CN113020595A - 一种2:17型SmCoCuFeZrB烧结永磁体的制备方法 - Google Patents

一种2:17型SmCoCuFeZrB烧结永磁体的制备方法 Download PDF

Info

Publication number
CN113020595A
CN113020595A CN202110213796.9A CN202110213796A CN113020595A CN 113020595 A CN113020595 A CN 113020595A CN 202110213796 A CN202110213796 A CN 202110213796A CN 113020595 A CN113020595 A CN 113020595A
Authority
CN
China
Prior art keywords
magnet
permanent magnet
cooling
preparation
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110213796.9A
Other languages
English (en)
Other versions
CN113020595B (zh
Inventor
俞能君
单杰峰
张朋越
泮敏翔
吴琼
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
China Jiliang University Shangyu Advanced Research Institute Co Ltd
Original Assignee
China Jiliang University
China Jiliang University Shangyu Advanced Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University, China Jiliang University Shangyu Advanced Research Institute Co Ltd filed Critical China Jiliang University
Priority to CN202110213796.9A priority Critical patent/CN113020595B/zh
Publication of CN113020595A publication Critical patent/CN113020595A/zh
Application granted granted Critical
Publication of CN113020595B publication Critical patent/CN113020595B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,该制备方法用于制备烧结永磁体Smx(Co1‑a‑b‑c‑dFeaCubZrcBd)z,该式中符号x,a,b,c,d和z表示限定元素的组成范围,其中,原子个数比x:a:b:c:d:z=1:(0.01~0.4):(0~0.03):(0.01~0.05):(0.01~0.04):(6.8~8.4);该磁体具有胞状组织结构,胞内主相为Sm2(CoFe)17B相;本发明方法制备的烧结永磁体,其致密度和取向度是纳米晶和非晶磁体无法比拟的;而且本发明通过热处理工艺、控氧工艺等的配合,有效抑制了所述磁体在热处理过程中相的不受控分解,实现了微结构和相组成的有效调控,实现了烧结2:17型钐钴磁体中Fe元素添加量的提高,提升了高Fe含量下磁体的内禀矫顽力,进而提高烧结2:17型钐钴磁体的最大磁能积。

Description

一种2:17型SmCoCuFeZrB烧结永磁体的制备方法
技术领域
本发明涉及烧结稀土永磁金属间化合物材料,具体涉及一种2:17型SmCoCuFeZrB烧结永磁体的制备方法。
背景技术
2:17型钐钴永磁材料因具有较高的磁性能、优良的温度稳定性和耐腐蚀性在高温和高稳定性应用领域有着不可替代的作用,广泛应用于高温传感器、磁轴承等仪器设备上。
目前,商业烧结2:17型钐钴永磁材料通常仅采用Sm\Co\Fe\Cu\Zr五种元素,Zr元素主要形成富Zr的片状相为回火过程总Fe/Cu元素的相互扩散提供通道,Cu元素主要富集于胞壁SmCo5H相中形成对主相磁畴的钉扎作用,使磁体获得较高的矫顽力,Fe元素主要富集于胞内主相Sm2Co17R相中,为磁体提供磁化强度。在SmCo5H型晶体结构中Cu元素主要占据2c位置,且固溶度为100%,Fe元素在SmCo5H型晶体结构中固溶度极小且主要占据3g位。研究发现,Fe含量增加会导致磁体胞壁相中的Fe含量增加导致磁体的内禀矫顽力急剧下降。根据基础磁学理论,磁体的最大磁能积是由磁体的剩余磁化强度和矫顽力共同决定的。因此,即使提高Fe含量可以有效提高磁体的剩余磁化强度,但磁体矫顽力的恶化使得高剩余磁化强度无法得到有效利用,极大限制了烧结2:17型钐钴永磁材料最大磁能积的进一步提升。传统烧结2:17型钐钴永磁体因其胞壁相为SmCo5相,Fe原子过多取代Co原子会大幅降低该相的各向异性,导致无法对主相磁畴形成有效钉扎,磁体内禀矫顽力下降。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供一种2:17型SmCoCuFeZrB烧结永磁体的制备方法。
为了实现上述目的,本发明提供以下技术方案:
一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,该制备方法用于制备烧结永磁体Smx(Co1-a-b-c-dFeaCubZrcBd)z,该式中符号x,a,b,c,d和z表示限定元素的组成范围,其中,原子个数比x:a:b:c:d:z=1:(0.01~0.4):(0~0.03):(0.01~0.05):(0.01~0.04):(6.8~8.4);该磁体具有胞状组织结构,胞内主相为Sm2(CoFe)17B相;
所述制备方法包括以下步骤:
(1)配料:按照各个原子百分比计算各元素的质量百分比,按质量百分比称取所需原料;
(2)制备合金铸锭:采用感应熔炼加铜模水冷工艺或者感应熔炼加速凝工艺制备合金铸锭;
(3)磁粉制备:采用锷式破碎机将步骤(2)中合金铸锭破碎至500μm左右的粗粉,随后采用盘式破碎机将粗粉破碎至100~200μm,最后采用气流磨将磁粉破碎至1~4μm,气流磨所用气体为氮氧混合气体,氧含量20~1000ppm,磨粉过程中在气路中补入50~200ppm的氢气;
(4)压坯制备:将步骤(3)中制备的磁粉,采用磁场取向成型技术制得压坯,然后进行冷等静压压制,制得生坯;
(5)热处理:将步骤(4)制得的生坯在1190~1230℃下烧结1~2h,然后冷却至1050~1190℃进行1~8h固溶处理,并快速冷却至室温;然后升温至600~750℃,保温5~40h后,控温冷却至300℃后风冷至室温,得到最终磁体。
进一步地,步骤(2)采用感应熔炼加铜模水冷工艺制备合金铸锭:将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至水冷铜模中获得合金铸锭。
进一步地,步骤(2)采用感应熔炼加速凝工艺制备合金铸锭:将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至旋转内水冷铜辊表面,铜辊转动线速度为1~4m/s,获得片状合金铸锭;
进一步地,所述步骤(2)中,熔炼和浇铸均在氩气保护下进行。
进一步地,所述步骤(2)中,熔炼和速凝均在氩气保护下进行。
进一步地,所述步骤(4)中,取向成型磁场强度为2.5T;冷等静压压力为250~350MPa。
进一步地,所述步骤(5)中,控温冷却工艺为:以0.5℃每秒降温至500℃保温2h,之后以2℃每秒降温至300℃。
本发明的有益效果是:
(1)本发明制备了一种新型2:17型SmCoCuFeZrB烧结永磁体,巧妙利用了B原子在1:4:1型相中的择优占位,降低了非磁性原子Cu的含量,且保持了胞壁相的高各向异性,提高了胞壁相中Fe元素的含量限制进而可大幅增加主相中Fe的固溶量,优化了磁体的磁性能;也可以将该发明用于高使用温度钐钴磁体的矫顽力温度系数,通过B元素在1:4:1型相中的择优占位与Cu元素的一致性,降低了胞壁中非磁性原子Cu的含量,进而优化磁体高温综合磁性能。
(2)本发明制备的2:17型SmCoCuFeZrB烧结永磁体为烧结制各向异性磁体,其致密度和取向度是纳米晶和非晶磁体无法比拟的;而且本发明通过热处理工艺、控氧工艺等的配合,有效抑制了所述磁体在热处理过程中相的不受控分解,实现了微结构和相组成的有效调控,实现了烧结2:17型钐钴磁体中Fe元素添加量的提高,提升了高Fe含量下磁体的内禀矫顽力,进而提高烧结2:17型钐钴磁体的最大磁能积。
(3)本发明采用B元素掺杂,利用了B原子在SmCo5相中的择优占位特性,配合烧结、固溶和回火工艺的改进,促使所述磁体中形成了以Sm(CoFeCu)4B型相为胞壁相,以Sm2(CoFe)17B为主相的胞状组织,提高了烧结永磁体的磁能积、内禀矫顽力。
(4)本发明将胞壁相重构成Sm(CoFeCu)4B相,在Fe原子比小于1/3时,随着Fe含量增加,胞壁相的各向异性增加,而且室温时其各向异性就高于SmCo5相,这就增加了Fe元素在烧结2:17型钐钴磁体的添加上限,可打破目前烧结2:17型钐钴永磁体的最大磁能积限制。
附图说明
图1为实施例4制备的烧结钐钴磁体的透射电子显微镜图及衍射斑图样。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细说明,应当指出的是,具体实施方式只是对本发明的详细说明,不应视为对本发明的限定。
第一部分:本发明对于高磁能积烧结2:17型钐钴磁体的磁能积优化如下所述:
实施例1
(1)配料:合金分子式为:Sm(Co0.59Fe0.35Cu0.01Zr0.03B0.02)7.8,根据合金分子式中各元素的原子个数比,计算各元素的质量百分比,进行称取所需原料:Sm(纯度为99.9%),Co(纯度为99.9%),Cu(纯度为99.9%),Zr(纯度为99.9%),Fe(纯度为99.9%),Fe-B合金(其中,B的质量分数为18.9%);
(2)制备合金铸锭:采用感应熔炼加铜模水冷工艺制备合金铸锭;
将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至水冷铜模中获得合金铸锭;该步骤(2)中,熔炼、浇铸均在氩气保护下进行。
(3)磁粉制备:采用锷式破碎机将步骤(2)中的合金铸锭破碎至500μm左右的粗粉,随后采用盘式破碎机将粗粉破碎至100μm,最后采用气流磨制粉技术将磁粉破碎至2.5μm,气流磨所用气体为氮氧混合气体,氧含量100ppm,磨粉过程中在气路中补入100ppm的氢气;
(4)压坯制备:将步骤(3)中制得的磁粉,采用磁场取向成型压机制得压坯,取向成型磁场强度为2.5T;然后进行冷等静压压制,压力300MPa,保压10min,制得生坯;
(5)烧结、固溶和回火:
将步骤(4)制得的生坯在1190℃下烧结1h,然后冷却至1100℃进行4h固溶处理,并快速冷却至室温;然后升温至700℃,保温20h后,以0.5℃每秒降温至500℃,保温2h,之后以2℃每秒降温至300℃后风冷至室温,得到最终磁体。
采用脉冲磁强计测试磁性能,最大磁场为10T,在室温下,测定实施例1制备的烧结钐钴磁体磁性能为:剩磁Br=12.2kG,最大磁能积(BH)max=33.2MGOe,内禀矫顽力Hcj=22.5kOe。
实施例2
(1)配料:合金分子式为:Sm(Co0.61Fe0.30Cu0.02Zr0.04B0.03)7.6;根据合金分子式中各原子个数比计算各元素的质量百分比,按质量百分比称取所需原料:Sm(纯度为99.9%),Co(纯度为99.9%),Cu(纯度为99.9%),Zr(纯度为99.9%),Fe(纯度为99.9%),Fe-B合金(其中,B的质量分数为18.9%);
(2)制备合金铸锭:采用感应熔炼加铜模水冷工艺制备合金铸锭;将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至水冷铜模中获得合金铸锭;该步骤(2)中,熔炼、浇铸均在氩气保护下进行;
(3)磁粉制备:采用锷式破碎机将步骤(2)中合金铸锭破碎至500μm左右的粗粉,随后采用盘式破碎机将粗粉破碎至150μm,最后采用气流磨制粉技术将磁粉破碎至3.5μm,气流磨所用气体为氮氧混合气体,氧含量100ppm,磨粉过程中在气路中补入100ppm的氢气;
(4)压坯制备:将步骤(3)中制备的磁粉,采用磁场取向成型压机制得压坯,取向成型磁场强度为2.5T;然后进行冷等静压压制,压力300MPa,保压10min,制得生坯;
(5)烧结、固溶和回火:
将步骤(4)制得的生坯在1200℃下烧结1.5h,然后冷却至1160℃进行3h固溶处理,并快速冷却至室温;然后升温至750℃,保温20h后,以0.5℃每秒降温至500℃保温2h,之后以2℃每秒降温至300℃后风冷至室温,得到最终磁体。
采用脉冲磁强计测试磁性能,最大磁场为10T,在室温下,测定实施例2制备的烧结钐钴磁体磁性能为:剩磁Br=11.5kG,最大磁能积(BH)max=31.6MGOe,内禀矫顽力Hcj=29.5kOe。
由以上实施例1-2可见,本发明的制备方法制得的烧结钐钴磁体可以在较高Fe含量添加下保持较高矫顽力。
第二部分为本发明对高使用温度烧结2:17型钐钴磁体的温度稳定性的优化。
实施例3
(1)配料:合金分子式为:Sm(Co0.82Fe0.1Cu0.02Zr0.04B0.02)7.1;根据合金分子式中各元素的原子个数比,计算各元素的质量百分比,按质量百分比称取所需原料:Sm(纯度为99.9%),Co(纯度为99.9%),Cu(纯度为99.9%),Zr(纯度为99.9%),Fe(纯度为99.9%),Fe-B合金(B的质量分数为18.9%);
(2)制备合金铸锭:采用感应熔炼加铜模水冷工艺制备合金铸锭;将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至水冷铜模中获得合金铸锭;该步骤(2)中,熔炼、浇铸均在氩气保护下进行;
(3)磁粉制备:采用锷式破碎机将步骤(2)中合金铸锭破碎至500μm左右的粗粉,随后采用盘式破碎机将粗粉破碎至100μm,最后采用气流磨制粉技术将磁粉破碎至2.5μm,气流磨所用气体为氮氧混合气体,氧含量100ppm,磨粉过程中在气路中补入100ppm的氢气;
(4)压坯制备:将步骤(3)中制备的磁粉,采用磁场取向成型压机制得压坯,取向成型磁场强度为2.5T,然后进行冷等静压压制,压力300MPa,保压10min,制得生坯;
(5)烧结、固溶和回火:
将步骤(4)制得的生坯在1220℃下烧结1h,然后冷却至1185℃进行4h固溶处理,并快速冷却至室温;然后升温至750℃,保温20h后,以0.5℃每秒降温至500℃保温2h,之后以2℃每秒降温至300℃后风冷至室温,得到最终磁体。
采用脉冲磁强计测试磁性能,最大磁场为10T,在室温下,测定实施例3制备的烧结钐钴磁体磁性能为:剩磁Br=9.2kG,最大磁能积(BH)max=23.2MGOe,内禀矫顽力Hcj=28.5kOe。
钐钴磁体最重要的应用就是在高温环节的应用,因此,在500℃下测试烧结钐钴磁体的磁性能:剩磁Br=7.4kG,最大磁能积(BH)max=12.2MGOe,内禀矫顽力Hcj=9.5kOe。
由500℃测试得到的磁性能数据,能够说明本发明通过B元素的加入有效调控了胞壁相中的Cu含量和主相中的Fe含量,同等条件下本发明获得的烧结钐钴磁体500℃的磁性能更高。
实施例4
(1)配料:合金分子式为:Sm(Co0.84Fe0.08Cu0.03Zr0.03B0.02)7;根据合金分子式中各元素的原子个数比,计算各元素的质量百分比,按质量百分比称取所需原料:Sm(纯度为99.9%),Co(纯度为99.9%),Cu(纯度为99.9%),Zr(纯度为99.9%),Fe(纯度为99.9%),Fe-B合金(B的质量分数为18.9%);
(2)制备合金铸锭:采用感应熔炼加铜模水冷工艺制备合金铸锭;将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至水冷铜模中获得合金铸锭;该步骤(2)中,熔炼、浇铸均在氩气保护下进行;
(3)磁粉制备:采用锷式破碎机将步骤(2)中合金铸锭破碎至500μm左右的粗粉,随后采用盘式破碎机将粗粉破碎至150μm,最后采用气流磨制粉技术将磁粉破碎至3.5μm,气流磨所用气体为氮氧混合气体,氧含量100ppm,磨粉过程中在气路中补入100ppm的氢气;
(4)压坯制备:将步骤(3)中制备的磁粉,采用磁场取向成型压机制得压坯,取向成型磁场强度为2.5T;然后进行冷等静压压制,压力300MPa,保压10min,制得生坯;
(5)烧结、固溶和回火:
将步骤(4)制得的生坯在1215℃下烧结1.5h,然后冷却至11870℃进行6h固溶处理,并快速冷却至室温;然后升温至750℃,保温20h后,以0.5℃每秒降温至500℃保温2h,之后以2℃每秒降温至300℃后风冷至室温,得到最终磁体。
采用脉冲磁强计测试磁性能,最大磁场为10T,在室温下,测定实施例4制备的烧结钐钴磁体磁性能为:剩磁Br=8.6kG,最大磁能积(BH)max=19.2MGOe,内禀矫顽力Hcj=18.5kOe。
钐钴磁体最重要的应用就是在高温环节的应用,因此,在500℃下测试烧结钐钴磁体的磁性能:剩磁Br=6.4kG,最大磁能积(BH)max=9.2MGOe,内禀矫顽力Hcj=9.9kOe。由500℃测试得到的磁性能数据,能够说明本发明通过B元素的加入有效调控了胞壁相中的Cu含量和主相中的Fe含量,同等条件下本发明获得的烧结钐钴磁体500℃的磁性能更高。
实施例4制备烧结钐钴磁体的透射电子显微镜图(TEM)及衍射斑图样如图1所示,图1中,TM指的是Fe,Cu,Zr三种元素,因Fe和Zr不可避免的会在胞壁中残留;本发明B原子主要占据Cu原子原先的占位,因此可以降低Cu元素的添加量,优化了烧结钐钴磁体的高温和室温性能,通过对应区域的衍射斑标定可以确定胞内主相为2:17相,胞壁相为1:4:1型相。
由实施例3-4可见,本发明提供的烧结钐钴磁体的制备方法可以优化现有高使用温度烧结2:17型烧结永磁体的高温综合磁性能。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (7)

1.一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征是,该制备方法用于制备烧结永磁体Smx(Co1-a-b-c-dFeaCubZrcBd)z,该式中符号x,a,b,c,d和z表示限定元素的组成范围,其中,原子个数比x:a:b:c:d:z=1:(0.01~0.4):(0~0.03):(0.01~0.05):(0.01~0.04):(6.8~8.4);该磁体具有胞状组织结构,胞内主相为Sm2(CoFe)17B相;
所述制备方法包括以下步骤:
(1)配料:按照各个原子百分比计算各元素的质量百分比,按质量百分比称取所需原料;
(2)制备合金铸锭:采用感应熔炼加铜模水冷工艺或者感应熔炼加速凝工艺制备合金铸锭;
(3)磁粉制备:采用锷式破碎机将步骤(2)中合金铸锭破碎至500μm左右的粗粉,随后采用盘式破碎机将粗粉破碎至100~200μm,最后采用气流磨将磁粉破碎至1~4μm,气流磨所用气体为氮氧混合气体,氧含量20~1000ppm,磨粉过程中在气路中补入50~200ppm的氢气;
(4)压坯制备:将步骤(3)中制备的磁粉,采用磁场取向成型技术制得压坯,然后进行冷等静压压制,制得生坯;
(5)热处理:将步骤(4)制得的生坯在1190~1230℃下烧结1~2h,然后冷却至1050~1190℃进行1~8h固溶处理,并快速冷却至室温;然后升温至600~750℃,保温5~40h后,控温冷却至300℃后风冷至室温,得到最终磁体。
2.根据权利要求1所述的一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征在于,步骤(2)采用感应熔炼加铜模水冷工艺制备合金铸锭:将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至水冷铜模中获得合金铸锭。
3.根据权利要求1所述的一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征在于,步骤(2)采用感应熔炼加速凝工艺制备合金铸锭:将步骤(1)中配好的原料依次放入真空感应熔炼炉坩埚中,先将炉体抽真空至10-1~10-3Pa,加大功率直至熔炼均匀后,浇铸至旋转内水冷铜辊表面,铜辊转动线速度为1~4m/s,获得片状合金铸锭;
4.根据权利要求2所述的一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征在于,所述步骤(2)中,熔炼和浇铸均在氩气保护下进行。
5.根据权利要求3所述的一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征在于,所述步骤(2)中,熔炼和速凝均在氩气保护下进行。
6.根据权利要求1所述的一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征在于,所述步骤(4)中,取向成型磁场强度为2.5T;冷等静压压力为250~350MPa。
7.根据权利要求1所述的一种2:17型SmCoCuFeZrB烧结永磁体的制备方法,其特征在于,所述步骤(5)中,控温冷却工艺为:以0.5℃每秒降温至500℃保温2h,之后以2℃每秒降温至300℃。
CN202110213796.9A 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法 Active CN113020595B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110213796.9A CN113020595B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911350117.1A CN111180157B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法
CN202110213796.9A CN113020595B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201911350117.1A Division CN111180157B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN113020595A true CN113020595A (zh) 2021-06-25
CN113020595B CN113020595B (zh) 2023-04-07

Family

ID=70655685

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911350117.1A Active CN111180157B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法
CN202110213796.9A Active CN113020595B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201911350117.1A Active CN111180157B (zh) 2019-12-24 2019-12-24 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法

Country Status (1)

Country Link
CN (2) CN111180157B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561524A (zh) * 2021-11-19 2022-05-31 杭州永磁集团有限公司 一种钐铁合金提高2:17型相含量的热处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927920B (zh) * 2021-03-05 2022-05-06 西安交通大学 一种提高2:17型Sm-Co烧结磁体磁性能的加压热处理方法
CN113903587B (zh) * 2021-09-15 2023-07-07 太原科技大学 一种高温2:17型烧结钐钴磁体的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081279A (zh) * 1992-07-07 1994-01-26 上海跃龙有色金属有限公司 稀土磁性合金粉末及其制造方法
US6352597B1 (en) * 1997-11-20 2002-03-05 Institut Fuer Festkoerper- Und Werkstofforschung Dresden E.V. Method for producing a magnetic alloy powder
CN101775610A (zh) * 2010-03-05 2010-07-14 南京工业大学 一种固体电化学氧泵及其二氧化碳分解方法
CN102952386A (zh) * 2012-10-31 2013-03-06 中国计量学院 一种梯度磁致伸缩材料及其制备方法
CN106057461A (zh) * 2016-05-20 2016-10-26 中国计量大学 一种各向异性块状纳米复合永磁体及其制备方法
CN108039258A (zh) * 2017-12-01 2018-05-15 北京航空航天大学 一种高温高矫顽力钐钴永磁材料及制备方法
US20180312941A1 (en) * 2016-09-06 2018-11-01 Iowa State University Research Foundation, Inc. Dissolution and separation of rare earth metals
CN109273240A (zh) * 2018-10-25 2019-01-25 湖南航天磁电有限责任公司 一种钐钴永磁体的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100555481C (zh) * 2007-12-18 2009-10-28 北京航空航天大学 一种具有TbCu7结构的SmCo1:7型纳米晶永磁材料及制备方法
JP6434828B2 (ja) * 2014-03-11 2018-12-05 株式会社トーキン 希土類コバルト系永久磁石
CN106847453B (zh) * 2017-03-27 2018-08-17 河北工业大学 一种SmCo4B基永磁薄带及其制备方法
CN108305735B (zh) * 2018-01-25 2020-01-24 中国科学院宁波材料技术与工程研究所 高性能高电阻率烧结钐钴永磁材料、其制备方法与应用
CN109448983A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种高矫顽力各向异性片状钐钴纳米晶磁体的制备方法
CN110556222A (zh) * 2019-08-30 2019-12-10 江西理工大学 一种SmCoHfB永磁合金薄带及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081279A (zh) * 1992-07-07 1994-01-26 上海跃龙有色金属有限公司 稀土磁性合金粉末及其制造方法
US6352597B1 (en) * 1997-11-20 2002-03-05 Institut Fuer Festkoerper- Und Werkstofforschung Dresden E.V. Method for producing a magnetic alloy powder
CN101775610A (zh) * 2010-03-05 2010-07-14 南京工业大学 一种固体电化学氧泵及其二氧化碳分解方法
CN102952386A (zh) * 2012-10-31 2013-03-06 中国计量学院 一种梯度磁致伸缩材料及其制备方法
CN106057461A (zh) * 2016-05-20 2016-10-26 中国计量大学 一种各向异性块状纳米复合永磁体及其制备方法
US20180312941A1 (en) * 2016-09-06 2018-11-01 Iowa State University Research Foundation, Inc. Dissolution and separation of rare earth metals
CN108039258A (zh) * 2017-12-01 2018-05-15 北京航空航天大学 一种高温高矫顽力钐钴永磁材料及制备方法
CN109273240A (zh) * 2018-10-25 2019-01-25 湖南航天磁电有限责任公司 一种钐钴永磁体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NENGJUN YU.ET AL: "Influence mechanism of Fe content on the magnetic properties of Sm2Co17-type sintered magnets: Microstructure and Microchemistry", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
马正怀等: "烧结和时效工艺对Sm(CobalFe0.247Cu0.073Zr0.025)7.6永磁材料磁性能的影响", 《磁性材料及器件》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561524A (zh) * 2021-11-19 2022-05-31 杭州永磁集团有限公司 一种钐铁合金提高2:17型相含量的热处理方法

Also Published As

Publication number Publication date
CN111180157B (zh) 2021-04-06
CN113020595B (zh) 2023-04-07
CN111180157A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN108039258B (zh) 一种高温高矫顽力钐钴永磁材料及制备方法
US10535451B2 (en) Rare earth-cobalt-based composite magnetic material
CN111180157B (zh) 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法
CN104183349B (zh) 一种钐钴基永磁体、其制备方法以及磁性能调控方法
CN102651263B (zh) 一种钐钴系烧结材料的制备方法
WO2016015662A1 (zh) 稀土磁铁用急冷合金和稀土磁铁的制备方法
CN101266855A (zh) 稀土永磁材料及其制造方法
CN102650004B (zh) 一种钐钴系烧结材料的制备方法
CN113205955B (zh) 一种高性能烧结钐钴磁体的制备方法
CN101620928B (zh) Sm(Co,Cu,Fe,Zr)z型合金薄带磁体的制备方法
Huang et al. Optimal design of sintered Ce 9 Nd 21 Fe bal B 1 magnets with a low-melting-point (Ce, Nd)-rich phase
CN105321645A (zh) 高矫顽力纳米晶热变形稀土永磁材料及其制备方法
TW201831706A (zh) R-Fe-B系燒結磁石及其製造方法
CN112582122A (zh) 高膝点矫顽力烧结钐钴磁体的制备方法
CN113903587A (zh) 一种高温2:17型烧结钐钴磁体的制备方法
CN112750587A (zh) 高性能烧结钐钴磁体的制备方法
CN111210960B (zh) 一种高方形度高磁能积钐钴永磁材料及制备方法
CN112582121A (zh) 超高性能烧结钐钴磁体的制备方法
JP5299737B2 (ja) R−t−b系焼結永久磁石用急冷合金およびそれを用いたr−t−b系焼結永久磁石
JP2021125678A (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN108777202B (zh) 一种提高Zr元素固溶度的钐钴磁体及方法
CN109243746A (zh) 一种低温延时烧结而成的超细晶烧结永磁体及其制备方法
Hu et al. The role of cobalt addition in magnetic and mechanical properties of high intrinsic coercivity Nd-Fe-B magnets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant