impact The triple axle exciting bank of load.
Background technology
Since MEMS micro elements have many advantages, such as at low cost, small and light-weight, make it in automobile, aerospace, letter Breath communication, biochemistry, automatically control and suffer from being widely applied prospect with numerous areas such as national defence medical treatment.For very much For MEMS device, the micro-displacement of internal microstructure and micro-strain are the bases that device function is realized, therefore to these The dynamic characteristic parameters such as amplitude, intrinsic frequency, the damping ratio of micro-structure carry out accurate test and have become exploitation MEMS product Important content.
In order to test the dynamic characteristic parameter of micro-structure, it is necessary first to micro-structure be made to generate vibration, that is, needed to micro- Structure is into row energization.Since MEMS micro-structures have the characteristics that size is small, light-weight and intrinsic frequency is high, tradition machinery mode is surveyed Motivational techniques and exciting bank in examination can not be used among the vibrational excitation of MEMS micro-structures.In the last thirty years, it is domestic Outer researcher has carried out substantial amounts of exploration for the vibrational excitation method of MEMS micro-structures, has investigated some and can be used for The motivational techniques of MEMS micro-structures and corresponding exciting bank.Wherein, the pedestal to stack piezoelectric ceramics as driving source swashs It encourages device and possesses the advantages that excitation bandwidth is larger, and device is simple, easy to operate and strong applicability, therefore moved in MEMS micro-structures Step response testing field is widely used.David etc. exists《A base excitation test facility for dynamic testing of microsystems》A kind of seat excitation apparatus based on piezoelectric ceramics is described in one text, Piezoelectric ceramics is stacked in the device to be directly bonded on a fixed pedestal, is that a kind of multilayer is glued due to stacking piezoelectric ceramics Binding structure so larger pressure can be born by stacking piezoelectric ceramics, but cannot bear pulling force, and pulling force can cause to stack piezoelectricity pottery The damage of porcelain, when stacking piezoelectric ceramics when in use, certain pretightning force that presses to it, which is conducive to extend, stacks piezoelectric ceramics Service life, and the device does not consider the above problem;Wang etc. exists《Dynamic characteristic testing for MEMS micro-devices with base excitation》A kind of pedestal based on piezoelectric ceramics is described in one text to swash Encourage device, take into account in the apparatus to stack piezoelectric ceramics apply certain pretightning force the problem of, used pressing plate, pedestal and The mechanism of adjusting screw composition stacks piezoelectric ceramics to compress, and can change the size of pretightning force by screwing adjusting screw, But the device is not considered when said mechanism is used to apply pretightning force to stacking piezoelectric ceramics, due to stacking piezoelectric ceramics two The parallelism error of working surface can generate shearing force between layers stack piezoelectric ceramics, which can be to stacking Piezoelectric ceramics generates mechanical damage, in addition, the device can not measure the size of applied pretightning force, if adjusting is improper, Mechanical damage can be caused to stacking piezoelectric ceramics.The Chinese invention patent of Publication No. CN101476970A discloses one kind and is based on The seat excitation apparatus of piezoelectric ceramics applies pretightning force to stacking piezoelectric ceramics by cross-spring piece in the apparatus, and leads to Piezoelectric ceramics bottom will be stacked on a movable understructure to reduce the shearing force suffered by piezoelectric ceramics by crossing, this Outside, pressure sensor is additionally provided in a device, for detecting the pretightning force applied to piezoelectric ceramics and stacking piezoelectric ceramics Power output at work.But there are still its own shortcomings for the device:
1st, the mobile base structure of the device is made of upper coupling block, steel ball and lower connection block, steel ball and upper coupling block, under It is line contact between coupling block, when the parallelism error that compensation is needed to stack two working surfaces of piezoelectric ceramics top and bottom And when voluntarily adjusting mobile base structure, rotation or even be present with the situation being stuck that steel ball can not be smooth;
2nd, nothing directly couples between upper coupling block and lower connection block and sleeve, but the mode being gap-matched is successively It is installed among sleeve, if the parallelism error for stacking two working surfaces of piezoelectric ceramics is larger, no enough spaces are gone to adjust Save mobile base structure;
3rd, pressure sensor is installed in the bottom of lower connection block, after voluntarily being adjusted due to mobile base structure, lower link There are certain inclination angle between the bottom of block and the working surface of piezoelectric ceramics, thus pretightning force measured by pressure sensor or The power output of piezoelectric ceramics is inaccurate;In addition, if mobile base structure causes coupling block or lower connection block after adjustment It is in contact with sleeve, then the error of measurement result can further increase;
4th, piezoelectric ceramics is stacked to compress using the one side of cross-spring piece in device, on the another side of cross-spring piece The micro element of test is then bonded, when piezoelectric ceramics works, the deformation of cross-spring piece causes micro element and cross compared with conference Colloid cracking between spring leaf, causes micro element to come off;
5th, the big of pretightning force on piezoelectric ceramics is stacked to change to be applied to by using the gasket of different-thickness in the device It is small, cause adjusting process complicated, underaction.
The content of the invention
The technical problems to be solved by the invention are to provide for a kind of three axis for the test of MEMS micro-structure dynamic characteristics Formula seat excitation apparatus, the device more flexible can apply different size of pretightning force to stacking piezoelectric ceramics, make simultaneously The pretightning force measured value obtained is more accurate, and compensation can be made to stack the adjusting of two working surface parallelism error of piezoelectric ceramics Journey becomes more smooth and smooth, substantially reduces the shearing force stacked between each layer of piezoelectric ceramics, convenient for testing the micro- knots of MEMS The dynamic characteristic parameter of structure.
To solve the above problems, the present invention adopts the following technical scheme that:
A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures, including sleeve, is equipped in sleeve Piezoelectric ceramics, pressure sensor, upper coupling block and lower connection block are stacked, elastic supporting member for supporting optical member and the micro- knots of MEMS are equipped on sleeve Structure is characterized in that:
Annular roof plate is equipped on sleeve, the MEMS micro-structures are mounted on by elastic supporting member for supporting optical member on annular roof plate;
Lower part is equipped with support plate in sleeve, and electric threaded shaft transmission mechanism is vertically equipped at support plate center, The screw of electric threaded shaft transmission mechanism is connected with lower connection block, for lower connection block to be driven to move up and down;
The spherical surface hill and spherical groove of mutual cooperation, institute are respectively equipped on upper coupling block and the opposite face of lower connection block It states in spherical surface hill insertion spherical groove and the radius of curvature of spherical surface hill is less than the radius of curvature of spherical groove, make coupling block Point contact is formed between lower connection block;The pressure sensor is installed in the centre bore of coupling block top surface, stacks piezoelectricity Ceramics are clamped between pressure sensor and elastic supporting member for supporting optical member;
Bulb plunger is uniformly connected in upper coupling block outer marginal circumference, the steel ball of bulb plunger outer end is pushed into respectively along circle Circumferential direction is distributed in the rectangular recess of sleeve lining, is put down for upper connection block compensation to be aided in stack two working surface of piezoelectric ceramics The adjusting of row degree error;
Guiding axis is along the circumferential direction laid in sleeve, guiding axis is passed through by clearance fit and is arranged on lower connection block Uniformly distributed pilot hole on the ring flange of lower end, levelness during for ensureing that lower connection block moves up and down.
As further preferred, adjusting rod is uniformly connected in upper coupling block outer marginal circumference, adjusting rod outer end is respectively by edge The slot hole that circumferencial direction is distributed in sleeve wall stretches out;The above reset of coupling block is used to implement after test.
As further preferred, the elastic supporting member for supporting optical member is in tabletting outer rim by a cylindrical tabletting and circumference uniform distribution Three support arms are formed, and the thickness of the support arm is less than the thickness of tabletting;To reduce the deflection of tabletting, the micro- knots of MEMS are avoided Structure is fallen off due to colloid cracks.
As further preferred, the elastic supporting member for supporting optical member is supported and fixed on by three pillars above annular roof plate.
As further preferred, the upper coupling block outer rim is windmill, and there are three the first of circumference uniform distribution for outer rim tool Incline face and the second side faceted pebble, the first incline face and the angle of adjacent the second side faceted pebble are 30 degree, and the first incline face is in The vertical range of heart axially bored line is less than the second side faceted pebble to the vertical range of centre bore axis.
As further preferred, the bulb plunger is three and is connected to the mounting hole in each first incline face It is interior.
As further preferred, the adjusting rod is three and is connected in the mounting hole of each the second side faceted pebble.
As further preferred, installation set is equipped with stacking piezoelectric ceramics upper end button, the elastic supporting member for supporting optical member is pressed in installation Put on, for make to stack piezoelectric ceramics and elastic supporting member for supporting optical member bottom surface realize it is good contact, avoid due to stacking piezoelectric ceramics top Portion's working surface it is rough caused by the problem of stacking piezoelectric ceramics and elastic supporting member for supporting optical member loose contact.
As further preferred, the center line of the slot hole is parallel with the axis of sleeve with the center line of rectangular recess, And the center line of each slot hole and the central angle folded by the center line of the rectangular recess nearest apart from the slot hole are 30 degree.
As further preferred, the center line of the slot hole and the axis of the guiding axis axis nearest apart from the slot hole and sleeve Central angle folded by line is 30 degree.
The beneficial effects of the invention are as follows:
1st, due to being respectively equipped with the spherical surface hill and spherical surface of mutual cooperation on the opposite face of upper coupling block and lower connection block Groove, spherical surface hill is inserted into spherical groove and the radius of curvature of spherical surface hill is less than the radius of curvature of spherical groove, then the first line of a couplet It connects and point contact is formed between block and lower connection block, adjusted when compensation is needed to stack the parallelism error of two working surface of piezoelectric ceramics When saving the mobile base being made of upper coupling block and lower connection block, upper coupling block can be with contact of the spherical surface hill with spherical groove Point is rotated for center of rotation, and adjusting process is smooth, smooth, is not in the problem of being stuck, substantially reduces and stack pressure Shearing force between each layer of electroceramics.
2nd, due to being uniformly connected with bulb plunger in upper coupling block outer marginal circumference, the steel ball of bulb plunger outer end heads into respectively To being along the circumferential direction distributed in the rectangular recess of sleeve lining, the parallel of two working surface of piezoelectric ceramics is stacked when needing to compensate Error is spent when adjusting mobile base, by the cooperation of spring and steel ball in bulb plunger upper coupling block can be realized not Swing on equidirectional, adjustable space bigger.
3rd, it is installed in due to the pressure sensor in the centre bore of upper coupling block top surface, stacks piezoelectric ceramics and be clamped in pressure Between force snesor and elastic supporting member for supporting optical member, therefore after pretightning force is applied to stacking piezoelectric ceramics, avoid mobile base structure Interference to pressure sensor can obtain and more accurately pre-tighten force data;When stacking piezoelectric ceramics work, what is obtained swashs The measured value for power of shaking is also more accurate.
4th, due to being vertically equipped with electric threaded shaft transmission mechanism at support plate center, electric threaded shaft transmission mechanism Screw is connected with lower connection block, when needing to apply different size of pretightning force to stacking piezoelectric ceramics, can pass through electronic silk Thick stick transmission mechanism drives mobile base movement to realize, it is simple, flexible to adjust process.
Description of the drawings
Fig. 1 is the dimensional structure diagram of the present invention.
Fig. 2 is the top view of the present invention.
Fig. 3 is the A-A sectional views of Fig. 2.
Fig. 4 is the B-B sectional views of Fig. 2.
Fig. 5 is that the present invention removes the top view after annular roof plate.
Fig. 6 is the dimensional structure diagram of upper coupling block.
Fig. 7 is the structure diagram of elastic supporting member for supporting optical member.
In figure:1. sleeve, 101. rectangular recess, 102. slot holes, 2. annular roof plates, 3. bottom plates, 4.MEMS micro-structures, 5. is micro- Structure installing plate, 6. elastic supporting member for supporting optical member, 601. tablettings, 602. support arms, 7. pillars, 8. installation sets, 9. bulb plungers, 10. is folded Heap piezoelectric ceramics, 11. pressure sensors, 12. adjusting rods, coupling block on 13., 1301. spherical surface hills, 1302. first incline faces, 1303. the second side faceted pebbles, 14. axle sleeves, 15. lower connection blocks, 1501. spherical grooves, 16. screws, 17. support plates, 18. straight lines step Stepper motor, 19. guiding axis, 20. leading screws.
Specific embodiment
As shown in Fig. 1~Fig. 7, a kind of triple axle pedestal for the test of MEMS micro-structure dynamic characteristics of the present invention Exciting bank including a cannulated sleeve 1, is equipped in sleeve 1 and stacks piezoelectric ceramics 10, pressure sensor 11 and by the first line of a couplet The mobile base of block 13 and the composition of lower connection block 15 is connect, elastic supporting member for supporting optical member 6 and MEMS micro-structures 4 are equipped on sleeve 1.
On sleeve 1 and bottom surface has been bolted annular roof plate 2 and bottom plate 3 respectively, and the MEMS micro-structures 4 are logical Elastic supporting member for supporting optical member 6 is crossed on annular roof plate 2;The elastic supporting member for supporting optical member 6 is by a cylindrical tabletting 601 and circumference uniform distribution It is formed in three support arms 602 of 601 outer rim of tabletting, the thickness of the support arm 602 is less than the thickness of tabletting 601;To reduce The deflection of tabletting 601 avoids MEMS micro-structures 4 from being fallen off due to colloid cracks.Three supports of the elastic supporting member for supporting optical member 6 Arm 602 is fixed on using screw support above annular roof plate 2 by three Hollow Pillars 7, and with sleeve 1 on the same axis. MEMS micro-structures 4 are cemented in by micro-structure installing plate 5 at the 601 upper surface center of tabletting of elastic supporting member for supporting optical member 6.
Support plate 17 is fixed with by screw at the ladder of lower part in sleeve 1, at 17 center of support plate along vertical side To electric threaded shaft transmission mechanism is equipped with, the electric threaded shaft transmission mechanism is by linear stepping motor 18, connection linear stepping motor The leading screw 21 and screw 16 of 18 output shafts are formed, and wherein linear stepping motor 18 is mounted on 17 bottom surface of support plate, 21 upper end of leading screw It is inserted into the centre bore of 15 bottom surface of lower connection block, screw 16 is connected with lower connection block 15 by the screw of circumference uniform distribution, for band Dynamic lower connection block 15 moves up and down.
The spherical surface hill 1301 and ball of mutual cooperation are respectively equipped on upper coupling block 13 and the opposite face of lower connection block 15 Face groove 1501, the spherical surface hill 1301 is inserted into spherical groove 1501 and the radius of curvature of spherical surface hill is less than spherical groove Radius of curvature, make to form point contact between coupling block and lower connection block;And make 13 bottom surface of coupling block and lower connection block 15 An adjustment gap is formed between top surface, which is preferably 2~5mm.
11 insert of pressure sensor is simultaneously bonded in the centre bore of 13 top surface of coupling block, and stacking piezoelectric ceramics 10 is Cylindrical and lower end is bonded on pressure sensor 11, is stacked 10 both ends of piezoelectric ceramics and is clamped in pressure sensor 11 and elasticity branch Between the tabletting 601 of support member 6.It sets stacking 10 upper end of piezoelectric ceramics button and is bonded with installation set 8, the elastic supporting member for supporting optical member 6 Tabletting 601 is pressed in installation set 8, for make to stack piezoelectric ceramics and 6 bottom surface of elastic supporting member for supporting optical member realize it is good contact, avoid by In stack 10 top work surface of piezoelectric ceramics it is rough caused by stack piezoelectric ceramics 10 and elastic supporting member for supporting optical member 6 contacts The problem of bad.
13 outer rim of upper coupling block is windmill, and there are three the first incline face 1302 of circumference uniform distribution and for outer rim tool Two incline faces 1303, the first incline face 1302 and the angle of adjacent the second side faceted pebble 1303 are 30 degree, and the first incline face The vertical range of 1302 to centre bore axis is less than the second side faceted pebble 1303 to the vertical range of centre bore axis.In upper coupling block 13 outer marginal circumferences are uniformly connected with bulb plunger 9, and the bulb plunger 9 is three and is threadedly attached in each first respectively In the mounting hole in incline face 1302, the steel ball of 9 outer end of bulb plunger pushes into respectively is along the circumferential direction distributed on 1 inner wall of sleeve In three rectangular recess 101, for mobile base compensation to be aided in stack the tune of 10 liang of working surface parallelism errors of piezoelectric ceramics Section.
It is uniformly distributed along the circumference in upper 13 outer rim of coupling block and is connected with adjusting rod 12, the adjusting rod 12 is for three and respectively along footpath To being connected in the installation screw of each the second side faceted pebble 1303,12 outer end of adjusting rod is respectively by being along the circumferential direction distributed on sleeve Three slot holes 102 on 1 wall stretch out, and are used to implement the reset of upper coupling block 13 after test.The center line and square of the slot hole 102 The center line of connected in star 101 is parallel with the axis of sleeve 1, and the center line of each slot hole 102 with it is nearest apart from the slot hole 102 Rectangular recess 101 center line folded by central angle be 30 degree.
Three guiding axis 19 are along the circumferential direction laid in sleeve 1,19 both ends of guiding axis are bolted respectively Between annular roof plate 2 and support plate 17.Guiding axis 19 passes through the flange for being arranged on 15 lower end of lower connection block by clearance fit Uniformly distributed pilot hole on disk, levelness during for ensureing that lower connection block 15 moves up and down.It is located in 15 lower end of lower connection block and leads It is installed with axle sleeve 14 respectively into hole.The center line of the slot hole 102 and guiding axis 19 axis nearest apart from the slot hole 102 with Central angle folded by the axis of sleeve 1 is 30 degree.
During work, linear stepping motor 18 is controlled to be pushed up by leading screw 21 and the transmission of screw 16 by upper coupling block first 13 and the mobile base that is formed of lower connection block 15 apply pretightning force to stacking piezoelectric ceramics 10, while monitor by pressure sensor The 11 preload force datas measured, after the size of pretightning force reaches setting value, control linear stepping motor 18 is stopped.So Afterwards, pulse signal is applied between two electrodes of piezoelectric ceramics 10 are stacked using external power supply, using stacking the inverse of piezoelectric ceramics 10 Piezoelectric effect realizes the excitation to MEMS micro-structures 4, while micro- using the contactless vibration detecting device detection MEMS of external optical The vibratory response of structure 4 detects the power output for stacking piezoelectric ceramics 10 using pressure sensor 11.Finally, when completion is to MEMS After the excitation of micro-structure 4, control linear stepping motor 18 drives lower connection block 15 to move down, then adjusts three adjusting rods manually 12 drive upper coupling block 13 to move down, and make to stack 10 top installation set 8 of piezoelectric ceramics and are separated with elastic supporting member for supporting optical member 6, avoid Stack the state that piezoelectric ceramics 10 is constantly in stress.
Although the embodiments of the present invention have been disclosed as above, but its be not restricted in specification and embodiment it is listed With it can be fully applied to various fields suitable for the present invention, for those skilled in the art, can be easily Realize other modification, therefore without departing from the general concept defined in the claims and the equivalent scope, it is of the invention and unlimited In specific details and shown here as the legend with description.

Claims (10)

1. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures including sleeve, is equipped with folded in sleeve Heap piezoelectric ceramics, pressure sensor, upper coupling block and lower connection block are equipped with elastic supporting member for supporting optical member and the micro- knots of MEMS on sleeve Structure, it is characterized in that:
Annular roof plate is equipped on sleeve, the MEMS micro-structures are mounted on by elastic supporting member for supporting optical member on annular roof plate;
Lower part is equipped with support plate in sleeve, and electric threaded shaft transmission mechanism is vertically equipped at support plate center, electronic The screw of lead-screw drive mechanism is connected with lower connection block, for lower connection block to be driven to move up and down;
The spherical surface hill and spherical groove of mutual cooperation, the ball are respectively equipped on upper coupling block and the opposite face of lower connection block In the protrusion insertion spherical groove of face and the radius of curvature of spherical surface hill is less than the radius of curvature of spherical groove, makes coupling block under Point contact is formed between coupling block;The pressure sensor is installed in the centre bore of coupling block top surface, stacks piezoelectric ceramics It is clamped between pressure sensor and elastic supporting member for supporting optical member;
Bulb plunger is uniformly connected in upper coupling block outer marginal circumference, the steel ball of bulb plunger outer end pushes into circumferentially side respectively To being distributed in the rectangular recess of sleeve lining, for upper connection block compensation to be aided in stack the two working surface depth of parallelism of piezoelectric ceramics The adjusting of error;
Guiding axis is along the circumferential direction laid in sleeve, guiding axis is passed through by clearance fit and is arranged on lower connection block lower end Ring flange on uniformly distributed pilot hole, levelness during for ensureing that lower connection block moves up and down.
2. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 1, special Sign is:Adjusting rod is uniformly connected in upper coupling block outer marginal circumference, adjusting rod outer end is respectively by being along the circumferential direction distributed on sleeve Slot hole on wall stretches out;The above reset of coupling block is used to implement after test.
3. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 1, special Sign is:The elastic supporting member for supporting optical member is to be made of a cylindrical tabletting and circumference uniform distribution in three support arms of tabletting outer rim, institute The thickness for stating support arm is less than the thickness of tabletting;To reduce the deflection of tabletting, MEMS micro-structures is avoided to be sent out due to colloid cracks Life comes off.
4. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 3, special Sign is:The elastic supporting member for supporting optical member is supported and fixed on by three pillars above annular roof plate.
5. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 2, special Sign is:The upper coupling block outer rim is windmill, and outer rim has there are three the first incline face of circumference uniform distribution and the second side faceted pebble, First incline face and the angle of adjacent the second side faceted pebble are 30 degree, and the vertical range of the first incline face to centre bore axis is small In the second side faceted pebble to the vertical range of centre bore axis.
6. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 5, special Sign is:The bulb plunger is three and is connected in the mounting hole in each first incline face.
7. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 6, special Sign is:The adjusting rod is three and is connected in the mounting hole of each the second side faceted pebble.
8. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 1, special Sign is:Installation set is equipped with stacking piezoelectric ceramics upper end button, the elastic supporting member for supporting optical member is pressed in installation set, for avoiding due to folded Heap piezoelectric ceramics top work surface it is rough caused by stack asking for piezoelectric ceramics and elastic supporting member for supporting optical member loose contact Topic.
9. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 2, special Sign is:The center line of the slot hole is parallel with the axis of sleeve with the center line of rectangular recess, and the center line of each slot hole It it is 30 degree with the central angle folded by the center line of the rectangular recess nearest apart from the slot hole.
10. a kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structures according to claim 9, special Sign is:Central angle folded by the center line of the slot hole and the axis of the guiding axis axis nearest apart from the slot hole and sleeve is 30 Degree.
CN201711355463.XA 2017-12-16 2017-12-16 A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structure Expired - Fee Related CN108120578B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711355463.XA CN108120578B (en) 2017-12-16 2017-12-16 A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711355463.XA CN108120578B (en) 2017-12-16 2017-12-16 A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structure

Publications (2)

Publication Number Publication Date
CN108120578A true CN108120578A (en) 2018-06-05
CN108120578B CN108120578B (en) 2019-11-29

Family

ID=62229184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711355463.XA Expired - Fee Related CN108120578B (en) 2017-12-16 2017-12-16 A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structure

Country Status (1)

Country Link
CN (1) CN108120578B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224631A (en) * 2019-07-05 2019-09-10 复旦大学 Piezoelectric ceramic motor mover assembles device
CN111537174A (en) * 2020-04-29 2020-08-14 江苏大学 Variable-angle ultrasonic impact test device and method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2027414A1 (en) * 1970-06-04 1971-12-16 Braun Ag Spherical, self-adjusting shaft bearing
SU1045041A1 (en) * 1982-06-08 1983-09-30 Фрунзенский политехнический институт Article impact-testing device
CN101476970A (en) * 2009-01-14 2009-07-08 大连理工大学 Seat excitation apparatus used for MEMS dynamic characteristics test
JP2009222437A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Vibration tester
CN103867060A (en) * 2012-12-12 2014-06-18 多玛两合有限公司 Cam motion closer
CN204224979U (en) * 2014-11-09 2015-03-25 衡水百金复合材料科技有限公司 A kind of composite friction pendulum bearing
CN105318150A (en) * 2014-07-15 2016-02-10 冠研(上海)企业管理咨询有限公司 Shockproof foot seat with alignment structure
CN105720859A (en) * 2016-05-03 2016-06-29 吉林大学 Bionic antenna and thermal expansion based macroscopical-microcosmic driving rotary platform
CN205663770U (en) * 2016-04-20 2016-10-26 哈尔滨理工大学 Novel inner circle toper outer lane arc raceway ball bearing
CN106481655A (en) * 2015-08-25 2017-03-08 东风汽车零部件(集团)有限公司 A kind of recirculating ball-type steering screw rod thrust bearing
CN206074210U (en) * 2016-10-15 2017-04-05 渤海大学 A kind of hot environment charger for the test of MEMS micro-structure dynamic characteristics
CN206175471U (en) * 2016-08-24 2017-05-17 大连国威轴承股份有限公司 Integral four point contact ball of peach shaped raceway
CN106704359A (en) * 2016-11-18 2017-05-24 江苏方天电力技术有限公司 Automatic centering ball sealing mechanism restraining fluid exciting force

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2027414A1 (en) * 1970-06-04 1971-12-16 Braun Ag Spherical, self-adjusting shaft bearing
SU1045041A1 (en) * 1982-06-08 1983-09-30 Фрунзенский политехнический институт Article impact-testing device
JP2009222437A (en) * 2008-03-13 2009-10-01 Toyota Motor Corp Vibration tester
CN101476970A (en) * 2009-01-14 2009-07-08 大连理工大学 Seat excitation apparatus used for MEMS dynamic characteristics test
CN103867060A (en) * 2012-12-12 2014-06-18 多玛两合有限公司 Cam motion closer
CN105318150A (en) * 2014-07-15 2016-02-10 冠研(上海)企业管理咨询有限公司 Shockproof foot seat with alignment structure
CN204224979U (en) * 2014-11-09 2015-03-25 衡水百金复合材料科技有限公司 A kind of composite friction pendulum bearing
CN106481655A (en) * 2015-08-25 2017-03-08 东风汽车零部件(集团)有限公司 A kind of recirculating ball-type steering screw rod thrust bearing
CN205663770U (en) * 2016-04-20 2016-10-26 哈尔滨理工大学 Novel inner circle toper outer lane arc raceway ball bearing
CN105720859A (en) * 2016-05-03 2016-06-29 吉林大学 Bionic antenna and thermal expansion based macroscopical-microcosmic driving rotary platform
CN206175471U (en) * 2016-08-24 2017-05-17 大连国威轴承股份有限公司 Integral four point contact ball of peach shaped raceway
CN206074210U (en) * 2016-10-15 2017-04-05 渤海大学 A kind of hot environment charger for the test of MEMS micro-structure dynamic characteristics
CN106704359A (en) * 2016-11-18 2017-05-24 江苏方天电力技术有限公司 Automatic centering ball sealing mechanism restraining fluid exciting force

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
佘东生 等: "基于激波的MEMS微结构底座冲击激励方法研究", 《仪器仪表学报》 *
施阳和 等: "基于压电陶瓷的MEMS测试用的多载荷加载台的研制", 《中国陶瓷》 *
王晓东 等: "MEMS微构件动态特性测试的激励技术和方法", 《测试技术学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224631A (en) * 2019-07-05 2019-09-10 复旦大学 Piezoelectric ceramic motor mover assembles device
CN110224631B (en) * 2019-07-05 2024-05-03 复旦大学 Piezoelectric ceramic motor rotor assembly device
CN111537174A (en) * 2020-04-29 2020-08-14 江苏大学 Variable-angle ultrasonic impact test device and method
CN111537174B (en) * 2020-04-29 2021-11-23 江苏大学 Variable-angle ultrasonic impact test device and method

Also Published As

Publication number Publication date
CN108120578B (en) 2019-11-29

Similar Documents

Publication Publication Date Title
CN108120578B (en) A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structure
CN108217590B (en) Triple axle seat excitation apparatus for the test of MEMS micro-structure dynamic characteristics
CN108217587B (en) Four-axle type seat excitation apparatus for the test of MEMS micro-structure dynamic characteristics
CN108036912B (en) Exciting device outside a kind of MEMS micro-structure triple axle piece based on inverse piezoelectric effect
CN107894315B (en) A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure
CN108181069B (en) A kind of MEMS micro-structure four-axle type dynamic loading device based on piezoelectric ceramics
CN108163806B (en) A kind of MEMS micro-structure four-axle type seat excitation apparatus based on piezoelectric ceramics
CN108163804B (en) It is a kind of can dynamic driving MEMS micro-structure four-axle type exciting bank
CN108168814B (en) A kind of four-axle type exciting device that piece external excitation can be carried out to MEMS micro-structure
CN108163805B (en) Triple axle exciting device for the test of MEMS micro-structure dynamic characteristics
CN108168816B (en) It is a kind of can dynamic driving MEMS micro-structure triple axle exciting bank
CN108217583B (en) A kind of MEMS micro-structure triple axle exciting bank with mobile base structure
CN108020392B (en) Exciting device outside a kind of MEMS micro-structure four-axle type piece based on inverse piezoelectric effect
CN108151991B (en) A kind of four-axle type Piezoelectric Ceramics Excitation device for the test of MEMS micro-structure dynamic characteristics
CN108217589B (en) A kind of MEMS micro-structure triple axle dynamic loading device based on piezoelectric ceramics
CN108217586B (en) Four-axle type exciting device for the test of MEMS micro-structure dynamic characteristics
CN108168818B (en) A kind of MEMS micro-structure triple axle seat excitation apparatus based on piezoelectric ceramics
CN108168817A (en) A kind of MEMS micro-structure triple axle exciting devices based on pedestal motivational techniques
CN108168815A (en) A kind of MEMS micro-structure triple axle exciting banks by Piezoelectric Ceramic
CN108225700A (en) A kind of MEMS micro-structure four-axle type exciting banks by Piezoelectric Ceramic
CN108217582B (en) A kind of MEMS micro-structure four-axle type exciting device based on pedestal motivational techniques
CN108217584B (en) A kind of triple axle exciting device for MEMS micro-structure progress dynamically load
CN108217585B (en) It is a kind of using piezoelectric ceramics as the MEMS micro-structure four-axle type exciting device of driving source
CN108195536B (en) A kind of four-axle type exciting device for MEMS micro-structure progress dynamically load
CN108225699A (en) It is a kind of using piezoelectric ceramics as the MEMS micro-structure triple axle exciting devices of driving source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191129

Termination date: 20201216