CN107213803A - 一种聚偏氟乙烯膜表面接枝涂覆复合改性方法 - Google Patents

一种聚偏氟乙烯膜表面接枝涂覆复合改性方法 Download PDF

Info

Publication number
CN107213803A
CN107213803A CN201710315938.6A CN201710315938A CN107213803A CN 107213803 A CN107213803 A CN 107213803A CN 201710315938 A CN201710315938 A CN 201710315938A CN 107213803 A CN107213803 A CN 107213803A
Authority
CN
China
Prior art keywords
film surface
polyvinylidene fluoride
water
modifying method
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710315938.6A
Other languages
English (en)
Other versions
CN107213803B (zh
Inventor
吴力立
赵德鹏
张松峰
张超灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710315938.6A priority Critical patent/CN107213803B/zh
Publication of CN107213803A publication Critical patent/CN107213803A/zh
Application granted granted Critical
Publication of CN107213803B publication Critical patent/CN107213803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,该方法以温和的接枝改性条件在聚偏氟乙烯膜表面生成接枝点,对膜的力学性能无影响;将亲水性单体聚合在膜表面形成亲水性接枝高分子链,该接枝高分子链在膜表面起到锚固作用;最终以多酚自聚沉积及其与亲水性接枝高分子链杂化复合作用在膜表面形成亲水性涂覆层。由于该涂覆层与膜之间存在接枝高分子链的锚固作用,使得其附着稳定,不易脱落,改性效果稳定。

Description

一种聚偏氟乙烯膜表面接枝涂覆复合改性方法
技术领域
本发明涉及聚合物膜表面改性技术领域,具体涉及一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法。
背景技术
聚偏氟乙烯(PVDF)是一种线型半结晶型聚合物,具有机械性能优良、耐热、耐酸碱腐烛、耐冲击、不易降解、易成膜等特点,因而成为制备水处理分离膜的优选材料之一。然而由于其极低的表面能,与水无氢键作用,故具有极强的疏水性(Jing J,Fu L,Hashim N A,et al. Poly(vinylidene fluoride)(PVDF)membranes for fluid separation[J].Reactive&Functional Polymers,2014,86:134-153.)。在水处理过程中,PVDF的强疏水性会产生两个问题:一是为了使水通过膜孔,需要有较高的驱动压力。有实验表明,由于水表面张力的作用,平均孔径为0.2μm的PVDF微滤膜在0.1MPa的压差下水通量为0。二是膜容易吸附疏水性物质,如蛋白质、胶体粒子等导致膜孔堵塞,渗透通量下降,缩短膜的使用寿命(Liu F,Hashim N A,Liu Y,et al.Progress in the production and modification ofPVDF membranes[J].Fuel&Energy Abstracts,2011,375(1–2):1-27.),从而制约了聚偏氟乙烯膜在水相分离体系中的应用。
对聚偏氟乙烯膜进行亲水改性是解决上述弊端,提高膜的水通量、降低膜污染、延长膜使用寿命的主要方法,因而具有重要的实际意义。目前,聚偏氟乙烯膜的亲水改性方法主要分为:物理改性、化学改性和低温等离子体改性。
物理改性最常用的方法是表面涂覆,薄的亲水性功能层通过涂覆沉积在膜表面,以达到增强PVDF膜表面亲水性的目的。Yanhui Xiang等采用溶液浸没的方法将多巴胺(DA)涂覆在了疏水的聚偏氟乙烯膜表面,DA经过一系列的氧化聚合反应形成的聚多巴胺(pDA)与 PVDF表面形成了共价与非共价键,附着在了薄膜表面(Xiang Y H,Liu F,Xue LX.Under seawater superoleophobic PVDF membrane inspired by polydopamine forefficient oil/seawater separation[J].Journal of Membrane Science,2015,476:321-329.)。Zhenxing Wang等采用一步法将PVDF微孔膜放入多巴胺与四氧乙基硅烷混合的弱碱性溶液中进行浸泡涂覆改性(Wang Z X,Jiang X,Cheng X Q,Lau C H,ShaoL.Mussel-inspired hybrid coatings that transform membrane hydrophobicity intohigh hydrophilicity and underwater superoleophobicity for oil-in-wateremulsion separation[J].Applied Materials&Interfaces,2015,7(18):9534-9545.)。但是多巴胺价格昂贵,无法进行工业化,表面物理涂覆的涂层与PVDF膜表面缺少化学键,从而使持久性不佳。
低温等离子体改性近年来发展迅速,它是在膜表面引入含氧的亲水基团的一种改性方法。其优点为不改变聚偏氟乙烯膜的本体性能,缺点是亲水化效果不确定、保留时间短。
表面化学改性是指膜表面与亲水性基团发生化学反应以达到改善PVDF膜表面亲水性的目的。通过化学键将亲水性基团与PVDF膜结合起来,二者结合度大大提高,且不会因为外界环境的改变而使亲水基流失,因此PVDF膜表面的化学改性成为目前提高PVDF膜表面亲水性的主要途径之一。Zhihong Xu等用KMNO4/KOH体系脱除PVDF链的HF,再涂覆PVP 水溶液制得亲水性的PVDF-PVP膜(Xu Z H,Li L,et al.The application of the modifiedPVDF ultrafiltration membranes in further Purification of Ginkgo bilobaextraction[J].Journal of Membrane Science,2005,255(1/2):125-131.)。Qiu等采用界面热引发接枝共聚马来酸酐/苯乙烯,以超临界CO2作为溶剂,加速单体向PVDF膜内部转移,促进膜表面和膜孔内的接枝聚合(Qiu G M,Zhu L P,Zhu B K,Xu Y Y,Qiu G L.Graftingof styene/maleic anhydride coplolymer onto PVDF membrane by supercriticalcarbon dioxide:Preparation,characterization and biocompatibility[J].SupercritFluids,2008,45:74-383.)。JianQiangMeng等通过电子转移活性催化-原子转移自由基聚合技术(AGET-ATRP)将单体的水溶液引入膜表面,聚合产生三种亲水性聚合物:聚-(2-二甲基氨基)-乙烷(PDMAEMA)、聚-(2-乙二醇-甲基丙烯酸甲酯) (POEGMA)及聚-(2-氢氧甲基丙烯酸乙酯)(PHEMA)(Meng J Q,Chen C L,Huang L P,Zhang Y F.Surface modificationof PVDF membrane via AGET ATRP directly from the membrane surface[J].AppliedSurface Science,2011,257:6382-6290.)。陈亦力等采用强碱与高锰酸钾预处理PVDF超滤膜表面产生碳碳双键,然后原位引发丙烯酸在膜表面进行自由基接枝反应(陈亦力,刘泽中,张春华,等.丙烯酸接枝PVDF超滤膜亲水改性研究[J].化学与粘合,2014, 36(4):236-239.)
为提升聚偏氟乙烯膜的亲水性,本发明在碱性和氧化剂存在的条件下在膜表面生成接枝点,将亲水性单体聚合在膜表面形成亲水性接枝高分子链,该接枝高分子链起到在膜表面的锚固作用,以多酚自聚沉积及其与亲水性接枝高分子链杂化复合作用在膜表面形成改性的亲水性涂覆层。最终产物聚偏氟乙烯膜的亲水性得到了极大提升,抗污染性也显著提高。
发明内容
本发明的目的在于针对现有聚偏氟乙烯膜亲水改性技术存在的上述不足,提供一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,该改性方法对膜的力学性能无影响,在膜表面形成的亲水性接枝高分子链起到了很好的锚固作用,其与自聚沉积的多酚复合作用在膜表面形成了稳定、不易脱落的亲水性涂覆层。为实现上述目的,本发明所采用的技术方案如下:
一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,包括以下步骤:(a)将强碱和氧化剂溶于水中得混合溶液A,将聚偏氟乙烯膜浸泡在混合溶液A中并加热进行反应;(b)将水溶性聚合物单体、水溶性引发剂、带有多酚基团的水溶性有机物溶于水中并调节pH得混合溶液B,取出聚偏氟乙烯膜将其浸泡在混合溶液B中;(c)取出聚偏氟乙烯膜并冲洗干净,得到接枝/ 涂覆复合改性的聚偏氟乙烯膜。
上述方案中,所述强碱为氢氧化钾、氢氧化钠、氢氧化钙中的一种。
上述方案中,所述氧化剂为高锰酸钾、重铬酸钾、硝酸、次氯酸钾、铋酸钠、高碘酸、三氟化钴、高铁酸钠中的一种。
按照上述方案,混合溶液A中强碱的质量分数为1-7%,氧化剂的质量分数为1-7%。
按照上述方案,聚偏氟乙烯膜浸泡在混合溶液A中于50-70℃反应1-3h。
按照上述方案,所述水溶性聚合物单体为丙烯酰胺、丙烯酸、甲基丙烯酸甲酯、马来酸酐、丙烯酸羟乙酯中的一种。
按照上述方案,所述水溶性引发剂为过硫酸钾、过硫酸铵、过硫酸铵-亚硫酸钠中的一种。
按照上述方案,所述带有多酚基团的水溶性有机物为单宁、多巴胺、儿茶素、花青素、表儿茶素、没食子酚儿茶素、茶黄素中的一种。
按照上述方案,混合溶液B中水溶性聚合物单体的质量分数为0.2-5%,水溶性引发剂的质量分数为0.5-2%,带有多酚基团的水溶性有机物的质量分数为0.2-2%,混合溶液B的pH 调节至2.0-9.0。加入的带有多酚基团的水溶性物质可在上述pH条件下自聚沉积在膜表面。
按照上述方案,处理后的聚偏氟乙烯膜在25-90℃的混合溶液B中浸泡1-48h,浸泡完成后取出用去离子水冲洗干净。
原来的改性方法中,当在较温和的碱和氧化剂作用下,存在膜表面生成的接枝点有限、接枝改性的效率不高等问题;而在较苛刻的碱和氧化剂作用下,又存在接枝改性的效率较高但膜被腐蚀较严重、力学性能降低明显等不足。此外,原有的涂覆改性方式存在涂覆层与膜表面的作用力不强、容易脱落、改性效果的稳定性较差等不足。
与现有技术相比,本发明具有以下有益效果:克服了前述改性方法所存在的问题,提供的接枝/涂覆复合改性方法在温和的接枝改性条件下,虽然在膜表面生成的接枝点较少,但对膜的力学性能无影响;此外将亲水性单体聚合在膜表面形成亲水性接枝高分子链,该接枝高分子链在膜表面起到锚固作用,通过多酚自聚沉积及其与亲水性接枝高分子链杂化复合作用,最终在膜表面形成稳定的亲水性涂覆层。由于该涂覆层与膜之间存在接枝高分子链的锚固作用,使得其附着稳定、不易脱落、改性效果较为稳定。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例进行进一步说明,所列举的实施例对本发明的内容和保护范围不构成任何限定。
本发明所采用的聚偏氟乙烯膜是孔径为0.22μm的微滤膜,其他所有试剂均为普通市售。
实施例1
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钾(1.0wt%)和高锰酸钾(1.0wt%)的溶液中,于50℃反应1h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酰胺(0.5wt%)、过硫酸钾(0.5wt%)、单宁(0.5wt%)的溶液中,调节溶液pH至7.8,在25℃下浸泡10h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例2
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钾(2.0wt%)和高锰酸钾(1.0wt%)的溶液中,于60℃反应1h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酰胺(1.0wt%)、过硫酸钾(0.5wt%)、单宁(1.0wt%)的溶液中,调节溶液的pH至7.8,在30℃下浸泡4h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例3
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钾(1.0wt%)和高锰酸钾(2.0wt%)的溶液中,于50℃反应2h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酰胺(2.0wt%)、过硫酸钾(1.0wt%)、单宁(2.0wt%)的溶液中,调节溶液的pH至8.1,在40℃下浸泡3h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例4
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钾(3.0wt%)和高锰酸钾(2.0wt%)的溶液中,于70℃反应1h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酰胺(1.0wt%)、过硫酸钾(1.0wt%)、单宁(2.0wt%)的溶液中,调节溶液的pH至8.5,在50℃下浸泡2h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例5
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钠(2.0wt%)和高锰酸钾(1.0wt%)的溶液中,于60℃反应1h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酰胺(0.5wt%)、过硫酸钾(0.5wt%)、单宁(1.0wt%)的溶液中,调节溶液的pH至7.8,在30℃下浸泡8h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例6
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钠(2.0wt%)和高锰酸钾(1.0wt%)的溶液中,于70℃反应1h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酸(1.0wt%)、过硫酸钾(0.5wt%)、单宁(2.0wt%)的溶液中,调节溶液的pH至5.4,在25℃下浸泡20h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例7
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钠(1.0wt%)和高锰酸钾(1.0wt%)的溶液中,于50℃反应3h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酸(0.5wt%)、过硫酸钾(2.0wt%)、单宁(0.5wt%)的溶液中,调节溶液的pH至5.7,在30℃下浸泡24h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
实施例8
(1)将聚偏氟乙烯膜浸泡在溶有氢氧化钠(1.0wt%)和高锰酸钾(1.0wt%)的溶液中,于50℃反应2h。
(2)将(1)处理好的聚偏氟乙烯膜取出,放入溶有丙烯酸(0.5wt%)、过硫酸钾(0.5wt%)、单宁(1.0wt%)的溶液中,调节溶液的pH至4.8,在80℃下浸泡1h。
(3)将(2)处理好的聚偏氟乙烯膜取出用去离子水清洗干净,得接枝/涂覆复合改性膜。
为比较改性膜与原始膜表面亲水性的差异,本发明测试了原始膜与各实施例中样品膜的水接触角,结果如表1所示。
表1各PVDF膜表面的水接触角
样品膜 水接触角(°)
原始膜 93
实施例1 43
实施例2 45
实施例3 38
实施例4 35
实施例5 39
实施例6 37
实施例7 42
实施例8 31
为研究改性膜表面亲水层的稳定性,本发明选取实施例1得到的改性膜作为样品,将其放入流动的水中浸泡20天,每天测试其表面水接触角,结果如表2。
表2膜表面水接触角随时间的变化
时间(day) 水接触角(°) 时间(day) 水接触角(°)
1 43 11 44
2 43 12 45
3 43 13 44
4 44 14 45
5 44 15 45
6 43 16 44
7 44 17 44
8 44 18 44
9 45 19 45
10 44 20 45
从表1可以看出,与原始膜相比,各改性膜的水接触角明显下降,表明PVDF膜表面的亲水性能得到明显提升;从表2可以看出,膜表面水接触角并没有随时间发生显著变化,说明改性膜表面的亲水层具有良好的稳定性。

Claims (10)

1.一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于,包括以下步骤:(a)将强碱和氧化剂溶于水中得混合溶液A,将聚偏氟乙烯膜浸泡在混合溶液A中并加热进行反应;(b)将水溶性聚合物单体、水溶性引发剂、带有多酚基团的水溶性有机物溶于水中并调节pH得混合溶液B,取出聚偏氟乙烯膜将其浸泡在混合溶液B中;(c)取出聚偏氟乙烯膜并冲洗干净,得到接枝/涂覆复合改性的聚偏氟乙烯膜。
2.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:所述强碱为氢氧化钾、氢氧化钠、氢氧化钙中的一种。
3.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:所述氧化剂为高锰酸钾、重铬酸钾、硝酸、次氯酸钾、铋酸钠、高碘酸、三氟化钴、高铁酸钠中的一种。
4.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:混合溶液A中强碱的质量分数为1-7%,氧化剂的质量分数为1-7%。
5.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:聚偏氟乙烯膜浸泡在混合溶液A中于50-70℃反应1-3h。
6.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:所述水溶性聚合物单体为丙烯酰胺、丙烯酸、甲基丙烯酸甲酯、马来酸酐、丙烯酸羟乙酯中的一种。
7.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:所述水溶性引发剂为过硫酸钾、过硫酸铵、过硫酸铵-亚硫酸钠中的一种。
8.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:所述带有多酚基团的水溶性有机物为单宁、多巴胺、儿茶素、花青素、表儿茶素、没食子酚儿茶素、茶黄素中的一种。
9.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:混合溶液B中水溶性聚合物单体的质量分数为0.2-5%,水溶性引发剂的质量分数为0.5-2%,带有多酚基团的水溶性有机物的质量分数为0.2-2%,混合溶液B的pH调节至2.0-9.0。
10.如权利要求1所述的一种聚偏氟乙烯膜表面接枝/涂覆复合改性方法,其特征在于:处理后的聚偏氟乙烯膜在25-90℃的混合溶液B中浸泡1-48h,浸泡完成后取出用去离子水冲洗干净。
CN201710315938.6A 2017-05-08 2017-05-08 一种聚偏氟乙烯膜表面接枝涂覆复合改性方法 Active CN107213803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710315938.6A CN107213803B (zh) 2017-05-08 2017-05-08 一种聚偏氟乙烯膜表面接枝涂覆复合改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710315938.6A CN107213803B (zh) 2017-05-08 2017-05-08 一种聚偏氟乙烯膜表面接枝涂覆复合改性方法

Publications (2)

Publication Number Publication Date
CN107213803A true CN107213803A (zh) 2017-09-29
CN107213803B CN107213803B (zh) 2020-01-14

Family

ID=59944709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710315938.6A Active CN107213803B (zh) 2017-05-08 2017-05-08 一种聚偏氟乙烯膜表面接枝涂覆复合改性方法

Country Status (1)

Country Link
CN (1) CN107213803B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670513A (zh) * 2017-10-18 2018-02-09 天津工业大学 一种植物多酚改性聚合物膜及其制备方法与应用
CN108043237A (zh) * 2017-12-21 2018-05-18 天津工业大学 一种pda-pam接枝改性的亲水性反渗透膜及其制备方法
CN109046035A (zh) * 2018-08-28 2018-12-21 浙江工业大学 一种亲水改性聚偏氟乙烯滤膜及其应用
CN110452336A (zh) * 2019-08-15 2019-11-15 宁德卓高新材料科技有限公司 制备改性偏氟乙烯聚合物粉末的方法
CN110465211A (zh) * 2019-08-23 2019-11-19 哈尔滨工业大学 一种具有“三明治”夹心结构分离层的多酚功能化复合膜及其制备方法
CN110605034A (zh) * 2019-10-11 2019-12-24 浙江理工大学 一种超亲水抗菌pvdf分离膜的制备方法
CN110694487A (zh) * 2019-11-27 2020-01-17 大连交通大学 一种电化学改性聚偏氟乙烯膜的装置及其改性方法
CN110711496A (zh) * 2019-10-09 2020-01-21 东莞东阳光科研发有限公司 一种抗生物污染多孔膜及其制备方法和应用
CN111004391A (zh) * 2019-11-21 2020-04-14 浙江大学 一种大小可控的纳米聚多巴胺的制备方法
CN108404686B (zh) * 2018-05-07 2021-03-16 武汉理工大学 一种金属离子吸附污水分离膜的制备方法
CN114669204A (zh) * 2022-02-25 2022-06-28 浙江师范大学 一种复合分离膜及其制备方法和应用
CN114716617A (zh) * 2022-04-29 2022-07-08 安徽大学 一种高亲水性pvdf材料及其制备方法
CN114749034A (zh) * 2022-04-26 2022-07-15 新疆中泰创新技术研究院有限责任公司 一种耐酸性双层结构纳滤膜及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357304A (zh) * 2008-09-24 2009-02-04 哈尔滨工业大学 聚偏氟乙烯膜的表面改性方法
CN103263861A (zh) * 2013-05-30 2013-08-28 哈尔滨工业大学 聚偏氟乙烯中空纤维膜的亲水改性方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357304A (zh) * 2008-09-24 2009-02-04 哈尔滨工业大学 聚偏氟乙烯膜的表面改性方法
CN103263861A (zh) * 2013-05-30 2013-08-28 哈尔滨工业大学 聚偏氟乙烯中空纤维膜的亲水改性方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SONGFENG ZHANG ET AL.: "Hydrophilic modification of PVDF porous membrane via a simple dip-coating method in plant tannin solution", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
周蓉: "基于聚多巴胺沉积的聚丙烯微孔膜抗污染表面研究", 《工程科技Ⅰ辑》 *
陈亦力等: "丙烯酸接枝PVDF超滤膜亲水改性研究", 《化学与黏合》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670513B (zh) * 2017-10-18 2021-03-09 天津工业大学 一种植物多酚改性聚合物膜及其制备方法与应用
CN107670513A (zh) * 2017-10-18 2018-02-09 天津工业大学 一种植物多酚改性聚合物膜及其制备方法与应用
CN108043237A (zh) * 2017-12-21 2018-05-18 天津工业大学 一种pda-pam接枝改性的亲水性反渗透膜及其制备方法
CN108404686B (zh) * 2018-05-07 2021-03-16 武汉理工大学 一种金属离子吸附污水分离膜的制备方法
CN109046035A (zh) * 2018-08-28 2018-12-21 浙江工业大学 一种亲水改性聚偏氟乙烯滤膜及其应用
CN110452336A (zh) * 2019-08-15 2019-11-15 宁德卓高新材料科技有限公司 制备改性偏氟乙烯聚合物粉末的方法
CN110452336B (zh) * 2019-08-15 2021-10-01 宁德卓高新材料科技有限公司 制备改性偏氟乙烯聚合物粉末的方法
CN110465211A (zh) * 2019-08-23 2019-11-19 哈尔滨工业大学 一种具有“三明治”夹心结构分离层的多酚功能化复合膜及其制备方法
CN110465211B (zh) * 2019-08-23 2021-07-20 哈尔滨工业大学 一种具有“三明治”夹心结构分离层的多酚功能化复合膜及其制备方法
CN110711496B (zh) * 2019-10-09 2022-01-14 东莞东阳光科研发有限公司 一种抗生物污染多孔膜及其制备方法和应用
CN110711496A (zh) * 2019-10-09 2020-01-21 东莞东阳光科研发有限公司 一种抗生物污染多孔膜及其制备方法和应用
CN110605034B (zh) * 2019-10-11 2021-11-30 浙江理工大学 一种超亲水抗菌pvdf分离膜的制备方法
CN110605034A (zh) * 2019-10-11 2019-12-24 浙江理工大学 一种超亲水抗菌pvdf分离膜的制备方法
CN111004391A (zh) * 2019-11-21 2020-04-14 浙江大学 一种大小可控的纳米聚多巴胺的制备方法
CN110694487A (zh) * 2019-11-27 2020-01-17 大连交通大学 一种电化学改性聚偏氟乙烯膜的装置及其改性方法
CN110694487B (zh) * 2019-11-27 2021-12-17 大连交通大学 一种电化学改性聚偏氟乙烯膜的装置及其改性方法
CN114669204A (zh) * 2022-02-25 2022-06-28 浙江师范大学 一种复合分离膜及其制备方法和应用
CN114749034A (zh) * 2022-04-26 2022-07-15 新疆中泰创新技术研究院有限责任公司 一种耐酸性双层结构纳滤膜及其制备方法和应用
CN114749034B (zh) * 2022-04-26 2023-08-18 新疆中泰创新技术研究院有限责任公司 一种耐酸性双层结构纳滤膜及其制备方法和应用
CN114716617A (zh) * 2022-04-29 2022-07-08 安徽大学 一种高亲水性pvdf材料及其制备方法
CN114716617B (zh) * 2022-04-29 2023-10-17 安徽大学 一种高亲水性pvdf材料及其制备方法

Also Published As

Publication number Publication date
CN107213803B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN107213803A (zh) 一种聚偏氟乙烯膜表面接枝涂覆复合改性方法
CN109224873B (zh) 一种金属离子络合多酚增强高分子膜亲水稳定性的方法
WO2016107292A1 (zh) 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
CN106310958B (zh) 一种疏水型高分子膜复合涂覆亲水化改性方法
CN102921315B (zh) 一种抗污染反渗透膜及其制备方法
CN108176255B (zh) 一种聚偏氟乙烯-二氧化钛杂化膜及其制备方法和应用
CN108905653B (zh) 一种超支化两性离子改性聚偏氟乙烯油水乳液分离膜的制备方法及应用
CN109304106B (zh) 一种Janus正渗透膜及其制备方法与应用
CN103007786B (zh) 一种同步交联改性聚偏氟乙烯微孔膜的制备方法
CN107998897B (zh) 一种聚偏氟乙烯中空纤维膜的表面亲水化改性方法
US10940438B2 (en) Omniphobic membranes and application thereof
CN111420559A (zh) 一种基于多巴胺的高分子膜的表面改性方法
KR101340022B1 (ko) 폴리도파민 고속 코팅방법
CN111085119B (zh) 一种用于膜蒸馏的改性分离膜及其制备方法和应用
CN107376673A (zh) 一种负载有TiO2纳米管的PES超滤膜及其制备方法和应用
CN107486043A (zh) 一种两亲性三嵌段共聚物改性聚偏氟乙烯膜的制备方法
Chen et al. Surface modification of poly (vinylidene fluoride) membrane with hydrophilic and anti-fouling performance via a two-step polymerization
CN104150787B (zh) 一种多巴胺诱导溶胶凝胶法制备高亲水化涂层的改性方法
CN106757789B (zh) 一种超亲水聚偏二氟乙烯/聚多巴胺复合薄膜的制备方法
CN113512720B (zh) 一种沉铜前处理液及其前处理方法
CN116440719B (zh) 一种亲水化聚四氟乙烯中空纤维微滤膜及其制备方法
CN114797473A (zh) 一种亲水性多功能有机超滤膜制备方法
CN110449040B (zh) 一种共混聚酰胺复合纳滤膜的制备方法
US20070160754A1 (en) Method for coating the internal wall of a pipeline with a latex film
CN116036887A (zh) 一种抗污染、耐润湿的复合膜蒸馏膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant