CN108039258A - 一种高温高矫顽力钐钴永磁材料及制备方法 - Google Patents

一种高温高矫顽力钐钴永磁材料及制备方法 Download PDF

Info

Publication number
CN108039258A
CN108039258A CN201711247115.0A CN201711247115A CN108039258A CN 108039258 A CN108039258 A CN 108039258A CN 201711247115 A CN201711247115 A CN 201711247115A CN 108039258 A CN108039258 A CN 108039258A
Authority
CN
China
Prior art keywords
temperature
high temperature
purity
coercive force
samarium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711247115.0A
Other languages
English (en)
Other versions
CN108039258B (zh
Inventor
蒋成保
邱鑫鑫
刘敬华
张天丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201711247115.0A priority Critical patent/CN108039258B/zh
Publication of CN108039258A publication Critical patent/CN108039258A/zh
Application granted granted Critical
Publication of CN108039258B publication Critical patent/CN108039258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高温高矫顽力钐钴永磁材料及制备方法,永磁材料为Sm(Co1‑u‑v‑wFeuCuvZrw)z,其中u=0.09~0.18,v=0.05~0.10,w=0.02~0.04,z=6.9~7.8;制备方法为纯度99.95%的稀土元素Sm、纯度99.98%的Co、纯度99.99%的Cu、纯度99.9%的Fe、Zr混合均匀后熔炼成合金铸锭,将铸锭进行组织优化处理,采用粉末冶金技术制备微米级合金粉末,然后经过取向成型、高温烧结与固溶、时效处理制备成钐钴永磁合金。本发明有效提高了TbCu7结构的比例,制备出了无Zr6(FeCo)23相的组织结构均匀的钐钴永磁体,得到了超高温下兼具高矫顽力和高磁能积的优异性能,可适用于550℃以上的超高温环境。

Description

一种高温高矫顽力钐钴永磁材料及制备方法
技术领域
本发明涉及一种高温高矫顽力钐钴永磁材料及制备方法,更确切地说,是指一种在保持高磁能积的基础上具有高矫顽力的高温钐钴永磁材料及制备方法,属于磁性材料领域。
背景技术
随着航空、航天、电子等领域的发展,500~550℃甚至更高温度环境下高矫顽力高磁能积永磁材料的需求日益迫切,针对如此高的要求,AlNiCo、SmCo5、NdFeB、纳米复合等材料均无法满足高温性能要求,而具有高的居里温度、优越的综合磁性能和良好的环境稳定性的2:17型高温钐钴磁体成为科研人员的研究热点。
2:17型钐钴永磁材料拥有十分突出的内禀性能,其居里温度可达926℃,饱和磁感应强度和磁晶各向异性在高温下均能保持较高水平,是一种重要的功能材料,目前已广泛应用于通讯、微波器件、汽车工业、航空航天、医疗设备、仪器仪表等重要领域。
近年来,人们在高矫顽力2:17型钐钴永磁的基础上对其成分进行适当的调整,如适当降低Fe含量,增加Cu含量,调整z值等,提高了磁体的使用温度,使现有商用钐钴永磁体最高使用温度从350℃提高到500℃左右。成分的适当调整降低了钐钴永磁体的矫顽力温度系数,保证了永磁体较高的高温磁性能,以美国电子能源公司(EEC)为代表,研制的高温钐钴永磁体550℃的剩磁、矫顽力和磁能积达到5.45kGs、6.34kOe和6.70MGOe,
但上述永磁体表现出的磁性能并不能满足航空航天等高温条件下特殊电力系统的要求。主要原因在两个方面:
1.非均匀的铸锭组织难以破碎成均匀的单晶颗粒,导致低的高温磁性能;
2.对于钐钴永磁体来说,其组织结构中Zr6(FeCo)23相的偏析是一个非常普遍的现象,尤其是在适用于高温条件下的钐钴磁体中,这种相的存在降低了钐钴永磁体的高温磁性能。
发明内容
本发明技术解决问题:为了解决现有报道2:17型钐钴永磁材料高温条件下矫顽力和磁能积普遍较低的问题,提供一种高温高矫顽力的钐钴永磁材料及制备方法。
为了实现上述目的,申请人通过研究发现,2:17型钐钴原料经过熔炼之后,并不是完全的1:7相组织,而是2:7相,1:7相及2:17相的混乱结构,2:7相在整个体系内分布无规则。而通过优化处理技术纯化主相,可以使1:7主相增多,2:7相总含量下降,除此之外,杂相2:7相向晶界偏聚,在晶界上形成网状结构,2:7相与主相界面处光滑紧致,也使得铸锭更容易破碎成均匀的单晶颗粒;
为了实现上述目的,申请人通过研究还发现,当固溶温度(ST)=室温性能最佳固溶温度(OST室温),不析出富Zr相;ST>OST室温,形成SmCoZr相;ST<OST室温,形成FeCoZr相(即Zr6(FeCo)23相)。随着测试温度的升高(从20℃到570℃),最佳固溶温度(OST)下降,即样品高温性能最佳固溶温度(OST高温)≤室温性能最佳固溶温度(OST室温),对于高温钐钴永磁体,处于OST高温下容易形成Zr6(FeCo)23软磁性相。本发明的思路是通过优化铸锭组织减少Zr6(FeCo)23软磁性相的体积分数,提高钐钴永磁体的高温矫顽力;再通过铸锭组织优化与成分优化相结合,完全消除高温磁体体系内Zr6(FeCo)23相,增加了TbCu7结构的比例,使Zr元素在体系中的有效成分发挥了最大作用,进一步提高了钐钴永磁体的高温矫顽力,从而实现了本发明。
本发明提供了一种高温高矫顽力的钐钴永磁材料,其特征在于,在500~570℃高温环境下永磁体仍能够保持高矫顽力,B-H线仍保持直线。
本发明提供了一种高温高矫顽力的钐钴永磁材料,其特征在于,能够进行大规模的工业生产。
本发明还提供了一种高温高矫顽力的钐钴永磁材料的制备方法,其特征在于,该方法解决了Zr6(FeCo)23相在钐钴基体中析出的问题,实现了无Zr6(FeCo)23相的均匀组织。
本发明结合铸锭组织优化和微调Zr、Co等含量,与传统的直接通过减少整体Zr元素达到消除Zr6(FeCo)23相的方法相比,其在保证结构均匀性的同时促进了晶粒的长大,提高了方形度;并且提高了基体中有效Zr含量,使Zr元素发挥了最大作用,从而提高了高温矫顽力和磁能积。
本发明解决了现有技术中钐钴永磁材料使用温度低、高温环境下矫顽力和磁能积较低的问题,得到了超高温下兼具高矫顽力和高磁能积优异性能的钐钴永磁体,可适用于550℃以上的超高温环境。
本发明技术解决方案:一种高温高矫顽力钐钴永磁材料及其制备方法,所述永磁材料的表达式为Sm(Co1-u-v-wFeuCuvZrw)z,其中其中u=0.09~0.18,v=0.05~0.10,w=0.02~0.04,z=6.9~7.8。
该永磁材料为Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43或者Sm(Co0.753Fe0.14Cu0.08Zr0.027)7.43或者Sm(Co0.739Fe0.14Cu0.09Zr0.031)7.45或者Sm(Co0.733Fe0.15Cu0.09Zr0.027)7.62或者Sm(Co0.759Fe0.12Cu0.09Zr0.031)7.34或者Sm(Co0.767Fe0.11Cu0.09Zr0.033)6.91
该Sm(Co1-u-v-wFeuCuvZrw)z永磁材料室温下剩余饱和磁化强度为9.3~9.5kGs,500℃高温下剩余饱和磁化强度为6.8~7.5kGs,550℃超高温下剩余饱和磁化强度为6.4~6.8kGs;室温下内禀矫顽力为12~30kGs,500℃高温下内禀矫顽力为7~10kOe,550℃超高温下内禀矫顽力为6.8~7.3kOe;室温下最大磁能积为20~22MGOe,500℃高温下最大磁能积为11~12MGOe,550℃超高温下最大磁能积为9.5~10.5MGOe。
该Sm(Co1-u-v-wFeuCuvZrw)z高温钐钴永磁材料显微结构无Zr6(FeCo)23相,Zr6(FeCo)23相中Fe元素的原子分数为10at.%~14at.%,Co元素的原子分数为64at.%~68at.%,Zr元素的原子分数为17at.%~23at.%。
本发明的一种高温高矫顽力钐钴永磁材料制备方法,包括有下列步骤:
步骤一:配料和熔炼
采用纯度为99.95%的稀土元素Sm、纯度为99.98%的Co、纯度为99.99%的Cu、纯度为99.9%的Fe、Zr作为原料,将其置于真空熔炼炉的水冷铜坩埚中,易烧损的金属Sm置于坩埚底部,抽真空至2×10-3~5×10-3Pa以后,向炉体内充入高纯氩气,氩气的体积百分比纯度为99.99%,炉内真空度上升至0.8×105Pa以后停止充气,在工作电压30V~45V,工作电流600A~800A条件下重复熔炼得到合金铸锭;
步骤二:铸锭组织优化处理
将熔炼完成的合金锭放入真空炉中,抽真空至2×10-3~5×10-3Pa,充入高纯氩气,再抽至2×10-3~5×10-3Pa后,开始加热。当温度升高到900℃时,充入氩气至0.8×105Pa,温度升高到2:7相熔点温度以上,优选1200~1220℃,更优选1205~1215℃,保温90min~300min,然后淬火,即得组织优化的铸锭。
步骤三:制粉和成型
在充有高纯氩气的手套箱中,将组织优化的铸锭用粉碎机粉碎后过筛,再使用球磨或气流磨工艺,得到粒径为3~5μm的粉末。然后将粉末放入磁场为2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制,获得压坯。
步骤四:热处理
烧结和固溶:将压坯放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,温度升高到1200℃~1250℃温度下烧结30~120min,然后在1180~1220℃固溶90min~300min后淬火。
时效:将固溶后的样品放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,在800~850℃进行12~24h等温时效后,以0.5~0.7℃/min的降温速率缓慢冷却至400℃,保温10h~20h淬火,冷却后取出。
优选地,所述铸锭组织优化处理时间采用4~5h;
优选地,所述固溶处理时间采用4h。
本发明与现有技术相比的优点在于:本发明结合铸锭组织优化和微调Zr、Co等含量,制备出了无Zr6(FeCo)23相的组织结构均匀的钐钴永磁体,得到了超高温550℃下剩磁高于6.60kGs、矫顽力高于7.00kOe和磁能积高于10.00MGOe的优异性能,可适用于550℃及以上的超高温环境。
附图说明
图1为本发明制备方法实现流程图;
图2为本发明实施例1中Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43组织优化铸锭A的EPMA照片;
图3为对比例1中Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43未优化处理铸锭Ⅰ的EPMA照片;
图4为本发明实施例1和对比例1中铸锭A和Ⅰ的DSC曲线;
图5为本发明实施例1和对比例1中铸锭A和Ⅰ的XRD图谱;
图6为本发明实施例1中组织优化铸锭A的固溶态样品的EPMA照片;
图7为对比例1中未优化处理铸锭Ⅰ的固溶态样品的EPMA照片。
具体实施方式
本发明涉及一种高温高矫顽力钐钴永磁材料,该永磁材料的表达式为Sm(Co1-u-v- wFeuCuvZrw)z,其中u=0.09~0.18,v=0.05~0.10,w=0.02~0.04,z=6.9~7.8。制备方法为纯度99.95%的稀土元素Sm、纯度99.98%的Co、纯度99.99%的Cu、纯度99.9%的Fe、Zr混合均匀后熔炼成合金铸锭,将铸锭进行组织优化处理,采用粉末冶金技术制备微米级合金粉末,然后经过取向成型、高温烧结与固溶、时效处理制备成钐钴永磁合金。本发明结合铸锭组织优化和微调Zr、Co等含量,完全消除了高温磁体基体中的Zr6(FeCo)23相,提高了TbCu7结构的比例,高温下的矫顽力和磁能积均明显高于未组织优化处理的钐钴永磁体。本发明解决了Zr6(FeCo)23相在钐钴基体中析出的问题,制备出了无Zr6(FeCo)23相的组织结构均匀的钐钴永磁体,得到了超高温下兼具高矫顽力和高磁能积的优异性能,可适用于550℃以上的超高温环境。
如图1所示,具体制备方法为:
首先,配料和熔炼。采用纯度为99.95%的稀土元素Sm、纯度为99.98%的Co、纯度为99.99%的Cu、纯度为99.9%的Fe、Zr作为原料,将其置于真空熔炼炉的水冷铜坩埚中,易烧损的金属Sm置于坩埚底部,抽真空至2×10-3~5×10-3Pa以后,向炉体内充入高纯氩气,氩气的体积百分比纯度为99.99%,炉内真空度上升至0.8×105Pa以后停止充气,在工作电压30~45V,工作电流600~800A条件下熔炼得到合金铸锭。合金铸锭Ⅰ:Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43,合金铸锭Ⅱ:Sm(Co0.753Fe0.14Cu0.08Zr0.027)7.43,合金铸锭III:Sm(Co0.739Fe0.14Cu0.09Zr0.031)7.45
其次,铸锭组织优化处理。将熔炼完成的合金锭Ⅰ、Ⅱ、III放入真空炉中,抽真空至2×10-3~5×10-3Pa,充入高纯氩气,再抽至2×10-3~5×10-3Pa后,开始加热。当温度升高到900℃时,充入氩气至0.8×105Pa,温度升高到2:7相熔点温度以上,优选1200~1220℃,更优选1205~1215℃,保温90~300min,然后淬火,即得组织优化的铸锭A、B、C。
然后,制粉和成型。在充有高纯氩气的手套箱中,将组织优化的铸锭用粉碎机粉碎后过筛,再使用球磨或气流磨工艺,得到粒径为3~5μm的粉末。然后将粉末放入磁场为2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制,获得压坯。
最后,进行热处理。烧结和固溶阶段,将压坯放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,温度升高到1200℃~1250℃温度下烧结30~120min,然后在1180~1220℃温度下固溶90~300min后淬火。时效阶段,将固溶后的样品放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,在800~850℃进行12~24h等温时效后,以0.5~0.7℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
以下是本发明的具体实施例,对本发明的技术方案做进一步的描述,但本发明并不限于这些实施例。
实施例1
步骤一:配料和熔炼
采用纯度为99.95%的稀土元素Sm、纯度为99.98%的Co、纯度为99.99%的Cu、纯度为99.9%的Fe、Zr作为原料,将其置于真空熔炼炉的水冷铜坩埚中,易烧损的金属Sm置于坩埚底部,抽真空至2×10-3~5×10-3Pa以后,向炉体内充入高纯氩气,氩气的体积百分比纯度为99.99%,炉内真空度上升至0.8×105Pa停止充气,在工作电压30~45V,工作电流600~800A条件下熔炼3~4次,得到合金铸锭Ⅰ:Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43
步骤二:铸锭组织优化处理
将熔炼完成的合金锭Ⅰ放入真空炉中,抽真空至2×10-3~5×10-3Pa,充入高纯氩气,再抽至2×10-3~5×10-3Pa后,开始加热。当温度升高到900℃时,充入氩气至0.8×105Pa,温度升高到2:7相熔点温度以上,优选1200~1220℃,更优选1205~1215℃,保温90~300min,然后淬火,即得组织优化的铸锭A。
步骤三:制粉和成型
在充有高纯氩气的手套箱中,将组织优化的铸锭用粉碎机粉碎后过筛,再使用球磨或气流磨工艺,得到粒径为3~5μm的粉末。然后将粉末放入磁场为2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制,获得压坯。
步骤四:热处理
烧结和固溶:将压坯放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气温度升高到1205~1235℃温度下烧结30~120min,然后在1190~1210℃固溶90~300min后淬火。
时效:将固溶后的样品放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,在800~840℃进行12~24h等温时效后,以0.5℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
用永磁材料高温测量系统测量了实施例1样品25℃、500℃及550℃的磁性能,磁性能数据见表1。其中Br为剩磁,单位为高斯,用Gs表示;Hcj为内禀矫顽力,单位为奥斯特,用Oe表示;(BH)max为最大磁能积,单位为高斯·奥斯特,用GOe表示。
表1.A-Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43磁性能
对比例1
将未优化处理的合金铸锭Ⅰ粉末在2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制后烧结。
烧结和固溶:在1205~1235℃温度下烧结30~120min,然后在1190~1210℃温度下固溶90~300min后淬火。
时效:固溶后的样品在800~840℃进行12~24h等温时效后,以0.5℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
用永磁材料高温测量系统测量了对比例1样品25℃、500℃及550℃的磁性能,磁性能数据见表2。
表2.Ⅰ-Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43磁性能
取A铸锭和Ⅰ铸锭各10g、30mg和6g分别进行EPMA、DSC及XRD分析,比较组织优化后A铸锭与未优化处理Ⅰ铸锭的显微结构的差别。对实施例1和对比例1中样品进行分析,通过EPMA观察组织优化铸锭A和未优化处理铸锭Ⅰ的相成分,如图2、3,在两类样品中均能够看到灰色区域和白色区域。图4展示了组织优化铸锭A和未优化处理铸锭Ⅰ的DSC曲线,Ⅰ铸锭特征是:在1200℃以上出现了3个峰,这与背散射图3中3种不同衬度相保持一致;A铸锭在1200℃以上也出现了3个峰,但是和Ⅰ不一样的是第一个峰值明显减小,第二个峰值增加,而后面两个峰趋于结合在一起。图5分别展示了铸锭态Ⅰ和A的XRD曲线,可以发现铸锭态的基体相均为1:7相,伴随着一些2:17相。结合能谱分析、DSC和XRD,参考相图,分析出Ⅰ铸锭态中的三个相分别是白色2:7相,浅灰色1:7相及深灰色2:17相。未组织优化处理铸锭Ⅰ中,1:7相和2:17相将2:7相包裹住,呈树枝状生长,2:7相在整个体系内分布无规则。而经过铸锭组织优化处理之后2:7相向晶界偏聚,在晶界上形成网状结构,放大倍数之后,能够更清晰地观察到2:7相与主相界面处光滑紧致;同时还能发现,2:7相总含量也在下降,1:7相增多,1:7相与2:17相的平均原子序数差比未组织优化处理铸锭的更小,表现出同一种深灰色衬度。
这说明铸锭组织优化处理不仅纯化了主相,还使得2:7杂相向晶界偏聚,在晶界上形成网状结构,2:7杂相与主相界面处光滑紧致,更有利于铸锭破碎成均匀的单晶颗粒。
图6、7分别为本发明实施例1中A的固溶态和对比例1中Ⅰ的固溶态钐钴磁体的EPMA照片。图7展示了未经过铸锭组织优化处理的Ⅰ固溶态钐钴磁体的背散射电子像,箭头所示为Zr6(FeCo)23相。而通过铸锭组织组织优化处理消除了基体内的Zr6(FeCo)23相,如图6。从另一方面来说,铸锭的不均匀会导致Zr6(FeCo)23相的析出。同时通过表1可以看出铸锭组织组织优化后的磁体最高工作温度可达550~570℃,且获得了更高的高温磁能积及高温矫顽力。
实施例2
步骤一:配料和熔炼
采用纯度为99.95%的稀土元素Sm、纯度为99.98%的Co、纯度为99.99%的Cu、纯度为99.9%的Fe、Zr作为原料,将其置于真空熔炼炉的水冷铜坩埚中,易烧损的金属Sm置于坩埚底部,抽真空至2×10-3~5×10-3Pa以后,向炉体内充入高纯氩气,氩气的体积百分比纯度为99.99%,炉内真空度上升至0.8×105Pa以后停止充气,在工作电压30~45V,电流600~800A条件下熔炼得到合金铸锭Ⅱ:Sm(Co0.753Fe0.14Cu0.08Zr0.027)7.43
步骤二:铸锭组织优化处理
将熔炼完成的合金锭Ⅱ放入真空炉中,抽真空至2×10-3~5×10-3Pa,充入高纯氩气,再抽至2×10-3~5×10-3Pa后,开始加热。当温度升高到900℃时,充入氩气至0.8×105Pa,温度升高到2:7相熔点温度以上,优选1200~1220℃,更优选1205~1215℃,保温90~300min,然后淬火,即得组织优化的铸锭B。
步骤三:制粉和成型
在充有高纯氩气的手套箱中,将组织优化的铸锭用粉碎机粉碎后过筛,再使用球磨或气流磨工艺,得到粒径为3~5μm的粉末。然后将粉末放入磁场为2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制,获得压坯。
步骤四:热处理
烧结和固溶:将压坯放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气温度升高到1205~1235℃温度下烧结30~120min,然后在1190~1210℃固溶90~300min后淬火。
时效:将固溶后的样品放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,在800~840℃进行12~24h等温时效后,以0.5℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
用永磁材料高温测量系统测量了实施例2样品25℃、500℃及550℃的磁性能,磁性能数据见表3。
表3.B-Sm(Co0.753Fe0.14Cu0.08Zr0.027)7.43磁性能
对比例2
将未经过成分调整和铸锭优化处理的合金铸锭Sm(Co0.747Fe0.14Cu0.08Zr0.033)7.43粉末在2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制后烧结。
烧结和固溶:在1205~1235℃温度下烧结30~120min,然后在1190~1210℃温度下固溶90~300min后淬火。
时效:固溶后的样品在800~840℃进行12~24h等温时效后,以0.5℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
通过永磁材料高温测量系统测量对比例2样品25℃、500℃及550℃的磁性能,磁性能数据见表4。
表4.未经过成分调整和铸锭优化处理Sm(Co0.747Fe0.14Cu0.08Zr0.033)7.43的磁性能
对比例3
将未优化处理的合金铸锭Ⅱ粉末在2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制后烧结。
烧结和固溶:在1205~1235℃温度下烧结30~120min,然后在1190~1210℃温度下固溶90~300min后淬火。
时效:固溶后的样品在800~840℃进行12~24h等温时效后,以0.5℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
用永磁材料高温测量系统测量了对比例3样品25℃、500℃及550℃的磁性能,磁性能数据见表5。
表5.Ⅱ-Sm(Co0.753Fe0.14Cu0.08Zr0.027)7.43磁性能
将对比例1,2,3中固溶态样品的进行EPMA对比发现,基体中Zr6(FeCo)23的体积分数随着Zr含量的减少而减少。同时,由表2,4,5可知,随着Zr6(FeCo)23相的减少,虽然室温矫顽力下降很快,但是却可以进一步提高磁体的高温矫顽力以及磁能积。特别地,当w=0.027时,基体中的Zr6(FeCo)23软磁相完全消失,这时钐钴永磁体的室温、高温性能均达到最佳。
而对比实施例1中A固溶态样品,发现经过铸锭组织优化后,在w=0.031时,Zr6(FeCo)23相就已经完全消除,相比于对比例3,实施例1中永磁体的性能却得到了更进一步的提升,如表1和5。因此,与传统的直接减少Zr元素消除Zr6(FeCo)23相的方法相比,先优化铸锭组织再改善Zr和Co的含量在提升钐钴永磁体高温矫顽力及磁能积方面具有更大的优势。
实施例3
步骤一:配料和熔炼
采用纯度为99.95%的稀土元素Sm、纯度为99.98%的Co、纯度为99.99%的Cu、纯度为99.9%的Fe、Zr作为原料,将其置于真空熔炼炉的水冷铜坩埚中,易烧损的金属Sm置于坩埚底部,抽真空至2×10-3~5×10-3Pa以后,向炉体内充入高纯氩气,氩气的体积百分比纯度为99.99%,炉内真空度上升至0.8×105Pa以后停止充气,在工作电压30~45V,电流600~800A条件下熔炼得到合金铸锭III:Sm(Co0.739Fe0.14Cu0.09Zr0.031)7.45
步骤二:铸锭组织优化处理
将熔炼完成的合金锭III放入真空炉中,抽真空至2×10-3~5×10-3Pa,充入高纯氩气,再抽至2×10-3~5×10-3Pa后,开始加热。当温度升高到900℃时,充入氩气至0.8×105Pa,温度升高到2:7相熔点温度以上,优选1200~1220℃,更优选1205~1215℃,保温90~300min,然后淬火,即得组织优化的铸锭C。
步骤三:制粉和成型
在充有高纯氩气的手套箱中,将组织优化的铸锭用粉碎机粉碎后过筛,再使用球磨或气流磨工艺,得到粒径为3~5μm的粉末。然后将粉末放入磁场为2T的磁场压型机中取向成型,磁场方向与压制方向垂直,再经过200MPa压力的冷等静压压制,获得压坯。
步骤四:热处理
烧结和固溶:将压坯放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,再抽至2×10-3~5×10-3Pa后,开始加热,当温度升高到900℃时,充入氩气,温度升高到1205~1235℃温度下烧结30~120min,然后在1190~1210℃温度下固溶90~300min后淬火。
时效:将固溶后的样品放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,再抽至2×10-3~5×10-3Pa后,开始加热,当温度升高到700℃时,充入氩气,样品在800~840℃进行12~24h等温时效后,以0.5℃/min的降温速率缓慢冷却至400℃,保温10~20h淬火,冷却后取出。
用永磁材料高温测量系统测量了实施例3样品25℃、500℃及550℃的磁性能,磁性能数据见表6。
表6.C-Sm(Co0.739Fe0.14Cu0.09Zr0.031)7.45磁性能
由表6数据可以看出,结合铸锭组织优化来改善Zr和Co的含量,钐钴永磁材料在保持高磁能积(BH)max的情况下,获得了高的高温矫顽力且最高工作温度可达550~570℃。
以上结果表明,本发明中通过铸锭组织优化和成分微调消除基体内Zr6(FeCo)23软磁性相的方法制备高温高矫顽力钐钴永磁材料非常成功。随着Zr6(FeCo)23相的减少,不同成分烧结磁体的室温磁能积、高温下矫顽力和磁能积均得到了提升。当通过铸锭组织优化完全消除Zr6(FeCo)23相之后,多余的Zr元素进入到1:3片状相中提高了基体中的有效Zr含量,促进了Fe和Cu元素分离进入胞内和胞壁,钐钴永磁体性能达到最优,得到了超高温550℃下剩磁高于6.60kGs、矫顽力高于7.00kOe和磁能积高于10.00MGOe的优异性能,可适用于550℃及以上的超高温环境。因此,通过铸锭组织优化技术制备无Zr6(FeCo)23相的钐钴永磁体对于高温应用显得非常重要。
本发明所描述的具体实施例仅为本发明部分具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的人员在本发明揭露的技术范围内可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
需要说明的是,按照本发明上述各实施例,本领域技术人员是完全可以实现本发明独立权利要求及从属权利的全部范围的内容,实现过程及方法同上述各实施例,且本发明未详细阐述部分属于本领域公知技术。

Claims (9)

1.一种高温高矫顽力钐钴永磁材料,其特征在于:所述永磁材料的表达式为Sm(Co1-u-v- wFeuCuvZrw)z,其中u=0.09~0.18,v=0.05~0.10,w=0.02~0.04,z=6.9~7.8。
2.根据权利要求1所述的高温高矫顽力钐钴永磁材料,其特征在于:所述永磁材料为Sm(Co0.749Fe0.14Cu0.08Zr0.031)7.43或者Sm(Co0.753Fe0.14Cu0.08Zr0.027)7.43或者Sm(Co0.739Fe0.14Cu0.09Zr0.031)7.45或者Sm(Co0.733Fe0.15Cu0.09Zr0.027)7.62或者Sm(Co0.759Fe0.12Cu0.09Zr0.031)7.34或者Sm(Co0.767Fe0.11Cu0.09Zr0.033)6.91
3.根据权利要求1所述的高温高矫顽力钐钴永磁材料,其特征在于:所述Sm(Co1-u-v- wFeuCuvZrw)z永磁材料室温下剩余饱和磁化强度为9.3~9.5kGs,500℃高温下剩余饱和磁化强度为6.8~7.5kGs,550℃超高温下剩余饱和磁化强度为6.4~6.8kGs;室温下内禀矫顽力为12~30kGs,500℃高温下内禀矫顽力为7~10kOe,550℃超高温下内禀矫顽力为6.8~7.3kOe;室温下最大磁能积为20~22MGOe,500℃高温下最大磁能积为11~12MGOe,550℃超高温下最大磁能积为9.5~10.5MGOe。
4.根据权利要求1所述的高温高矫顽力钐钴永磁材料,其特征在于:所述Sm(Co1-u-v- wFeuCuvZrw)z高温钐钴永磁材料显微结构无富Zr的Zr6(CoFe)23相,该析出相中Fe元素的原子分数为10at.%~14at.%,Co元素的原子分数为64at.%~68at.%,Zr元素的原子分数为17at.%~23at.%,Zr6(CoFe)23相的居里温度约为540℃。
5.制备如权利要求1-4任意之一所述的高温高矫顽力钐钴永磁材料的方法,其特征在于包括有下列步骤:
步骤一:配料和熔炼
采用Sm、Co、Cu、Fe、Zr作为原料,并置于真空熔炼炉中,Sm置于坩埚底部,抽真空至2×10-3~5×10-3Pa以后,向所述炉体内充入高纯氩气,所述炉内真空度上升至0.8×105Pa以后停止充气,在工作电压30~45V,工作电流600~800A条件下熔炼得到合金铸锭;
步骤二:铸锭组织优化处理
2:17型钐钴的原料经过熔炼之后,并不是完全的1:7相组织,而是2:7相,1:7相及2:17相的杂乱结构,2:7相在整个体系内分布无规则。铸锭组织优化处理是将熔炼完成的合金锭放入真空炉中,抽真空至2×10-3~5×10-3Pa,充入高纯氩气,再抽至2×10-3~5×10-3Pa后,开始加热,当温度升高到900℃时,充入氩气至0.8×105Pa,温度升高到2:7相熔点温度以上,优选1200~1220℃,更优选1205~1215℃,保温90min~300min,然后淬火,即得组织优化的铸锭。优化处理技术可以实现主相的纯化,使1:7主相增多;2:7相总含量下降并向晶界偏聚,在晶界上形成网状结构,也使得铸锭更容易破碎成均匀的单晶颗粒;
步骤三:制粉和成型
在充有高纯氩气的手套箱中,将步骤二得到的组织优化的铸锭用粉碎机粉碎后过筛,再使用球磨或气流磨工艺,得到粒径为3~5μm的粉末,然后将所述粉末放入磁场压型机中取向成型,磁场方向与压制方向垂直,再经过冷等静压压制,获得压坯;
步骤四:热处理
烧结和固溶:将压坯放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,温度升高到1200℃~1250℃温度下烧结30~120min,然后在1180~1220℃固溶90min~300min后淬火;
时效:将固溶后的样品放入真空炉中,抽真空到2×10-3~5×10-3Pa,充入氩气,样品在800~850℃进行12~24h等温时效后,缓慢冷却至400℃,保温10h~20h后淬火;
优选地,所述铸锭组织优化处理时间采用4~5h;
优选地,所述固溶处理时间采用4h。
6.根据权利要求5所述的高温高矫顽力钐钴永磁材料的方法,其特征在于:所述高纯氩气中,氩气的体积百分比纯度为99.99%。
7.根据权利要求5所述的高温高矫顽力钐钴永磁材料的方法,其特征在于:所述步骤一中,采用纯度为99.95%的Sm、纯度为99.98%的Co、纯度为99.99%的Cu、纯度为99.9%的Fe、Zr作为原料。
8.根据权利要求5所述的高温高矫顽力钐钴永磁材料的方法,其特征在于:所述步骤三中,冷等静压压制的压力为200MPa。
9.根据权利要求7所述的高温高矫顽力钐钴永磁材料的方法,其特征在于:所述步骤四中,以0.5~0.7℃/min的降温速率缓慢冷却至400℃。
CN201711247115.0A 2017-12-01 2017-12-01 一种高温高矫顽力钐钴永磁材料及制备方法 Active CN108039258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711247115.0A CN108039258B (zh) 2017-12-01 2017-12-01 一种高温高矫顽力钐钴永磁材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711247115.0A CN108039258B (zh) 2017-12-01 2017-12-01 一种高温高矫顽力钐钴永磁材料及制备方法

Publications (2)

Publication Number Publication Date
CN108039258A true CN108039258A (zh) 2018-05-15
CN108039258B CN108039258B (zh) 2019-04-02

Family

ID=62095233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711247115.0A Active CN108039258B (zh) 2017-12-01 2017-12-01 一种高温高矫顽力钐钴永磁材料及制备方法

Country Status (1)

Country Link
CN (1) CN108039258B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766700A (zh) * 2018-05-16 2018-11-06 绵阳西磁磁业有限公司 一种高工作温度低磁性变化稀土钴永磁材料及制备方法
CN108777202A (zh) * 2018-05-29 2018-11-09 北京航空航天大学 一种提高Zr元素固溶度的钐钴磁体及方法
CN109148138A (zh) * 2018-09-12 2019-01-04 北矿磁材(阜阳)有限公司 一种高性能钐钴烧结永磁体用全流程低氧的制备方法
CN109909465A (zh) * 2018-12-28 2019-06-21 北京航空航天大学 一种抑制高铁浓度钐钴合金高温有序化的方法
CN110957089A (zh) * 2019-11-21 2020-04-03 杭州科德磁业有限公司 一种钐钴永磁材料的制备方法
CN111210960A (zh) * 2020-01-20 2020-05-29 北京航大新磁科技有限公司 一种高方形度高磁能积钐钴永磁材料及制备方法
CN111370191A (zh) * 2020-03-20 2020-07-03 杭州永磁集团有限公司 一种不含重稀土元素的低矫顽力温度系数高温用钐钴永磁材料及制备方法
CN112435846A (zh) * 2020-10-28 2021-03-02 包头市沃野对外贸易有限责任公司 一种耐550度高温型钐钴永磁材料的制造方法
CN112582123A (zh) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 低温度系数高使用温度烧结钐钴磁体的制备方法
CN112582122A (zh) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 高膝点矫顽力烧结钐钴磁体的制备方法
CN112927920A (zh) * 2021-03-05 2021-06-08 西安交通大学 一种提高2:17型Sm-Co烧结磁体磁性能的加压热处理方法
CN113020595A (zh) * 2019-12-24 2021-06-25 中国计量大学 一种2:17型SmCoCuFeZrB烧结永磁体的制备方法
CN113130199A (zh) * 2021-04-20 2021-07-16 中国计量大学 一种高电阻率烧结钐钴磁体及其制备方法
CN113436874A (zh) * 2021-05-27 2021-09-24 北矿科技股份有限公司 一种Sm2Co17型高温磁体及其制备方法
CN113593882A (zh) * 2021-07-21 2021-11-02 福建省长汀卓尔科技股份有限公司 2-17型钐钴永磁材料及其制备方法和应用
CN113744987A (zh) * 2021-08-25 2021-12-03 北京航空航天大学 晶界组织重构制备高性能钐钴磁体的方法
CN113936905A (zh) * 2021-09-30 2022-01-14 宁波宁港永磁材料有限公司 一种钐钴永磁材料的制备方法
CN114000101A (zh) * 2021-11-01 2022-02-01 北京航空航天大学 一种采用包埋渗硅工艺制备2:17型钐钴永磁高温抗氧化涂层的方法
CN114101654A (zh) * 2021-09-16 2022-03-01 华北理工大学 一种高性能SmFe12基永磁粉体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533699A (zh) * 2008-12-03 2009-09-16 北京航空航天大学 一种具有高度温度稳定性的高温永磁材料及制备方法
CN101620928A (zh) * 2009-06-15 2010-01-06 河北工业大学 Sm(Co,Cu,Fe,Zr)z型合金薄带磁体的制备方法
CN102140598A (zh) * 2011-03-07 2011-08-03 北京工业大学 一种超高矫顽力低Co型Sm-Co纳米晶合金的制备方法
CN102403118A (zh) * 2011-11-23 2012-04-04 北京航空航天大学 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN104662620A (zh) * 2013-09-24 2015-05-27 株式会社东芝 永磁体、电动机以及发电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533699A (zh) * 2008-12-03 2009-09-16 北京航空航天大学 一种具有高度温度稳定性的高温永磁材料及制备方法
CN101620928A (zh) * 2009-06-15 2010-01-06 河北工业大学 Sm(Co,Cu,Fe,Zr)z型合金薄带磁体的制备方法
CN102140598A (zh) * 2011-03-07 2011-08-03 北京工业大学 一种超高矫顽力低Co型Sm-Co纳米晶合金的制备方法
CN102403118A (zh) * 2011-11-23 2012-04-04 北京航空航天大学 一种各向异性钐钴基纳米晶稀土永磁体制备方法
CN104662620A (zh) * 2013-09-24 2015-05-27 株式会社东芝 永磁体、电动机以及发电机

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.F. DE CAMPOS,ET AL: "Effect of several heat treatments on the microstructure and coercivity of SmCo5 magnets", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
R. GOPALAN,ET AL: "Studies on structural transformation and magnetic properties in Sm2Co17 type alloys", 《JOURNAL OF MATERIALS SCIENCE》 *
巩劭廷等: "Fe对SmCo基高温永磁体微观结构及矫顽力的影响", 《金属学报》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766700B (zh) * 2018-05-16 2020-06-09 绵阳西磁磁业有限公司 一种高工作温度低磁性变化稀土钴永磁材料及制备方法
CN108766700A (zh) * 2018-05-16 2018-11-06 绵阳西磁磁业有限公司 一种高工作温度低磁性变化稀土钴永磁材料及制备方法
CN108777202A (zh) * 2018-05-29 2018-11-09 北京航空航天大学 一种提高Zr元素固溶度的钐钴磁体及方法
CN108777202B (zh) * 2018-05-29 2019-09-13 北京航空航天大学 一种提高Zr元素固溶度的钐钴磁体及方法
CN109148138A (zh) * 2018-09-12 2019-01-04 北矿磁材(阜阳)有限公司 一种高性能钐钴烧结永磁体用全流程低氧的制备方法
CN109909465A (zh) * 2018-12-28 2019-06-21 北京航空航天大学 一种抑制高铁浓度钐钴合金高温有序化的方法
CN112582122A (zh) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 高膝点矫顽力烧结钐钴磁体的制备方法
CN112582123B (zh) * 2019-09-27 2022-11-08 河北泛磁聚智电子元件制造有限公司 低温度系数高使用温度烧结钐钴磁体的制备方法
CN112582123A (zh) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 低温度系数高使用温度烧结钐钴磁体的制备方法
CN110957089A (zh) * 2019-11-21 2020-04-03 杭州科德磁业有限公司 一种钐钴永磁材料的制备方法
CN113020595A (zh) * 2019-12-24 2021-06-25 中国计量大学 一种2:17型SmCoCuFeZrB烧结永磁体的制备方法
CN111210960A (zh) * 2020-01-20 2020-05-29 北京航大新磁科技有限公司 一种高方形度高磁能积钐钴永磁材料及制备方法
CN111210960B (zh) * 2020-01-20 2022-05-31 苏州航大新材料科技有限公司 一种高方形度高磁能积钐钴永磁材料及制备方法
CN111370191A (zh) * 2020-03-20 2020-07-03 杭州永磁集团有限公司 一种不含重稀土元素的低矫顽力温度系数高温用钐钴永磁材料及制备方法
CN112435846A (zh) * 2020-10-28 2021-03-02 包头市沃野对外贸易有限责任公司 一种耐550度高温型钐钴永磁材料的制造方法
CN112927920A (zh) * 2021-03-05 2021-06-08 西安交通大学 一种提高2:17型Sm-Co烧结磁体磁性能的加压热处理方法
CN112927920B (zh) * 2021-03-05 2022-05-06 西安交通大学 一种提高2:17型Sm-Co烧结磁体磁性能的加压热处理方法
CN113130199A (zh) * 2021-04-20 2021-07-16 中国计量大学 一种高电阻率烧结钐钴磁体及其制备方法
CN113130199B (zh) * 2021-04-20 2022-11-11 中国计量大学 一种高电阻率烧结钐钴磁体及其制备方法
CN113436874A (zh) * 2021-05-27 2021-09-24 北矿科技股份有限公司 一种Sm2Co17型高温磁体及其制备方法
CN113593882A (zh) * 2021-07-21 2021-11-02 福建省长汀卓尔科技股份有限公司 2-17型钐钴永磁材料及其制备方法和应用
CN113593882B (zh) * 2021-07-21 2023-07-21 福建省长汀卓尔科技股份有限公司 2-17型钐钴永磁材料及其制备方法和应用
CN113744987A (zh) * 2021-08-25 2021-12-03 北京航空航天大学 晶界组织重构制备高性能钐钴磁体的方法
CN114101654A (zh) * 2021-09-16 2022-03-01 华北理工大学 一种高性能SmFe12基永磁粉体及其制备方法
CN113936905A (zh) * 2021-09-30 2022-01-14 宁波宁港永磁材料有限公司 一种钐钴永磁材料的制备方法
CN114000101A (zh) * 2021-11-01 2022-02-01 北京航空航天大学 一种采用包埋渗硅工艺制备2:17型钐钴永磁高温抗氧化涂层的方法

Also Published As

Publication number Publication date
CN108039258B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN108039258B (zh) 一种高温高矫顽力钐钴永磁材料及制备方法
CN107895620B (zh) 一种高铁含量钐钴永磁材料及制备方法
CN103377820B (zh) 一种r-t-b-m系烧结磁体及其制造方法
WO2016015662A1 (zh) 稀土磁铁用急冷合金和稀土磁铁的制备方法
CN111145973B (zh) 一种含有晶界相的钐钴永磁体及其制备方法
CN106920617A (zh) 高性能钕铁硼稀土永磁材料及其制备方法
CN102140598B (zh) 一种超高矫顽力低Co型Sm-Co纳米晶合金的制备方法
CN102568807A (zh) 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
WO2015054953A1 (zh) 稀土永磁体及其制备方法
CN111210960B (zh) 一种高方形度高磁能积钐钴永磁材料及制备方法
CN102568729B (zh) 一种制备块体纳米晶复合稀土永磁材料的方法
CN107564645A (zh) 一种具有低剩磁温度系数高温用钐钴永磁材料及制备方法
CN112582122A (zh) 高膝点矫顽力烧结钐钴磁体的制备方法
CN105355412A (zh) 一种硫化处理获得高磁性烧结钕铁硼的方法
CN113020595B (zh) 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法
CN108777202B (zh) 一种提高Zr元素固溶度的钐钴磁体及方法
CN105427988A (zh) 一种耐高温钐钴永磁体及其制备方法
CN108281270A (zh) 金属蒸气热处理制备高性能钕铁硼磁体的方法
Zhang et al. Effect of residual hydrogen on microstructure and magnetic properties of Sm (Co0. 647Fe0. 28Cu0. 053Zr0. 02) 7.84 magnets
CN105280319B (zh) 由工业纯混合稀土制备的稀土铁硼材料及其制备方法和应用
CN106531383B (zh) 钐钴合金材料、钐钴合金粉末及其制备方法及钐钴基磁体
CN109594023A (zh) 一种短流程Ce-Fe基烧结永磁体及其制备方法
CN102403082A (zh) 具有低温度系数的稀土钴基永磁体及其制备方法
Liu et al. Effect of strip casting on microstructure and magnetic properties of 2: 17 type Sm-Co sintered magnets
CN108766700A (zh) 一种高工作温度低磁性变化稀土钴永磁材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant