CN109473292A - 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂离子混合超级电容器中的应用 - Google Patents

氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂离子混合超级电容器中的应用 Download PDF

Info

Publication number
CN109473292A
CN109473292A CN201811361110.5A CN201811361110A CN109473292A CN 109473292 A CN109473292 A CN 109473292A CN 201811361110 A CN201811361110 A CN 201811361110A CN 109473292 A CN109473292 A CN 109473292A
Authority
CN
China
Prior art keywords
niobium nitride
solution
niobium
redox graphene
graphene nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811361110.5A
Other languages
English (en)
Other versions
CN109473292B (zh
Inventor
连加彪
李圣远
汪婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Hengxiang Carbon Industry Co ltd
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811361110.5A priority Critical patent/CN109473292B/zh
Publication of CN109473292A publication Critical patent/CN109473292A/zh
Application granted granted Critical
Publication of CN109473292B publication Critical patent/CN109473292B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于能量存储技术领域,涉及储能复合材料的制备,尤其涉及一种氮化铌/还原氧化石墨烯纳米复合材料的制备方法。本发明先利用一步法制得中空氮化铌(Nb4N5)纳米颗粒,再将中空氮化铌纳米颗粒溶液与氧化石墨烯水溶液按体积比2:1~1:4混合均匀,经冻干后得到蓬松的黑色氮化铌/氧化石墨烯,将其在5%H2/Ar混合气氛中200~400℃煅烧0.5~2h即得。本发明还公开了其在锂离子混合超级电容器中的应用。本发明所公开的制备方法操作步骤简单,反应前后无污染且成本较低。将其作为电极材料的高能量密度和高功率密度锂离子混合超级电容器储能器件,兼具锂离子电池的高能量密度和双电层电容器的高功率密度特性。

Description

氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂 离子混合超级电容器中的应用
技术领域
本发明属于能量存储技术领域,涉及储能复合材料的制备,尤其涉及一种氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂离子混合超级电容器中的应用。
背景技术
随着现代社会高速发展,信息化和智能化程度不断提高,电子设备推陈出新,人类对资源、能源依赖度越来越高,导致能源匮乏和不可逆的环境污染。为满足社会对储能元件的高容量和高输出功率的要求,各个国家都在积极发展高能量密度和功率密度的储能器件。目前储能器件主要有锂离子电池、超级电容器和混合超级电容器等。锂离子电池具有能量密度高、自放电率低等优点,但功率密度较低,倍率性能不理想;超级电容器虽然具有功率密度高、循环寿命长等优点,但能量密度相对较低,而且自放电率较大;两者都不能同时满足市场对高能量密度和高功率密度的追求。锂离子混合超级电容器是介于锂离子电池和超级电容器之间的一种新的储能器件,既具有锂离子电池高能量密度的特点,又兼有超级电容器高功率密度优势,因此受到业界广泛关注。
为了满足市场对高能量密度、高功率输出特性的需求,研究工作者把锂离子电池和双电层电容器储能原理相结合,开发出一种新的储能器件——混合超级电容器,该储能装置具有锂离子电池高能量密度特点,又兼备超级电容器高功率密度。混合超级电容器的两极采用不同材料,一极是双电层电极,如活性碳、石墨烯等,另一极是赝电容电极,如金属氧化物、金属氮化物等。其中,赝电容电极材料为锂离子电池电极材料的混合超级电容器,被称为锂离子超级电容器。
氮化铌(Nb4N5)是一种新的高能量密度的负极材料,制备工艺简单,反应前后无污染且成本相对较低,与其他锂离子电池负极材料相比较,氮化铌负极材料因其具有较高的比容量,且热稳定性和化学稳定性好,近年来成为科研工作者研究的热点之一。
若能将氮化铌与还原氧化石墨烯复合纳米材料用作电极材料,经过预锂化,与具有双电层电容活性的碳基材料匹配之后,制备锂离子超级电容器储能器件,使其具有高能量密度特性的同时具有高功率密度特性,势必会在以电动汽车为代表的交通、运输行业和其他电子仪器、设备上有更广阔的市场前景。
发明内容
针对上述现有技术中存在的不足,本发明的目的是提供一种氮化铌/还原氧化石墨烯(Nb4N5/rGO)纳米复合材料的制备方法。
技术方案:
氮化铌/还原氧化石墨烯(Nb4N5/rGO)纳米复合材料的制备方法,包括如下步骤:
A、一步法制备中空氮化铌(Nb4N5)纳米颗粒,将铌源在氨气气氛中自室温加热至700~900℃,优选750℃,升温速率为3℃·min−1,保温2~5 h后自然冷却,优选保温3h,得到中空氮化铌纳米颗粒;
B、 将中空氮化铌纳米颗粒配制成质量浓度为2 g·L−1的水溶液,超声分散均匀后得到溶液A;
C、 配制0.5 g·L−1氧化石墨烯水溶液,超声分散均匀后得到溶液B;
D、将溶液A与溶液B按体积比2:1~1:4混合均匀后得溶液C,优选体积比为1:1;
E、 将C溶液进行冷冻干燥,得到蓬松的黑色氮化铌/氧化石墨烯,将其在5% H2/Ar混合气氛中200~400℃煅烧0.5~2 h,优选400℃煅烧0.5h,升温速率为2℃·min−1,即得氮化铌/还原氧化石墨(Nb4N5/rGO)纳米复合材料。
本发明较优公开例中,步骤A所述铌源为草酸铌或氧化铌,优选草酸铌;所述中空氮化铌纳米颗粒尺寸为20~40nm。
本发明较优公开例中,步骤B与C配制溶液时,以去离子水作为溶剂。
本发明较优公开例中,步骤E所述冷冻干燥条件为−45℃, 48 h。
本发明还有一个目的在于,公开了所制得的氮化铌/还原氧化石墨烯(Nb4N5/rGO)纳米复合材料作为负极活性材料在高能量和高功率密度的锂离子超级电容器中的应用。
一种高能量和高功率密度的锂离子超级电容器,包括正极片、负极片、隔膜、垫片、垫圈及电解液,所述正极片为商业化科琴导电炭黑Ketjenblack EC-600JD,所述负极片由负极材料经过预锂化而成,所述电解液为1 M LiPF6
进一步的,所述负极片是在铜片表面涂覆由负极活性材料、导电剂、分散剂及粘结剂组成的负极浆料,其中,所述负极活性材料为氮化铌/还原氧化石墨烯(Nb4N5/rGO),所述导电剂为导电炭黑,具体牌号为科琴导电炭黑Ketjenblack EC-600JD,所述分散剂为氮甲基吡咯烷酮(NMP),所述粘结剂为油性粘结剂聚偏氟乙烯(PVDF),质量百分比依次为氮化铌/还原氧化石墨烯(Nb4N5/rGO)负极材料80%、导电剂10%、粘结剂10%。
进一步的,所述预锂化是将上述负极材料组装成2032纽扣电池,在0.01~3V电势窗口下,以100 mA·g−1电流密度预锂化十圈,得到 Li x Nb4N5负极片。
为了匹配负极片以便得到最优性能,所述正极材料是以科琴导电炭黑Ketjenblack EC-600JD与粘结剂聚四氟乙烯(PTFE)按9:1质量比混合,用乙醇作为分散剂组成正极浆料,将其涂覆在铝片上,80℃干燥6 h。作为优选,负极片上活性质量(0.3−0.5mg)与正极片上活性质量比值分别为1:3、1:4、1:5。
将上述不同质量比负极片与正极片以六氟磷酸锂为电解液,组装成全电池器件,在0.01~4.5V电势窗口下,以不同扫描速率测得其循环伏安曲线,在电流密度下测试其倍率性能及循环性能,结果表明负极片(0.3 mg)与正极片活性材料(1.5 mg)质量比为1:5的时候性能最佳,得到最大功率密度为45000 W·kg−1,最大能量密度为295.6 Wh·kg−1
纳米级中空氮化铌颗粒具有大的比表面积,可以缩短离子扩散路径,其与石墨烯均匀复合可以协同降低各自的团聚作用,石墨烯良好的导电性能可以提高电子的传输效率,从而提高全电池器件的功率密度。与其他负极材料相比较,预锂化的氮化铌/还原氧化石墨烯(Li x Nb4N5/rGO)材料具有较高的比容量,锂离子超级电容器输出电压可以达到4.5V,较大地提高了锂离子超级电容器的能量密度。
有益效果
本发明将预锂化的氮化铌/还原氧化石墨烯(Li x Nb4N5/rGO)作为锂离子混合超级电容器的负极活性物质,是一种新的高能量密度的负极材料,其制备方法简单,反应前后无污染且成本较低。将其作为电极材料的高能量密度和高功率密度锂离子混合超级电容器储能器件,兼具锂离子电池的高能量密度和双电层电容器的高功率密度特性。
附图说明
图1. 实施例1中所合成的中空Nb4N5纳米颗粒和Nb4N5/rGO纳米复合材料的XRD。
图2. a、为中空Nb4N5纳米颗粒的SEM;
b、为中空Nb4N5纳米颗粒的TEM图;
c、为Nb4N5/rGO纳米复合材料的SEM;
d、为Nb4N5/rGO纳米复合材料的TEM图。
图3. a、全电池器件的循环伏安曲线;
b、全电池器件的倍率性能曲线;
c、全电池器件的循环性能图, 测试条件是1A·g-1(1安培每克的电流密度),循环3000圈能量密度保持85%;
d、全电池器件的Ragone曲线。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
除非另外限定,这里所使用的术语(包含科技术语)应当解释为具有如本发明所属技术领域的技术人员所共同理解到的相同意义。还将理解到,这里所使用的术语应当解释为具有与它们在本说明书和相关技术的内容中的意义相一致的意义,并且不应当以理想化或过度的形式解释,除非这里特意地如此限定。
实施例1
氮化铌/还原氧化石墨烯(Nb4N5/rGO)纳米复合材料的制备方法,包括如下步骤:
A、称取3.0 g市售草酸铌放于瓷坩埚中,在氨气气氛中自室温加热至900℃,升温速率为3℃·min−1,保温3 h后自然冷却,得到中空氮化铌纳米颗粒,其颗粒尺寸范围为20~40nm;
B、 将中空氮化铌纳米颗粒配制成质量浓度为2 g·L−1的水溶液,超声分散均匀后得到溶液A;
C、 配制0.5 g·L−1氧化石墨烯水溶液,超声分散均匀后得到溶液B;
D、将溶液A与溶液B按体积比1:1混合均匀后得溶液C;
E、将C溶液进行冷冻干燥(−45℃, 48 h),得到蓬松的黑色氮化铌/氧化石墨烯,将其在5% H2/Ar混合气氛中400℃煅烧0.5 h,升温速率为2℃·min−1,即得氮化铌/还原氧化石墨(Nb4N5/rGO)纳米复合材料。
实施例2
氮化铌/还原氧化石墨烯(Nb4N5/rGO)纳米复合材料的制备方法,包括如下步骤:
A、称取3.0 g市售草酸铌放于瓷坩埚中,在氨气气氛中自室温加热至700℃,升温速率为3℃·min−1,保温5 h后自然冷却,得到中空氮化铌纳米颗粒,其颗粒尺寸范围为20~40nm;
B、 将中空氮化铌纳米颗粒配制成质量浓度为2 g·L−1的水溶液,超声分散均匀后得到溶液A;
C、 配制0.5 g·L−1氧化石墨烯水溶液,超声分散均匀后得到溶液B;
D、将溶液A与溶液B按体积比1:4混合均匀后得溶液C;
E、将C溶液进行冷冻干燥(−45℃, 48 h),得到蓬松的黑色氮化铌/氧化石墨烯,将其在5% H2/Ar混合气氛中200℃煅烧2h,升温速率为2℃·min−1,即得氮化铌/还原氧化石墨(Nb4N5/rGO)纳米复合材料。
实施例3
氮化铌/还原氧化石墨烯(Nb4N5/rGO)纳米复合材料的制备方法,包括如下步骤:
A、称取3.0 g市售氧化铌放于瓷坩埚中,在氨气气氛中自室温加热至750℃,升温速率为3℃·min−1,保温3h后自然冷却,得到中空氮化铌纳米颗粒,其颗粒尺寸范围为20~40nm;
B、 将中空氮化铌纳米颗粒配制成质量浓度为2 g·L−1的水溶液,超声分散均匀后得到溶液A;
C、 配制0.5 g·L−1氧化石墨烯水溶液,超声分散均匀后得到溶液B;
D、将溶液A与溶液B按体积比1:1混合均匀后得溶液C;
E、 将C溶液进行冷冻干燥(−45℃, 48 h),得到蓬松的黑色氮化铌/氧化石墨烯,将其在5% H2/Ar混合气氛中400℃煅烧0.5h,升温速率为2℃·min−1,即得氮化铌/还原氧化石墨(Nb4N5/rGO)纳米复合材料。
实施例4
以实施例1所制得的氮化铌/还原氧化石墨(Nb4N5/rGO)纳米复合材料与科琴导电炭黑Ketjenblack EC-600JD及粘结剂聚偏氟乙烯(PVDF)按质量比8:1:1混合,分散剂为氮甲基吡咯烷酮(NMP),用作锂离子电池负极材料。锂片用作参比电极和对电极,1 M LiPF6作电解液。在0.1 A g−1的电流密度下进行预锂化,截止电位0.5 V,预锂化10圈。
将上述预锂化的Nb4N5/rGO纳米复合材料作为负极材料,商业化的科琴导电炭黑Ketjenblack EC-600JD作正极材料(科琴导电炭黑Ketjenblack EC-600JD与粘结剂聚四氟乙烯(PTFE)按质量比9:1混合,用乙醇作为分散剂组成正极浆料),组装成非对称锂离子混合电容器器件,并对其进行电化学性能测试。
实施例5
以实施例2所制得的氮化铌/还原氧化石墨(Nb4N5/rGO)纳米复合材料科琴导电炭黑Ketjenblack EC-600JD及粘结剂聚偏氟乙烯(PVDF)按质量比8:1:1混合,分散剂为氮甲基吡咯烷酮(NMP),用作锂离子电池负极材料。锂片用作参比电极和对电极,1 M LiPF6作电解液。在0.1 A g−1的电流密度下进行预锂化,截止电位0.5 V,预锂化10圈。
将上述预锂化的Nb4N5/rGO纳米复合材料作为负极材料,商业化的科琴导电炭黑Ketjenblack EC-600JD作正极材料(科琴导电炭黑Ketjenblack EC-600JD与粘结剂聚四氟乙烯(PTFE)按质量比9:1混合,用乙醇作为分散剂组成正极浆料),组装成非对称锂离子混合电容器器件,并对其进行电化学性能测试。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于,包括如下步骤:
A. 将铌源在氨气气氛中自室温加热至700~900℃,升温速率为3℃·min−1,保温2~5h后自然冷却,得到中空氮化铌纳米颗粒;
B. 将中空氮化铌纳米颗粒配制成质量浓度为2 g·L−1的水溶液,超声分散均匀后得到溶液A;
C. 配制0.5 g·L−1氧化石墨烯水溶液,超声分散均匀后得到溶液B;
D. 将溶液A与溶液B按体积比2:1~1:4混合均匀后得溶液C;
E. 将C溶液进行冷冻干燥,得到蓬松的黑色氮化铌/氧化石墨烯,将其在5% H2/Ar混合气氛中200~400℃煅烧0.5~2 h,升温速率为2℃·min−1,即得氮化铌/还原氧化石墨纳米复合材料。
2.根据权利要求1所述氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于:步骤A所述铌源为草酸铌或氧化铌;所述中空氮化铌纳米颗粒尺寸为20~40nm。
3.根据权利要求1所述氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于:步骤A所述将铌源在氨气气氛中自室温加热至750℃,保温3h后自然冷却。
4.根据权利要求1所述氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于:步骤B与C配制溶液时,以去离子水作为溶剂。
5.根据权利要求1所述氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于:步骤D中将溶液A与溶液B按体积比1:1混合均匀后得溶液C。
6.根据权利要求1所述氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于:步骤E中所述冷冻干燥条件为−45℃, 48 h。
7.根据权利要求1所述氮化铌/还原氧化石墨烯纳米复合材料的制备方法,其特征在于:步骤E中将其在5% H2/Ar混合气氛中400℃煅烧0.5h。
8.根据权利要求1-7任一所述方法制得的氮化铌/还原氧化石墨烯纳米复合材料。
9.一种权利要求8所述氮化铌/还原氧化石墨烯纳米复合材料的应用,其特征在于:将其作为负极活性材料应用于高能量和功率密度的锂离子超级电容器。
CN201811361110.5A 2018-11-15 2018-11-15 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其应用 Active CN109473292B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811361110.5A CN109473292B (zh) 2018-11-15 2018-11-15 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811361110.5A CN109473292B (zh) 2018-11-15 2018-11-15 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109473292A true CN109473292A (zh) 2019-03-15
CN109473292B CN109473292B (zh) 2020-06-09

Family

ID=65673736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811361110.5A Active CN109473292B (zh) 2018-11-15 2018-11-15 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109473292B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112401A (zh) * 2019-05-23 2019-08-09 合肥工业大学 一种氮掺杂多孔碳@氮化铌或碳化铌核壳结构的制备方法及其应用
CN111969209A (zh) * 2020-08-26 2020-11-20 江苏超电新能源科技发展有限公司 一种长寿命的锂离子动力电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578796A (zh) * 2013-11-15 2014-02-12 复旦大学 一种不含粘合剂超级电容器电极的制备方法
CN105719844A (zh) * 2016-01-28 2016-06-29 中国科学院兰州化学物理研究所 一种长寿命的锂离子混合超级电容器
CN105762360A (zh) * 2016-04-01 2016-07-13 上海交通大学 石墨烯包覆硅复合负极材料及其制备方法和应用
CN105932242A (zh) * 2016-05-13 2016-09-07 清华大学 一种用于锂硫二次电池的正极材料
CN107275622A (zh) * 2017-07-11 2017-10-20 西北大学 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用
CN107610938A (zh) * 2017-08-29 2018-01-19 中国科学院过程工程研究所 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578796A (zh) * 2013-11-15 2014-02-12 复旦大学 一种不含粘合剂超级电容器电极的制备方法
CN105719844A (zh) * 2016-01-28 2016-06-29 中国科学院兰州化学物理研究所 一种长寿命的锂离子混合超级电容器
CN105762360A (zh) * 2016-04-01 2016-07-13 上海交通大学 石墨烯包覆硅复合负极材料及其制备方法和应用
CN105932242A (zh) * 2016-05-13 2016-09-07 清华大学 一种用于锂硫二次电池的正极材料
CN107275622A (zh) * 2017-07-11 2017-10-20 西北大学 一种石墨烯@金属磷化物@c纳米复合材料的制备方法及应用
CN107610938A (zh) * 2017-08-29 2018-01-19 中国科学院过程工程研究所 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112401A (zh) * 2019-05-23 2019-08-09 合肥工业大学 一种氮掺杂多孔碳@氮化铌或碳化铌核壳结构的制备方法及其应用
CN111969209A (zh) * 2020-08-26 2020-11-20 江苏超电新能源科技发展有限公司 一种长寿命的锂离子动力电池及其制备方法
CN111969209B (zh) * 2020-08-26 2022-01-07 江苏超电新能源科技发展有限公司 一种长寿命的锂离子动力电池及其制备方法

Also Published As

Publication number Publication date
CN109473292B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN106935860B (zh) 一种碳插层v2o3纳米材料、其制备方法和应用
Wang et al. A new approach to synthesize MoO 2@ C for high-rate lithium ion batteries
Wang et al. Onion-like carbon matrix supported Co 3 O 4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability
Huang et al. Carbon nanohorns/nanotubes: An effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
Qian et al. High rate lithium-sulfur batteries enabled by mesoporous TiO2 nanotubes prepared by electrospinning
Jiang et al. Fabrication of a vanadium nitride/N-doped carbon hollow nanosphere composite as an efficient electrode material for asymmetric supercapacitors
CN111063872A (zh) 一种硅炭负极材料及其制备方法
CN105428614A (zh) 一种氮元素掺杂多孔复合负极材料及其制备方法
CN104868112A (zh) 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
Wu et al. Synthesis of chromium-doped lithium titanate microspheres as high-performance anode material for lithium ion batteries
Zhang et al. Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors
Liu et al. 3D nanoflower-like MoS2 grown on wheat straw cellulose carbon for lithium-ion battery anode material
Lu et al. Nano-scale hollow structure carbon-coated LiFePO 4 as cathode material for lithium ion battery
Zheng et al. A Fe 2 O 3–Fe 3 C heterostructure encapsulated into a carbon matrix for the anode of lithium-ion batteries
Wang et al. Facile synthesis of β-MnO 2/polypyrrole nanorods and their enhanced lithium-storage properties
CN109473292A (zh) 氮化铌/还原氧化石墨烯纳米复合材料的制备方法及其在锂离子混合超级电容器中的应用
Li et al. Facile solvothermal synthesis of ZnCo 2 O 4/MnO 2 nanosheets composite with enhanced electrochemical properties as supercapacitor electrodes
CN110759379A (zh) 一种0d/2d异质结构复合负极材料的制备方法及其应用
Ji et al. Electrochemical characterization of CuF2/CNTs cathode materials prepared by a coprecipitation method
Pei et al. Preparation of a fusiform shape MnO/C composite as anode materials for lithium-ion batteries
CN112694080B (zh) 一种具有嵌入式导电网络结构的炭微球、制备方法及其储能应用
CN104733189B (zh) 一种锂离子型超级电容器三元复合负极材料及其制备方法
CN106024403A (zh) 一种超级电容器碳管/碳化钼复合电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240131

Address after: Shuishailong, Sutun Village, Zhengdun Town, Songxi County, Nanping City, Fujian Province, China

Patentee after: FUJIAN HENGXIANG CARBON INDUSTRY CO.,LTD.

Country or region after: China

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

Country or region before: China