CN107894315B - A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure - Google Patents

A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure Download PDF

Info

Publication number
CN107894315B
CN107894315B CN201711355476.7A CN201711355476A CN107894315B CN 107894315 B CN107894315 B CN 107894315B CN 201711355476 A CN201711355476 A CN 201711355476A CN 107894315 B CN107894315 B CN 107894315B
Authority
CN
China
Prior art keywords
piezoelectric ceramics
mems micro
sleeve
coupling block
shock loading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711355476.7A
Other languages
Chinese (zh)
Other versions
CN107894315A (en
Inventor
佘东生
于震
魏泽飞
赵辉
伦淑娴
刘闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201711355476.7A priority Critical patent/CN107894315B/en
Publication of CN107894315A publication Critical patent/CN107894315A/en
Application granted granted Critical
Publication of CN107894315B publication Critical patent/CN107894315B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The invention discloses a kind of four-axle type exciting banks that shock loading can be loaded to MEMS micro-structure, including sleeve, stack piezoelectric ceramics, pressure sensor, upper and lower coupling block and MEMS micro-structure;Support plate is equipped in sleeve and connects the electric threaded shaft transmission mechanism of lower connection block;Mutually matched spherical surface hill and spherical groove are respectively equipped on upper and lower coupling block;Piezoelectric ceramics is stacked to be clamped between pressure sensor and elastic supporting member for supporting optical member;Bulb plunger is uniformly connected on upper coupling block, bulb plunger outer end heads into the rectangular recess of sleeve lining.The device flexibly can apply different size of pretightning force to stacking piezoelectric ceramics, keep pretightning force measured value obtained more accurate simultaneously, the adjustment process that compensation can be made to stack two working surface parallelism error of piezoelectric ceramics becomes more smooth and smooth, substantially reduce the shearing force stacked between each layer of piezoelectric ceramics, it can be avoided falling off for test micro element, convenient for testing the dynamic characteristic parameter of MEMS micro-structure.

Description

A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure
Technical field
The invention belongs to micromachine electronic system technology field, in particular to one kind can load MEMS micro-structure and impact The four-axle type exciting bank of load.
Background technique
Since MEMS micro element has many advantages, such as at low cost, small in size and light-weight, make it in automobile, aerospace, letter The numerous areas such as breath communication, biochemistry, medical treatment, automatic control and national defence suffer from broad application prospect.For very much For MEMS device, the micro-displacement of internal microstructure and micro-strain are the bases that device function is realized, therefore to these The dynamic characteristic parameters such as amplitude, intrinsic frequency, the damping ratio of micro-structure carry out accurate test and have become exploitation MEMS product Important content.
In order to test the dynamic characteristic parameter of micro-structure, it is necessary first to so that micro-structure is generated vibration, that is, need to micro- Structure is motivated.Since MEMS micro-structure has the characteristics that size is small, light-weight and intrinsic frequency is high, tradition machinery mode is surveyed Motivational techniques and exciting bank in examination can not be used in the vibrational excitation of MEMS micro-structure.In the late three decades, domestic Outer researcher has carried out a large amount of exploration for the vibrational excitation method of MEMS micro-structure, has investigated some can be used for The motivational techniques of MEMS micro-structure and corresponding exciting bank.Wherein, swashed using the pedestal for stacking piezoelectric ceramics as driving source It encourages device and has the advantages that excitation bandwidth is larger, and device is simple, easy to operate and strong applicability, therefore is dynamic in MEMS micro-structure Step response testing field is widely used.David etc. is in " A base excitation test facility for Dynamic testing of microsystems " a kind of seat excitation apparatus based on piezoelectric ceramics is described in a text, Piezoelectric ceramics is stacked in the device to be directly bonded on a fixed pedestal, is that a kind of multilayer is viscous due to stacking piezoelectric ceramics Binding structure so biggish pressure can be born by stacking piezoelectric ceramics, but cannot bear pulling force, and pulling force, which will lead to, stacks piezoelectricity pottery The damage of porcelain, when stacking piezoelectric ceramics when in use, certain pretightning force that presses to it, which is conducive to extend, stacks piezoelectric ceramics Service life, and the device does not consider the above problem;Wang etc. is in " Dynamic characteristic testing for MEMS micro-devices with base excitation " a kind of pedestal based on piezoelectric ceramics is described in a text swashs Encourage device, consider in the apparatus to stack piezoelectric ceramics apply certain pretightning force the problem of, used pressing plate, pedestal and The mechanism for adjusting screw composition stacks piezoelectric ceramics to compress, and can change the size of pretightning force by screwing adjusting screw, But when the device is not considered to state mechanism in use to piezoelectric ceramics application pretightning force is stacked, due to stacking piezoelectric ceramics two The parallelism error of working surface can generate shearing force stack piezoelectric ceramics between layers, which can be to stacking Piezoelectric ceramics generates mechanical damage, in addition, the device is unable to measure the size of applied pretightning force, if adjusting is improper, Mechanical damage can be caused to piezoelectric ceramics is stacked.The Chinese invention patent of Publication No. CN101476970A discloses one kind and is based on The seat excitation apparatus of piezoelectric ceramics applies pretightning force to piezoelectric ceramics is stacked by cross-spring piece in the apparatus, and leads to It crosses to stack piezoelectric ceramics bottom and be mounted on a movable understructure and reduces shearing force suffered by piezoelectric ceramics, this Outside, it is additionally provided with pressure sensor, in a device for detecting the pretightning force applied to piezoelectric ceramics and stacking piezoelectric ceramics Power output at work.But there are still own shortcomings for the device:
1, the mobile base structure of the device is made of upper coupling block, steel ball and lower connection block, steel ball and upper coupling block, under It is line contact between coupling block, when the parallelism error for needing compensation to stack two working surfaces in piezoelectric ceramics top and bottom And when voluntarily adjusting mobile base structure, the rotation that steel ball can not be smooth, or even will appear the situation being stuck;
2, nothing directly couples between upper coupling block and lower connection block and sleeve, but the mode being gap-matched is successively It is installed among sleeve, if the parallelism error for stacking two working surfaces of piezoelectric ceramics is larger, no enough spaces are gone to adjust Save mobile base structure;
3, pressure sensor is installed in the bottom of lower connection block, after voluntarily being adjusted due to mobile base structure, lower link There are certain inclination angle between the bottom of block and the working surface of piezoelectric ceramics, thus pretightning force measured by pressure sensor or The power output of piezoelectric ceramics is inaccurate;In addition, if mobile base structure leads to coupling block or lower connection block after adjustment It is in contact with sleeve, then the error of measurement result can further increase;
4, piezoelectric ceramics is stacked to compress using the one side of cross-spring piece in device, on the another side of cross-spring piece It is then bonded the micro element of test, when piezoelectric ceramics work, the deformation of cross-spring piece is larger to will lead to micro element and cross Colloid cracking between spring leaf, causes micro element to fall off;
5, change to be applied to by using the gasket of different-thickness in the device and stack the big of pretightning force on piezoelectric ceramics It is small, cause adjustment process complicated, it is inflexible.
Summary of the invention
The technical problem to be solved by the present invention is to provide a kind of four axis that shock loading can be loaded to MEMS micro-structure Formula exciting bank, which more flexible can apply different size of pretightning force to stacking piezoelectric ceramics, while make to be obtained The pretightning force measured value obtained is more accurate, and the adjustment process that compensation can be made to stack two working surface parallelism error of piezoelectric ceramics becomes Must be more smooth and smooth, the shearing force stacked between each layer of piezoelectric ceramics is substantially reduced, can be avoided test micro element Fall off, convenient for test MEMS micro-structure dynamic characteristic parameter.
To solve the above problems, the present invention adopts the following technical scheme:
A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure, including sleeve, are equipped in sleeve Piezoelectric ceramics, pressure sensor, upper coupling block and lower connection block are stacked, elastic supporting member for supporting optical member and the micro- knot of MEMS are equipped on sleeve Structure, it is characterized in that:
Annular roof plate is equipped on sleeve, the MEMS micro-structure is mounted on annular roof plate by elastic supporting member for supporting optical member; The elastic supporting member for supporting optical member includes the support arm of one piece of substrate and four circumference uniform distributions, and each support arm is by the successively company of being mutually perpendicular to The first linking arm, the second linking arm, third linking arm and the 4th linking arm connect is formed and is formed between a L-type substrate outer edge Gap, for reducing the deflection of substrate;
Lower part is equipped with support plate in sleeve, is equipped with electric threaded shaft transmission mechanism along the vertical direction at support plate center, The screw of electric threaded shaft transmission mechanism is connect with lower connection block, for driving lower connection block to move up and down;
Mutually matched spherical surface hill and spherical groove, institute are respectively equipped on upper coupling block and the opposite face of lower connection block It states in spherical surface hill insertion spherical groove and the radius of curvature of spherical surface hill is less than the radius of curvature of spherical groove, make coupling block Point contact is formed between lower connection block;The pressure sensor is installed in the centre bore of coupling block top surface, stacks piezoelectricity Ceramics are clamped between pressure sensor and elastic supporting member for supporting optical member;
It is uniformly connected with bulb plunger in upper coupling block outer marginal circumference, the steel ball of bulb plunger outer end is pushed into respectively along circle Circumferential direction is evenly arranged in the rectangular recess of sleeve lining, flat for assisting upper connection block compensation to stack two working surface of piezoelectric ceramics The adjusting of row degree error;
Guiding axis is along the circumferential direction laid in sleeve, guiding axis is passed through by clearance fit to be arranged in lower connection block Uniformly distributed pilot hole on the ring flange of lower end, levelness when for guaranteeing that lower connection block moves up and down.
As further preferred, it is uniformly connected with adjusting rod in upper coupling block outer marginal circumference, adjusting rod is respectively by circumferentially Direction is evenly arranged on the long hole in sleeve wall and passes through;For realizing the reset of coupling block upper after test.
As further preferred, the substrate is square, and four support arms pass through the first linking arm respectively and are connected to base One end of plate surrounding;To further decrease the deflection of substrate, MEMS micro-structure is avoided to fall off because of colloid cracking.
As further preferred, four support arm outer ends of the elastic supporting member for supporting optical member pass through pillar respectively and are supported and fixed on ring Above shape top plate.
As further preferred, the upper coupling block outer rim is octagon, and is respectively equipped in each Middle face of outer rim One connecting screw hole.
As further preferred, the bulb plunger is four and one end is threadedly attached in coupling block outer rim respectively Connecting screw hole in.
As further preferred, the adjusting rod be four and with bulb plunger arranged for interval.
As further preferred, it is equipped with installation set stacking piezoelectric ceramics upper end button, the elastic supporting member for supporting optical member is pressed in installation Put on, for avoid stack piezoelectric ceramics top work surface it is rough caused by stack piezoelectric ceramics and elasticity The problem of supporting element poor contact.
As further preferred, the center line of the long hole is parallel with the axis of sleeve with the center line of rectangular recess, And central angle folded by the center line of the center line of each long hole and adjacent rectangular recess is 45 degree.
As further preferred, the guiding axis is four, the center line of the long hole and adjacent guiding axis axis with Central angle folded by the axis of sleeve is 22.5 degree.
The beneficial effects of the present invention are:
1, due to being respectively equipped with mutually matched spherical surface hill and spherical surface on the opposite face of upper coupling block and lower connection block Groove, the spherical surface hill is inserted into spherical groove and the radius of curvature of spherical surface hill is less than the radius of curvature of spherical groove, because Point contact is formed on this between coupling block and lower connection block, when the depth of parallelism for needing compensation to stack two working surface of piezoelectric ceramics is missed Difference is come when adjusting the mobile base as composed by upper coupling block and lower connection block, upper coupling block can be with spherical surface hill and spherical groove Contact point be center of rotation rotated, adjustment process is smooth, smooth, is not in the problem of being stuck, to substantially reduce Stack the shearing force between each layer of piezoelectric ceramics.
2, due to being uniformly connected with bulb plunger in upper coupling block outer marginal circumference, the steel ball of bulb plunger outer end heads into respectively Into the rectangular recess for being along the circumferential direction evenly arranged on sleeve lining, the parallel of two working surface of piezoelectric ceramics is stacked when needing to compensate Error is spent upper coupling block can be realized not by the cooperation of spring and steel ball in bulb plunger when adjusting mobile base Swing on equidirectional, adjustable space are bigger.
3, it is installed in due to the pressure sensor in the centre bore of upper coupling block top surface, stacks piezoelectric ceramics and be clamped in pressure Between force snesor and elastic supporting member for supporting optical member, therefore after to piezoelectric ceramics application pretightning force is stacked, mobile base structure is avoided Interference to pressure sensor can obtain and more accurately pre-tighten force data;It is obtained to swash when stacking piezoelectric ceramics work The measured value for power of shaking is also more accurate.
4, due to the support arm that elastic supporting member for supporting optical member includes one piece of substrate and four circumference uniform distributions, each support arm is by successively The first linking arm for being mutually connected vertically, the second linking arm, third linking arm and the 4th linking arm composition, when stacking piezoelectric ceramics When work, the vibration deformation of elastic supporting member for supporting optical member is mainly from four support arms, and the deflection of substrate then very little, therefore will not lead Colloid cracking is caused, micro element will not be fallen off.
5, due to being equipped with electric threaded shaft transmission mechanism along the vertical direction at support plate center, electric threaded shaft transmission mechanism Screw is connect with lower connection block, when needing to the piezoelectric ceramics different size of pretightning force of application is stacked, can pass through electronic silk Thick stick transmission mechanism drives mobile base mobile to realize, adjustment process is simple, flexible.
Detailed description of the invention
Fig. 1 is schematic perspective view of the invention.
Fig. 2 is top view of the invention.
Fig. 3 is the A-A cross-sectional view of Fig. 2.
Fig. 4 is the B-B cross-sectional view of Fig. 2.
Fig. 5 is the C-C cross-sectional view of Fig. 2.
Fig. 6 is that the present invention removes the top view after annular roof plate.
Fig. 7 is the structural schematic diagram of elastic supporting member for supporting optical member.
In figure: 1. sleeves, 101. rectangular recess, 102. long holes, 2. annular roof plates, 3. bottom plates, 4.MEMS micro-structure, 5. is micro- Structure mounting plate, 6. elastic supporting member for supporting optical member, 601. support arms, 6011. first linking arms, 6012. second linking arms, 6013. thirds Linking arm, 6014. the 4th linking arms, 602. substrates, 7. pillars, 8. installation sets, 9. bulb plungers, 10. stack piezoelectric ceramics, 11. pressure sensor, 12. adjusting rods, coupling block on 13., 1301. spherical surface hills, 14. guiding axis, 15. lower connection blocks, 1501. Spherical groove, 16. screws, 17. support plates, 18. linear stepping motors, 19. lead screws, 20. axle sleeves.
Specific embodiment
As shown in FIG. 1 to FIG. 7, the four-axle type that one kind of the present invention can load shock loading to MEMS micro-structure is motivated Device, including a cannulated sleeve 1 are equipped in sleeve 1 and stack piezoelectric ceramics 10, pressure sensor 11 and by upper coupling block 13 and lower connection block 15 constitute mobile base, on sleeve 1 be equipped with elastic supporting member for supporting optical member 6 and MEMS micro-structure 4.
On sleeve 1 and bottom surface has been bolted annular roof plate 2 and bottom plate 3 respectively, and the MEMS micro-structure 4 is logical Elastic supporting member for supporting optical member 6 is crossed to be mounted on annular roof plate 2.The elastic supporting member for supporting optical member includes one piece of square substrate 602 and four circumference Uniformly distributed support arm 601, each support arm 601 is by the first linking arm 6011, the second linking arm being successively mutually connected vertically 6012, third linking arm 6013 and the 4th linking arm 6014 composition, four support arms 601 are connected by the first linking arm 6011 respectively It connects one end in 602 surrounding end face of substrate, the second linking arm 6012 and third linking arm 6013 and 602 outer rim of substrate forms one L-type gap;For reducing the deflection of substrate, MEMS micro-structure 4 is avoided to fall off because of colloid cracking.The resilient support Four support arms 601 of part 6 are fixed on above annular roof plate 2 by Hollow Pillar 7 using screw support respectively, MEMS micro-structure 4 are cemented at the 602 upper surface center of substrate of elastic supporting member for supporting optical member 6 by micro-structure mounting plate 5.
Support plate 17 is fixed with by screw at the ladder of lower part in sleeve 1, at 17 center of support plate along vertical side To electric threaded shaft transmission mechanism is equipped with, the electric threaded shaft transmission mechanism is by linear stepping motor 18, connection linear stepping motor The lead screw 19 and screw 16 of 18 output shafts are constituted, and wherein linear stepping motor 18 is mounted on 17 bottom surface of support plate, 19 upper end of lead screw It is inserted into the centre bore of 15 bottom surface of lower connection block, the screw of 16 upper end of screw and 15 underrun circumference uniform distribution of lower connection block connects It connects, for driving lower connection block 15 to move up and down.
Mutually matched spherical surface hill 1301 and ball are respectively equipped on upper coupling block 13 and the opposite face of lower connection block 15 Face groove 1501, the spherical surface hill 1301 is inserted into spherical groove 1501 and the radius of curvature of spherical surface hill is less than spherical groove Radius of curvature, make to form point contact between coupling block and lower connection block;And make 13 bottom surface of coupling block and lower connection block 15 An adjustment gap is formed between top surface, which is preferably 2~5mm.
11 insert of pressure sensor is simultaneously bonded in the centre bore of 13 top surface of coupling block, and stacking piezoelectric ceramics 10 is Cylindrical and lower end is bonded on pressure sensor 11, is stacked 10 upper and lower ends of piezoelectric ceramics and is clamped in pressure sensor 11 and bullet Between the substrate 602 of property supporting element 6.Installation set 8 is set and is bonded with stacking 10 upper end of piezoelectric ceramics button, the substrate 602 is pressed In installation set 8, for make to stack piezoelectric ceramics 10 and elastic supporting member for supporting optical member bottom surface realize it is good contact, avoid due to stacking pressure 10 top work surface of electroceramics it is rough caused by stack asking for piezoelectric ceramics 10 and 6 poor contact of elastic supporting member for supporting optical member Topic.
13 outer rim of upper coupling block is octagon, and is radially respectively equipped with a connection in each Middle face of outer rim Screw hole.It is along the circumferential direction uniformly connected with bulb plunger 9 in upper 13 outer rim of coupling block, bulb plunger 9 is four and one end is distinguished It is radially connected to by screw thread in four connecting screw holes of upper coupling block outer rim, the steel ball of 9 outer end of bulb plunger heads into respectively Into four rectangular recess 101 for being along the circumferential direction evenly arranged on 1 inner wall of sleeve, for assisting mobile base compensation to stack piezoelectricity pottery The adjusting of 10 liang of working surface parallelism errors of porcelain.
It is along the circumferential direction uniformly connected with adjusting rod 12 in upper 13 outer rim of coupling block, the adjusting rod 12 is four and difference Radially be connected in remaining four connecting screw hole of coupling block outer rim, and with bulb plunger arranged for interval.Outside adjusting rod 12 End is passed through by four long holes 102 being along the circumferential direction evenly arranged on 1 wall of sleeve respectively, for realizing coupling block 13 upper after test It resets.The center line of the long hole 102 is parallel with the axis of sleeve 1 with the center line of rectangular recess 101, and each long hole Central angle folded by the center line of 102 center line and adjacent rectangular recess 101 is 45 degree.
Four guiding axis 19 are along the circumferential direction laid in sleeve 1,19 both ends of guiding axis are connected by screw to respectively Between annular roof plate 2 and support plate 17.Guiding axis 19 is passed through by clearance fit and is uniformly arranged in 15 lower end of lower connection block Pilot hole on ring flange, levelness when for guaranteeing that lower connection block 15 moves up and down.It is located in 15 lower end of lower connection block and leads It is installed with axle sleeve 20 respectively into hole.The axis institute of the center line of the long hole 102 and adjacent 19 axis of guiding axis and sleeve 1 The central angle of folder is 22.5 degree.
When work, starting linear stepping motor 18 is pushed up by lead screw 19 and the transmission of screw 16 by upper coupling block first 13 and lower connection block 15 composed by mobile base to stack piezoelectric ceramics 10 apply pretightning force, while monitor by pressure sensor The 11 preload force datas measured, after the size of pretightning force reaches setting value, control linear stepping motor 18 stops working.So Afterwards, apply pulse signal between two electrodes for stacking piezoelectric ceramics 10 using external power supply, using stacking the inverse of piezoelectric ceramics 10 Piezoelectric effect realizes the excitation to MEMS micro-structure 4, while micro- using the contactless vibration detecting device detection MEMS of external optical The vibratory response of structure 4 detects the power output for stacking piezoelectric ceramics 10 using pressure sensor 11.Finally, when completing to MEMS After the excitation of micro-structure 4, control linear stepping motor 18 drives lower connection block 15 to move down, then manually adjusts four adjusting rods 12 drive upper coupling block 13 to move down, and make to stack 10 top installation set 8 of piezoelectric ceramics and separate with elastic supporting member for supporting optical member 6, avoid Stack the state that piezoelectric ceramics 10 is constantly in stress.
Although the embodiments of the present invention have been disclosed as above, but its is not only in the description and the implementation listed With it can be fully applied to various fields suitable for the present invention, for those skilled in the art, can be easily Realize other modification, therefore without departing from the general concept defined in the claims and the equivalent scope, the present invention is simultaneously unlimited In specific details and legend shown and described herein.

Claims (10)

1. one kind can load the four-axle type exciting bank of shock loading, including sleeve to MEMS micro-structure, it is equipped in sleeve folded Heap piezoelectric ceramics, pressure sensor, upper coupling block and lower connection block are equipped with elastic supporting member for supporting optical member and the micro- knot of MEMS on sleeve Structure, lower part is equipped with support plate in sleeve, is equipped with electric threaded shaft transmission mechanism, electronic silk along the vertical direction at support plate center The screw of thick stick transmission mechanism is connect with lower connection block, for driving lower connection block to move up and down;In sleeve along the circumferential direction It is laid with guiding axis, guiding axis is passed through by clearance fit is arranged in pilot hole uniformly distributed on the ring flange of lower connection block lower end, Levelness when for guaranteeing that lower connection block moves up and down;It is characterized in that:
Annular roof plate is equipped on sleeve, the MEMS micro-structure is mounted on annular roof plate by elastic supporting member for supporting optical member;It is described Elastic supporting member for supporting optical member includes the support arm of one piece of substrate and four circumference uniform distributions, and each support arm is by being successively mutually connected vertically First linking arm, the second linking arm, third linking arm and the 4th linking arm composition simultaneously form a L-type gap with substrate outer edge, For reducing the deflection of substrate;
Mutually matched spherical surface hill and spherical groove, the ball are respectively equipped on upper coupling block and the opposite face of lower connection block Face protrusion is inserted into spherical groove and the radius of curvature of spherical surface hill is less than the radius of curvature of spherical groove, makes coupling block under Point contact is formed between coupling block;The pressure sensor is installed in the centre bore of coupling block top surface, stacks piezoelectric ceramics It is clamped between pressure sensor and elastic supporting member for supporting optical member;
It is uniformly connected with bulb plunger in upper coupling block outer marginal circumference, the steel ball of bulb plunger outer end pushes into circumferentially side respectively Into the rectangular recess for being evenly arranged on sleeve lining, for assisting upper connection block compensation to stack the two working surface depth of parallelism of piezoelectric ceramics The adjusting of error.
2. one kind according to claim 1 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: being uniformly connected with adjusting rod in upper coupling block outer marginal circumference, adjusting rod is respectively by being along the circumferential direction evenly arranged in sleeve wall Long hole pass through;For realizing the reset of coupling block upper after test.
3. one kind according to claim 1 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: the substrate is square, and four support arms pass through one end that the first linking arm is connected to substrate surrounding respectively;With into one Step reduces the deflection of substrate, and MEMS micro-structure is avoided to fall off because of colloid cracking.
4. one kind according to claim 3 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: four support arm outer ends of the elastic supporting member for supporting optical member pass through pillar respectively and are supported and fixed on above annular roof plate.
5. one kind according to claim 2 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: the upper coupling block outer rim is octagon, and is respectively equipped with a connecting screw hole in each Middle face of outer rim.
6. one kind according to claim 5 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: the bulb plunger is four and one end is threadedly attached in respectively in the connecting screw hole of coupling block outer rim.
7. one kind according to claim 6 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: the adjusting rod be four and with bulb plunger arranged for interval.
8. one kind according to claim 1 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: being equipped with installation set stacking piezoelectric ceramics upper end button, the elastic supporting member for supporting optical member is pressed in installation set, for avoiding due to folded Heap piezoelectric ceramics top work surface it is rough caused by stack asking for piezoelectric ceramics and elastic supporting member for supporting optical member poor contact Topic.
9. one kind according to claim 7 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: the center line of the long hole is parallel with the axis of sleeve with the center line of rectangular recess, and the center line of each long hole Central angle folded by center line with adjacent rectangular recess is 45 degree.
10. one kind according to claim 9 can load the four-axle type exciting bank of shock loading to MEMS micro-structure, special Sign is: the guiding axis is four, circle folded by the axis of the center line of the long hole and adjacent guiding axis axis and sleeve Heart angle is 22.5 degree.
CN201711355476.7A 2017-12-16 2017-12-16 A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure Expired - Fee Related CN107894315B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711355476.7A CN107894315B (en) 2017-12-16 2017-12-16 A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711355476.7A CN107894315B (en) 2017-12-16 2017-12-16 A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure

Publications (2)

Publication Number Publication Date
CN107894315A CN107894315A (en) 2018-04-10
CN107894315B true CN107894315B (en) 2019-07-02

Family

ID=61808029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711355476.7A Expired - Fee Related CN107894315B (en) 2017-12-16 2017-12-16 A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure

Country Status (1)

Country Link
CN (1) CN107894315B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564987A (en) * 2020-06-05 2020-08-21 上海隐冠半导体技术有限公司 Leveling device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2613471Y (en) * 2003-04-11 2004-04-28 华中科技大学 Three-dimension measurer for dynamic property of micro-electromechanical system
JP5470724B2 (en) * 2008-03-13 2014-04-16 トヨタ自動車株式会社 Vibration test equipment
CN101476970B (en) * 2009-01-14 2010-09-29 大连理工大学 Seat excitation apparatus used for MEMS dynamic characteristics test
CN104445056B (en) * 2014-12-12 2016-05-04 东南大学 A kind of four beam test structures for MEMS vibrating fatigue or torsional fatigue
CN206074211U (en) * 2016-10-15 2017-04-05 渤海大学 A kind of low temperature environment charger for the test of MEMS micro-structure dynamic characteristics
CN206074210U (en) * 2016-10-15 2017-04-05 渤海大学 A kind of hot environment charger for the test of MEMS micro-structure dynamic characteristics

Also Published As

Publication number Publication date
CN107894315A (en) 2018-04-10

Similar Documents

Publication Publication Date Title
CN108217587B (en) Four-axle type seat excitation apparatus for the test of MEMS micro-structure dynamic characteristics
CN108120578B (en) A kind of triple axle exciting bank that shock loading can be loaded to MEMS micro-structure
CN108217590B (en) Triple axle seat excitation apparatus for the test of MEMS micro-structure dynamic characteristics
CN107894315B (en) A kind of four-axle type exciting bank that shock loading can be loaded to MEMS micro-structure
CN108036912B (en) Exciting device outside a kind of MEMS micro-structure triple axle piece based on inverse piezoelectric effect
CN108181069B (en) A kind of MEMS micro-structure four-axle type dynamic loading device based on piezoelectric ceramics
CN108163804B (en) It is a kind of can dynamic driving MEMS micro-structure four-axle type exciting bank
CN108168814B (en) A kind of four-axle type exciting device that piece external excitation can be carried out to MEMS micro-structure
CN108163806B (en) A kind of MEMS micro-structure four-axle type seat excitation apparatus based on piezoelectric ceramics
CN108163805B (en) Triple axle exciting device for the test of MEMS micro-structure dynamic characteristics
CN108020392B (en) Exciting device outside a kind of MEMS micro-structure four-axle type piece based on inverse piezoelectric effect
CN108151991B (en) A kind of four-axle type Piezoelectric Ceramics Excitation device for the test of MEMS micro-structure dynamic characteristics
CN108168816B (en) It is a kind of can dynamic driving MEMS micro-structure triple axle exciting bank
CN108168817B (en) A kind of MEMS micro-structure triple axle exciting device based on pedestal motivational techniques
CN108217586B (en) Four-axle type exciting device for the test of MEMS micro-structure dynamic characteristics
CN108225700B (en) A kind of MEMS micro-structure four-axle type exciting bank by Piezoelectric Ceramic
CN108217589B (en) A kind of MEMS micro-structure triple axle dynamic loading device based on piezoelectric ceramics
CN108217582B (en) A kind of MEMS micro-structure four-axle type exciting device based on pedestal motivational techniques
CN108168818B (en) A kind of MEMS micro-structure triple axle seat excitation apparatus based on piezoelectric ceramics
CN108217585B (en) It is a kind of using piezoelectric ceramics as the MEMS micro-structure four-axle type exciting device of driving source
CN108217584B (en) A kind of triple axle exciting device for MEMS micro-structure progress dynamically load
CN108195536B (en) A kind of four-axle type exciting device for MEMS micro-structure progress dynamically load
CN108225699B (en) It is a kind of using piezoelectric ceramics as the MEMS micro-structure triple axle exciting device of driving source
CN108168815A (en) A kind of MEMS micro-structure triple axle exciting banks by Piezoelectric Ceramic
CN108168813B (en) A kind of MEMS micro-structure four-axle type exciting bank

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190702

Termination date: 20191216

CF01 Termination of patent right due to non-payment of annual fee