CN107275622A - 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用 - Google Patents

一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用 Download PDF

Info

Publication number
CN107275622A
CN107275622A CN201710564796.7A CN201710564796A CN107275622A CN 107275622 A CN107275622 A CN 107275622A CN 201710564796 A CN201710564796 A CN 201710564796A CN 107275622 A CN107275622 A CN 107275622A
Authority
CN
China
Prior art keywords
metal
nano
graphene
preparation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710564796.7A
Other languages
English (en)
Other versions
CN107275622B (zh
Inventor
王惠
王秀娟
刘肖杰
王刚
白晋涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Juying New Material Technology Co ltd
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN201710564796.7A priority Critical patent/CN107275622B/zh
Publication of CN107275622A publication Critical patent/CN107275622A/zh
Application granted granted Critical
Publication of CN107275622B publication Critical patent/CN107275622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种石墨烯@金属磷化物@C纳米复合材料的制备方法及应用,它涉及一种石墨烯复合材料的制备方法及应用。本发明的目的是要解决现有金属磷化物的导电性差,导电率低,反应可逆性差,容易发生团聚且体积易发生膨胀的问题。方法:一、制备金属氧化物纳米球;二、制备金属氧化物@C纳米球;三、制备金属磷化物@C纳米球;四、高温碳化,得到石墨烯@金属磷化物@C纳米复合材料,它作为锂离子电池或钠离子电池的负极材料应用。作为锂离子电池负极材料制备的CR 2025的纽扣式锂离子电池,在0.2A/g电流密度下循环三次,比容量仍高于1000mAhg‑1,循环100次后,放电比容量仍然高于700mAhg‑1

Description

一种石墨烯@金属磷化物@C纳米复合材料的制备方法及应用
技术领域
本发明涉及一种石墨烯复合材料的制备方法及应用。
背景技术
相比商业化的石墨负极材料(理论比容量372mAh g-1),金属磷化物由于具有较高的理论比容量和相对较低的充放电平台而被认为是一类具有潜力的新型负极材料。然而由于金属磷化物的本质缺陷,目前仍无法得到可实际应用的金属磷化物锂/钠负极材料。如纯的FeP用作钠离子电池负极材料时,在电流密度为0.2A/g时,100个循环之后,其比容量仅有100mAh g-1,其主要原因如下:(1)、金属磷化物的导电性较差,离子或电子导电率较低,反应可逆性较差;(2)、在反复的充放电过程中,金属磷化物颗粒之间会发生团聚,参与反应的活性材料会不断减少;(3)、在Li/Na的嵌入和脱出过程中,会导致负极材料的体积发生膨胀,最终导致电极粉化从而与集流体失去接触。
发明内容
本发明的目的是要解决现有金属磷化物的导电性差,导电率低,反应可逆性差,容易发生团聚且体积易发生膨胀的问题,而提供一种石墨烯@金属磷化物@C纳米复合材料的制备方法及应用。
一种石墨烯@金属磷化物@C纳米复合材料的制备方法,具体是按以下步骤完成的:
一、制备金属氧化物纳米球:
将金属氯化盐和醋酸钠溶解到乙二醇中,再超声分散20min~40min,得到混合溶液;将混合溶液转移至水热反应釜中,再在温度为180℃~220℃下反应6h~10h,再自然冷却至室温,得到反应产物Ⅰ;首先使用蒸馏水对反应产物Ⅰ清洗3次~5次,再使用无水乙醇对反应产物Ⅰ清洗3次~5次,再在温度为60℃~80℃下干燥10h~12h,得到金属氧化物纳米球;
步骤一中所述的金属氯化盐为FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、SnCl4·5H2O或MoCl2·6H2O;
步骤一中所述的金属氯化盐的质量与乙二醇的体积比为(1g~5g):100mL;
步骤一中所述的醋酸钠的质量与乙二醇的体积比为(5g~10g):100mL;
二、制备金属氧化物@C纳米球:
将金属氧化物纳米球和葡萄糖分散到蒸馏水中,再加入无水乙醇,再在超声功率为20W~40W下超声分散10min~30min,得到反应液;将反应液转移至水热反应釜中,再在温度为160℃~200℃下反应1h~3h,再自然冷却至室温,得到反应产物Ⅱ;首先使用蒸馏水对反应产物Ⅱ清洗3次~5次,再使用无水乙醇对反应产物Ⅱ清洗3次~5次,再在温度为60℃~80℃下干燥10h~12h,得到金属氧化物@C纳米球;
步骤二中所述的金属氧化物纳米球的质量与蒸馏水的体积比为(0.5g~21g):35mL;
步骤二中所述的葡萄糖的质量与蒸馏水的体积比为(1g~2g):35mL;
步骤二中所述的无水乙醇与蒸馏水的体积比为(5~15):35;
三、制备金属磷化物@C纳米球:
将步骤二中得到的金属氧化物@C纳米球和次亚磷酸钠置于石英舟中,然后将石英舟放入到管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至300℃~400℃,再在温度为300℃~400℃下煅烧1h~3h,再自然冷却至室温,得到金属磷化物@C纳米球;
步骤三中所述的金属氧化物@C纳米球与次亚磷酸钠的质量比为(1~2):(10~20);
四、将金属磷化物@C纳米球分散到去离子水中,再加入氧化石墨溶液,再在超声功率为20W~40W下超声分散10min~20min,再在温度为-20℃~-30℃下冷冻干燥10h~12h,得到冷冻干燥的混合物;将冷冻干燥的混合物置于管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至550℃~650℃,再在温度为550℃~650℃下碳化1h~3h,再自然冷却至室温,得到石墨烯@金属磷化物@C纳米复合材料;
步骤四中所述的金属磷化物@C纳米球的质量与去离子水的体积比为(80mg~100mg):100mL;
步骤四中所述的氧化石墨溶液与去离子水的体积比为(10~30):100;
步骤四中所述的氧化石墨烯的浓度为6mg·mL-1~9mg·mL-1
一种石墨烯@金属磷化物@C纳米复合材料作为锂离子电池或钠离子电池的负极材料应用。
本发明的原理及优点:
一、本发明为了克服金属磷化物的缺点,对其进行碳包覆以及石墨烯包裹是一种有效且简单的改性方法;碳包覆不仅可阻止活性材料金属磷化物与电解液的直接接触,还可以有效缓解它们的体积膨胀效应;另外,外层包裹的石墨烯可增强其导电性并克服其易团聚等缺点,从而改善金属磷化物的储锂/钠的特性,使金属磷化物的高比容量特点充分发挥出来;
二、本发明采用水热法、碳包覆过程、磷化反应以及碳化反应,实现了石墨烯@金属磷化物@C纳米复合材料的可控制备,本发明制备的石墨烯@金属磷化物@C纳米复合材料在形貌上具有尺寸均一,分散性好,在电化学性能方面展示了优异的循环稳定性和较高的比容量,最重要的是在制备过程中环境友好,成本低廉,安全性高、产量大等优势;
三、本发明制备的石墨烯@金属磷化物@C纳米复合材料相对于传统的石墨负极材料,具有潜在的实际应用价值,可成为新一代可代替石墨的负极材料,在不久的将来,有望成为商业化的锂离子电池负极材料;
四、本发明制备的石墨烯@金属磷化物@C纳米复合材料作为锂离子电池的负极材料应用,利用本发明制备的石墨烯@金属磷化物@C纳米复合材料制备的CR 2025的纽扣式锂离子电池在0.2A/g电流密度下循环三次,比容量仍高于1000mAhg-1,循环100次后,放电比容量仍然高于700mAhg-1
五、本发明制备的石墨烯@金属磷化物@C纳米复合材料作为钠离子电池的负极材料应用,利用本发明制备的石墨烯@金属磷化物@C纳米复合材料制备的CR 2025的纽扣式钠离子电池在0.1A/g电流密度下循环三次,比容量仍高于600mAhg-1,在不同电流密度下循环60次,当电流密度回到0.1Ag-1,放电比容量仍高于400mAhg-1
本发明适用于制备石墨烯@金属磷化物@C纳米复合材料。
附图说明
图1为实施例一中制备石墨烯@FeP@C纳米复合材料的形成示意图;
图2为实施例一步骤四制备的石墨烯@FeP@C纳米复合材料的SEM图;
图3为实施例二制备的CR 2025的纽扣式锂离子电池在0.2A/g电流密度下的充放电曲线图,图3中1为第一圈充放电曲线,2为第二圈充放电曲线,3为第三圈充放电曲线;
图4为实施例二制备的CR 2025的纽扣式锂离子电池在0.2A/g电流密度下的循环性能图;
图5为实施例三制备的CR 2025的纽扣式钠离子电池在0.1A/g电流密度下的充放电曲线图,图5中1为第一圈充放电曲线,2为第二圈充放电曲线,3为第三圈充放电曲线;
图6为实施例三制备的CR 2025的纽扣式钠离子电池在不同电流密度下的循环性能图。
具体实施方式
具体实施方式一:本实施方式是一种石墨烯@金属磷化物@C纳米复合材料的制备方法具体是按以下步骤完成的:
一、制备金属氧化物纳米球:
将金属氯化盐和醋酸钠溶解到乙二醇中,再超声分散20min~40min,得到混合溶液;将混合溶液转移至水热反应釜中,再在温度为180℃~220℃下反应6h~10h,再自然冷却至室温,得到反应产物Ⅰ;首先使用蒸馏水对反应产物Ⅰ清洗3次~5次,再使用无水乙醇对反应产物Ⅰ清洗3次~5次,再在温度为60℃~80℃下干燥10h~12h,得到金属氧化物纳米球;
步骤一中所述的金属氯化盐为FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、SnCl4·5H2O或MoCl2·6H2O;
步骤一中所述的金属氯化盐的质量与乙二醇的体积比为(1g~5g):100mL;
步骤一中所述的醋酸钠的质量与乙二醇的体积比为(5g~10g):100mL;
二、制备金属氧化物@C纳米球:
将金属氧化物纳米球和葡萄糖分散到蒸馏水中,再加入无水乙醇,再在超声功率为20W~40W下超声分散10min~30min,得到反应液;将反应液转移至水热反应釜中,再在温度为160℃~200℃下反应1h~3h,再自然冷却至室温,得到反应产物Ⅱ;首先使用蒸馏水对反应产物Ⅱ清洗3次~5次,再使用无水乙醇对反应产物Ⅱ清洗3次~5次,再在温度为60℃~80℃下干燥10h~12h,得到金属氧化物@C纳米球;
步骤二中所述的金属氧化物纳米球的质量与蒸馏水的体积比为(0.5g~21g):35mL;
步骤二中所述的葡萄糖的质量与蒸馏水的体积比为(1g~2g):35mL;
步骤二中所述的无水乙醇与蒸馏水的体积比为(5~15):35;
三、制备金属磷化物@C纳米球:
将步骤二中得到的金属氧化物@C纳米球和次亚磷酸钠置于石英舟中,然后将石英舟放入到管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至300℃~400℃,再在温度为300℃~400℃下煅烧1h~3h,再自然冷却至室温,得到金属磷化物@C纳米球;
步骤三中所述的金属氧化物@C纳米球与次亚磷酸钠的质量比为(1~2):(10~20);
四、将金属磷化物@C纳米球分散到去离子水中,再加入氧化石墨溶液,再在超声功率为20W~40W下超声分散10min~20min,再在温度为-20℃~-30℃下冷冻干燥10h~12h,得到冷冻干燥的混合物;将冷冻干燥的混合物置于管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至550℃~650℃,再在温度为550℃~650℃下碳化1h~3h,再自然冷却至室温,得到石墨烯@金属磷化物@C纳米复合材料;
步骤四中所述的金属磷化物@C纳米球的质量与去离子水的体积比为(80mg~100mg):100mL;
步骤四中所述的氧化石墨溶液与去离子水的体积比为(10~30):100;
步骤四中所述的氧化石墨烯的浓度为6mg·mL-1~9mg·mL-1
本实施方式的原理及优点:
一、本实施方式为了克服金属磷化物的缺点,对其进行碳包覆以及石墨烯包裹是一种有效且简单的改性方法;碳包覆不仅可阻止活性材料金属磷化物与电解液的直接接触,还可以有效缓解它们的体积膨胀效应;另外,外层包裹的石墨烯可增强其导电性并克服其易团聚等缺点,从而改善金属磷化物的储锂/钠的特性,使金属磷化物的高比容量特点充分发挥出来;
二、本实施方式采用水热法、碳包覆过程、磷化反应以及碳化反应,实现了石墨烯@金属磷化物@C纳米复合材料的可控制备,本实施方式制备的石墨烯@金属磷化物@C纳米复合材料在形貌上具有尺寸均一,分散性好,在电化学性能方面展示了优异的循环稳定性和较高的比容量,最重要的是在制备过程中环境友好,成本低廉,安全性高、产量大等优势;
三、本实施方式制备的石墨烯@金属磷化物@C纳米复合材料相对于传统的石墨负极材料,具有潜在的实际应用价值,可成为新一代可代替石墨的负极材料,在不久的将来,有望成为商业化的锂离子电池负极材料;
四、本实施方式制备的石墨烯@金属磷化物@C纳米复合材料作为锂离子电池的负极材料应用,利用本实施方式制备的石墨烯@金属磷化物@C纳米复合材料制备的CR 2025的纽扣式锂离子电池在0.2A/g电流密度下循环三次,比容量仍高于1000mAhg-1,循环100次后,放电比容量仍然高于700mAhg-1
五、本实施方式制备的石墨烯@金属磷化物@C纳米复合材料作为钠离子电池的负极材料应用,利用本实施方式制备的石墨烯@金属磷化物@C纳米复合材料制备的CR 2025的纽扣式钠离子电池在0.1A/g电流密度下循环三次,比容量仍高于600mAhg-1,在不同电流密度下循环60次,当电流密度回到0.1Ag-1,放电比容量仍高于400mAhg-1
本实施方式适用于制备石墨烯@金属磷化物@C纳米复合材料。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的超声功率为20W~40W。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的金属氧化物纳米球的粒径为200nm~400nm。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的金属氯化盐的质量与乙二醇的体积比为(1g~2.73g):100mL。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤一中所述的醋酸钠的质量与乙二醇的体积比为(5g~7.2g):100mL。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述的金属氧化物纳米球的质量与蒸馏水的体积比为(0.5g~10g):35mL。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的葡萄糖的质量与蒸馏水的体积比为(1g~1.5g):35mL。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤三中将步骤二中得到的金属氧化物@C纳米球和次亚磷酸钠置于石英舟中,然后将石英舟放入到管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至300℃~350℃,再在温度为300℃~350℃下煅烧1h~2h,再自然冷却至室温,得到金属磷化物@C纳米球。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤四中将金属磷化物@C纳米球分散到去离子水中,再加入氧化石墨溶液,再在超声功率为20W~40W下超声分散10min~15min,再在温度为-20℃~-25℃下冷冻干燥10h~12h,得到冷冻干燥的混合物;将冷冻干燥的混合物置于管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~2℃/min的升温速率升温至550℃~600℃,再在温度为550℃~600℃下碳化1h~2h,再自然冷却至室温,得到石墨烯@金属磷化物@C纳米复合材料。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式是一种石墨烯@金属磷化物@C纳米复合材料作为锂离子电池或钠离子电池的负极材料应用。
采用以下实施例验证本发明的有益效果:
实施例一:一种石墨烯@金属磷化物@C纳米复合材料的制备方法,具体是按以下步骤完成的:
一、制备Fe3O4纳米球:
将2.73g FeCl3·6H2O和7.2g醋酸钠溶解到100mL乙二醇中,再超声分散30min,得到混合溶液;将混合溶液转移至水热反应釜中,再在温度为200℃下反应8h,再自然冷却至室温,得到反应产物Ⅰ;首先使用蒸馏水对反应产物Ⅰ清洗3次,再使用无水乙醇对反应产物Ⅰ清洗3次,再在温度为80℃下干燥10h,得到Fe3O4纳米球;
步骤一中所述的超声功率为20W;
步骤一中所述的Fe3O4纳米球的粒径为300nm;
二、制备Fe3O4@C纳米球:
将1g Fe3O4纳米球和2g葡萄糖分散到35mL蒸馏水中,再加入10mL无水乙醇,再在超声功率为20W下超声分散20min,得到反应液;将反应液转移至水热反应釜中,再在温度为180℃下反应2h,再自然冷却至室温,得到反应产物Ⅱ;首先使用蒸馏水对反应产物Ⅱ清洗3次,再使用无水乙醇对反应产物Ⅱ清洗3次,再在温度为80℃下干燥10h,得到Fe3O4@C纳米球;
三、制备FeP@C纳米球:
将1g Fe3O4@C纳米球和20g次亚磷酸钠置于石英舟中,然后将石英舟放入到管式炉中,再在氩气气氛保护下,将管式炉以2℃/min的升温速率升温至350℃,再在温度为350℃下煅烧2h,再自然冷却至室温,得到FeP@C纳米球;
四、将90mg FeP@C纳米球分散到100mL去离子水中,再加入20mL氧化石墨溶液,再在超声功率为20W下超声分散10min,再在温度为-25℃下冷冻干燥10h,得到冷冻干燥的混合物;将冷冻干燥的混合物置于管式炉中,再在氩气气氛保护下,将管式炉以2℃/min的升温速率升温至600℃,再在温度为600℃下碳化2h,再自然冷却至室温,得到石墨烯@FeP@C纳米复合材料;
步骤四中所述的氧化石墨烯的浓度为7.5mg·mL-1
图1为实施例一中制备石墨烯@FeP@C纳米复合材料的形成示意图;
图2为实施例一步骤四制备的石墨烯@FeP@C纳米复合材料的SEM图;
从图2可知,FeP@C纳米球均匀的担载在石墨烯的表面。
实施例二:利用实施例一制备的石墨烯@FeP@C纳米复合材料制备CR 2025的纽扣式锂离子电池,具体的制备方法如下:
①、将活性物质、乙炔黑和质量分数为5%的聚四氟乙烯水性分散乳液均匀的混合在一起,得到混合物;向混合物中滴加N-甲基吡咯烷酮,得到涂覆用的混合物;
步骤①中所述的活性物质为实施例一制备的石墨烯@FeP@C纳米复合材料;
步骤①中所述的混合物中活性物质的质量分数为80%,乙炔黑的质量分数为10%,聚四氟乙烯的质量分数为10%;
步骤①中所述的N-甲基吡咯烷酮的体积与活性物质的质量比为(1mL~2mL):(5mg~10mg);
②、将步骤①中得到的涂覆用的混合物均匀的涂覆在直径为14mm的泡沫镍上,再在温度为80℃下真空干燥10h,得到表面含有活性物质的极片;再利用差量法得到极片上活性物质的质量;
③、把表面含有活性物质的极片转移到真空手套箱中完成纽扣电池的组装,其中,聚丙烯高分子膜为电池隔膜,锂片为电池对电极,表面含有活性物质的极片为工作电极,将工作电极、垫片、隔膜、对电极和电池壳在手套箱内组装成CR 2025的纽扣电池后,使用封口机对纽扣电池进行密封,最后将制备的纽扣电池在常温下静置12h使电池得到活化,所述的垫片为不锈钢;即完成CR 2025的纽扣式锂离子电池的制备。
图3为实施例二制备的CR 2025的纽扣式锂离子电池在0.2A/g电流密度下的充放电曲线图,图3中1为第一圈充放电曲线,2为第二圈充放电曲线,3为第三圈充放电曲线;
从图3可知,石墨烯@FeP@C纳米复合材料的充放电曲线重合度很好,说明该材料的氧化还原可逆性很好。
图4为实施例二制备的CR 2025的纽扣式锂离子电池在0.2A/g电流密度下的循环性能图;
从图4可知,石墨烯@FeP@C纳米复合材料在100个循环之后,该材料依然保持了很好的循环稳定性。
实施例三:利用实施例一制备的石墨烯@FeP@C纳米复合材料制备CR 2025的纽扣式钠离子电池,具体的制备方法如下:
①、将活性物质、乙炔黑和质量分数为5%的聚四氟乙烯水性分散乳液均匀的混合在一起,得到混合物;向混合物中滴加N-甲基吡咯烷酮,得到涂覆用的混合物;
步骤①中所述的活性物质为实施例一制备的石墨烯@FeP@C纳米复合材料;
步骤①中所述的混合物中活性物质的质量分数为80%,乙炔黑的质量分数为10%,聚四氟乙烯的质量分数为10%;
步骤①中所述的N-甲基吡咯烷酮的体积与活性物质的质量比为(1mL~2mL):(5mg~10mg);
②、将步骤①中得到的涂覆用的混合物均匀的涂覆在直径为14mm的泡沫镍上,再在温度为80℃下真空干燥10h,得到表面含有活性物质的极片;再利用差量法得到极片上活性物质的质量;
③、把表面含有活性物质的极片转移到真空手套箱中完成纽扣电池的组装,其中,聚丙烯高分子膜为电池隔膜,钠片为电池对电极,表面含有活性物质的极片为工作电极,将工作电极、垫片、隔膜、对电极和电池壳在手套箱内组装成CR 2025的纽扣电池后,使用封口机对纽扣电池进行密封,最后将制备的纽扣电池在常温下静置12h使电池得到活化,所述的垫片为不锈钢;即完成CR 2025的纽扣式钠离子电池的制备。
图5为实施例三制备的CR 2025的纽扣式钠离子电池在0.1A/g电流密度下的充放电曲线图,图5中1为第一圈充放电曲线,2为第二圈充放电曲线,3为第三圈充放电曲线;
从图5可知,在前三圈循环过程中,石墨烯@FeP@C纳米复合材料展示了很高的电化学比容量。
图6为实施例三制备的CR 2025的纽扣式钠离子电池在不同电流密度下的循环性能图。
从图6可知,经过不同电流密度的循环之后,当电流密度回到0.1Ag-1,该材料仍可以保持较高的比容量。

Claims (10)

1.一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于一种石墨烯@金属磷化物@C纳米复合材料的制备方法具体是按以下步骤完成的:
一、制备金属氧化物纳米球:
将金属氯化盐和醋酸钠溶解到乙二醇中,再超声分散20min~40min,得到混合溶液;将混合溶液转移至水热反应釜中,再在温度为180℃~220℃下反应6h~10h,再自然冷却至室温,得到反应产物Ⅰ;首先使用蒸馏水对反应产物Ⅰ清洗3次~5次,再使用无水乙醇对反应产物Ⅰ清洗3次~5次,再在温度为60℃~80℃下干燥10h~12h,得到金属氧化物纳米球;
步骤一中所述的金属氯化盐为FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、SnCl4·5H2O或MoCl2·6H2O;
步骤一中所述的金属氯化盐的质量与乙二醇的体积比为(1g~5g):100mL;
步骤一中所述的醋酸钠的质量与乙二醇的体积比为(5g~10g):100mL;
二、制备金属氧化物@C纳米球:
将金属氧化物纳米球和葡萄糖分散到蒸馏水中,再加入无水乙醇,再在超声功率为20W~40W下超声分散10min~30min,得到反应液;将反应液转移至水热反应釜中,再在温度为160℃~200℃下反应1h~3h,再自然冷却至室温,得到反应产物Ⅱ;首先使用蒸馏水对反应产物Ⅱ清洗3次~5次,再使用无水乙醇对反应产物Ⅱ清洗3次~5次,再在温度为60℃~80℃下干燥10h~12h,得到金属氧化物@C纳米球;
步骤二中所述的金属氧化物纳米球的质量与蒸馏水的体积比为(0.5g~21g):35mL;
步骤二中所述的葡萄糖的质量与蒸馏水的体积比为(1g~2g):35mL;
步骤二中所述的无水乙醇与蒸馏水的体积比为(5~15):35;
三、制备金属磷化物@C纳米球:
将步骤二中得到的金属氧化物@C纳米球和次亚磷酸钠置于石英舟中,然后将石英舟放入到管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至300℃~400℃,再在温度为300℃~400℃下煅烧1h~3h,再自然冷却至室温,得到金属磷化物@C纳米球;
步骤三中所述的金属氧化物@C纳米球与次亚磷酸钠的质量比为(1~2):(10~20);
四、将金属磷化物@C纳米球分散到去离子水中,再加入氧化石墨溶液,再在超声功率为20W~40W下超声分散10min~20min,再在温度为-20℃~-30℃下冷冻干燥10h~12h,得到冷冻干燥的混合物;将冷冻干燥的混合物置于管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至550℃~650℃,再在温度为550℃~650℃下碳化1h~3h,再自然冷却至室温,得到石墨烯@金属磷化物@C纳米复合材料;
步骤四中所述的金属磷化物@C纳米球的质量与去离子水的体积比为(80mg~100mg):100mL;
步骤四中所述的氧化石墨溶液与去离子水的体积比为(10~30):100;
步骤四中所述的氧化石墨烯的浓度为6mg·mL-1~9mg·mL-1
2.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤一中所述的超声功率为20W~40W。
3.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤一中所述的金属氧化物纳米球的粒径为200nm~400nm。
4.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤一中所述的金属氯化盐的质量与乙二醇的体积比为(1g~2.73g):100mL。
5.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤一中所述的醋酸钠的质量与乙二醇的体积比为(5g~7.2g):100mL。
6.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤二中所述的金属氧化物纳米球的质量与蒸馏水的体积比为(0.5g~10g):35mL。
7.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤二中所述的葡萄糖的质量与蒸馏水的体积比为(1g~1.5g):35mL。
8.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤三中将步骤二中得到的金属氧化物@C纳米球和次亚磷酸钠置于石英舟中,然后将石英舟放入到管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~3℃/min的升温速率升温至300℃~350℃,再在温度为300℃~350℃下煅烧1h~2h,再自然冷却至室温,得到金属磷化物@C纳米球。
9.根据权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的制备方法,其特征在于步骤四中将金属磷化物@C纳米球分散到去离子水中,再加入氧化石墨溶液,再在超声功率为20W~40W下超声分散10min~15min,再在温度为-20℃~-25℃下冷冻干燥10h~12h,得到冷冻干燥的混合物;将冷冻干燥的混合物置于管式炉中,再在氩气气氛保护下,将管式炉以1℃/min~2℃/min的升温速率升温至550℃~600℃,再在温度为550℃~600℃下碳化1h~2h,再自然冷却至室温,得到石墨烯@金属磷化物@C纳米复合材料。
10.如权利要求1所述的一种石墨烯@金属磷化物@C纳米复合材料的应用,其特征在于所述的一种石墨烯@金属磷化物@C纳米复合材料作为锂离子电池或钠离子电池的负极材料应用。
CN201710564796.7A 2017-07-11 2017-07-11 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用 Active CN107275622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710564796.7A CN107275622B (zh) 2017-07-11 2017-07-11 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710564796.7A CN107275622B (zh) 2017-07-11 2017-07-11 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN107275622A true CN107275622A (zh) 2017-10-20
CN107275622B CN107275622B (zh) 2019-07-19

Family

ID=60071997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710564796.7A Active CN107275622B (zh) 2017-07-11 2017-07-11 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN107275622B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493426A (zh) * 2018-04-13 2018-09-04 西北大学 一种碳包覆磷化镍复合材料纳米颗粒的制备方法及其在制备钠离子电池中的应用
CN108598450A (zh) * 2018-06-29 2018-09-28 陕西师范大学 一种CoP/氮掺杂碳/石墨烯纳米复合材料及其制备方法
CN108808019A (zh) * 2018-08-02 2018-11-13 临沂大学 一种杂原子掺杂碳微球负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN109411736A (zh) * 2018-12-04 2019-03-01 重庆文理学院 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
CN109473292A (zh) * 2018-11-15 2019-03-15 江苏大学 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂离子混合超级电容器中的应用
CN109698341A (zh) * 2018-12-27 2019-04-30 银隆新能源股份有限公司 一种电极制备方法、电极及电池
CN109698326A (zh) * 2017-10-23 2019-04-30 中国石油大学(华东) 一种用于钠离子电池负极的有机磷化锡/氧化石墨复合材料
CN109728273A (zh) * 2018-12-17 2019-05-07 西安工业大学 钠离子电池负极材料磷酸钛钠双纳米碳的制备方法
CN110041565A (zh) * 2019-04-24 2019-07-23 西南大学 一种生物基阻燃剂及其制备方法和应用
CN110277206A (zh) * 2018-03-16 2019-09-24 新力应用材料有限公司 导电端子材料、电阻器与其制作方法
CN110429283A (zh) * 2019-08-26 2019-11-08 东北大学 氧化石墨烯负载的磷化铁纳米复合材料的制备方法及应用
CN110660977A (zh) * 2019-08-23 2020-01-07 太原理工大学 一种锂硫电化学储能体系及其制备方法
CN112531137A (zh) * 2020-11-19 2021-03-19 东南大学 一种三明治结构高载量自支撑柔性电极的制备方法
CN113548650A (zh) * 2021-07-26 2021-10-26 兰州理工大学 一种气泡膜状石墨烯包覆金属磷化物电极材料的制备方法
CN114242984A (zh) * 2021-12-20 2022-03-25 超威电源集团有限公司 一种分层结构铁钴磷化物/碳复合材料的制备方法和扣式电池
CN114639815A (zh) * 2022-04-08 2022-06-17 东莞市沃泰通新能源有限公司 钠离子电池负极材料的制备方法、负极片及钠离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633358A (zh) * 2014-11-28 2016-06-01 中国科学院大连化学物理研究所 一种FeP/石墨烯复合材料及其制备方法
CN106450233A (zh) * 2016-11-30 2017-02-22 陕西科技大学 一种还原氧化石墨烯/磷化铟复合纳米材料及制备方法
CN107403911A (zh) * 2017-06-20 2017-11-28 江苏大学 石墨烯/过渡金属磷化物/碳基复合材料、制备方法及锂离子电池负电极

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633358A (zh) * 2014-11-28 2016-06-01 中国科学院大连化学物理研究所 一种FeP/石墨烯复合材料及其制备方法
CN106450233A (zh) * 2016-11-30 2017-02-22 陕西科技大学 一种还原氧化石墨烯/磷化铟复合纳米材料及制备方法
CN107403911A (zh) * 2017-06-20 2017-11-28 江苏大学 石墨烯/过渡金属磷化物/碳基复合材料、制备方法及锂离子电池负电极

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANJIE ZHANG等: "Iron phosphide as negative electrode material for Na-ion batteries", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
ZHAOQIANG LI等: "Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries", 《NANO ENERGY》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698326A (zh) * 2017-10-23 2019-04-30 中国石油大学(华东) 一种用于钠离子电池负极的有机磷化锡/氧化石墨复合材料
CN109698326B (zh) * 2017-10-23 2021-04-02 中国石油大学(华东) 一种用于钠离子电池负极的有机磷化锡/氧化石墨复合材料
CN110277206A (zh) * 2018-03-16 2019-09-24 新力应用材料有限公司 导电端子材料、电阻器与其制作方法
CN108493426A (zh) * 2018-04-13 2018-09-04 西北大学 一种碳包覆磷化镍复合材料纳米颗粒的制备方法及其在制备钠离子电池中的应用
CN108598450A (zh) * 2018-06-29 2018-09-28 陕西师范大学 一种CoP/氮掺杂碳/石墨烯纳米复合材料及其制备方法
CN108808019A (zh) * 2018-08-02 2018-11-13 临沂大学 一种杂原子掺杂碳微球负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN108808019B (zh) * 2018-08-02 2021-09-07 临沂大学 一种杂原子掺杂碳微球负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN109473292A (zh) * 2018-11-15 2019-03-15 江苏大学 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂离子混合超级电容器中的应用
CN109473292B (zh) * 2018-11-15 2020-06-09 江苏大学 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其应用
CN109411736B (zh) * 2018-12-04 2020-04-14 重庆文理学院 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
CN109411736A (zh) * 2018-12-04 2019-03-01 重庆文理学院 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
CN109728273A (zh) * 2018-12-17 2019-05-07 西安工业大学 钠离子电池负极材料磷酸钛钠双纳米碳的制备方法
CN109698341A (zh) * 2018-12-27 2019-04-30 银隆新能源股份有限公司 一种电极制备方法、电极及电池
CN109698341B (zh) * 2018-12-27 2023-10-27 格力钛新能源股份有限公司 一种电极制备方法、电极及电池
CN110041565A (zh) * 2019-04-24 2019-07-23 西南大学 一种生物基阻燃剂及其制备方法和应用
CN110660977A (zh) * 2019-08-23 2020-01-07 太原理工大学 一种锂硫电化学储能体系及其制备方法
CN110429283A (zh) * 2019-08-26 2019-11-08 东北大学 氧化石墨烯负载的磷化铁纳米复合材料的制备方法及应用
CN112531137A (zh) * 2020-11-19 2021-03-19 东南大学 一种三明治结构高载量自支撑柔性电极的制备方法
CN113548650A (zh) * 2021-07-26 2021-10-26 兰州理工大学 一种气泡膜状石墨烯包覆金属磷化物电极材料的制备方法
CN114242984A (zh) * 2021-12-20 2022-03-25 超威电源集团有限公司 一种分层结构铁钴磷化物/碳复合材料的制备方法和扣式电池
CN114242984B (zh) * 2021-12-20 2023-05-30 超威电源集团有限公司 一种分层结构铁钴磷化物/碳复合材料的制备方法和扣式电池
CN114639815A (zh) * 2022-04-08 2022-06-17 东莞市沃泰通新能源有限公司 钠离子电池负极材料的制备方法、负极片及钠离子电池

Also Published As

Publication number Publication date
CN107275622B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN107275622A (zh) 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用
CN106450102B (zh) 用于锂硫电池的石墨改性隔膜及其制备方法与构成的锂硫电池
CN104973596B (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
CN104600316B (zh) 一种硫/聚合物/石墨烯三元复合材料及其制备方法
CN103682327B (zh) 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法
CN106558729B (zh) 一种石墨烯作为正极浆料导电剂的锂离子电池
CN105914358A (zh) 蛋黄-蛋壳结构氮掺杂碳包覆四氧化三铁@二氧化锡磁性纳米盒子的制备方法
CN104319371A (zh) 一种锂离子电池SnS2/CNTs/PPy复合负极材料的制备方法
CN104269536A (zh) 石墨烯负载的球状碳包覆氧化铁的复合材料及制备方法
CN106654272A (zh) 一种三维多孔纳米结构碳材料的制备方法
CN107221654A (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN105655561B (zh) 一种磷酸锰锂纳米片的合成方法
CN108183039A (zh) 碳修饰铌酸钛材料的制备方法、碳修饰铌酸钛材料、锂离子电容器及其负极浆料
CN109786711A (zh) 一种多孔碳骨架包覆锡复合电极材料的制备方法
CN109546108A (zh) 一种低膨胀硅基复合材料及制备方法、硅基负极材料及锂离子电池
CN108063228A (zh) 磷酸铁锂复合材料及其制备方法、锂离子电池
CN106683891A (zh) 一种高导电柔性石墨烯/介孔石墨化碳复合膜电极的制备方法
CN105633340A (zh) 一种锂离子电池复合极片及其制备方法
CN108831757A (zh) 一种n和s双掺杂石墨烯/碳纳米管气凝胶的制备方法
CN106450241A (zh) 一种氮化钛/氮化碳/氧化石墨烯复合纳米材料及其制备方法
CN106848220A (zh) 一种石墨烯‑氧化铁‑石墨烯复合结构电池负极材料的制备方法
CN110416539A (zh) 聚吡咯包覆三维石墨烯四氧化三钴锂电负极材料制备方法
CN110112007A (zh) 一种豌豆荚状碳包覆过渡金属硫化物复合电极材料的制备方法
CN110048094A (zh) 一种用于液相锌离子电池的自支撑复合薄膜及其制备方法
CN104332618A (zh) 表面包覆硼锂复合氧化物的镍钴锰酸锂正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210512

Address after: 213000 Tianning zhizaoyuan, No.5, beitanghe East Road, Tianning District, Changzhou City, Jiangsu Province

Patentee after: Jiangsu Juying New Material Technology Co.,Ltd.

Address before: 710069 No. 229 Taibai North Road, Shaanxi, Xi'an

Patentee before: NORTHWESTERN University