CN106898786A - 一种氧还原催化剂及其制备和应用 - Google Patents

一种氧还原催化剂及其制备和应用 Download PDF

Info

Publication number
CN106898786A
CN106898786A CN201510961639.0A CN201510961639A CN106898786A CN 106898786 A CN106898786 A CN 106898786A CN 201510961639 A CN201510961639 A CN 201510961639A CN 106898786 A CN106898786 A CN 106898786A
Authority
CN
China
Prior art keywords
catalyst
oxygen reduction
kinds
nickel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510961639.0A
Other languages
English (en)
Other versions
CN106898786B (zh
Inventor
孙公权
金具涛
姜鲁华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510961639.0A priority Critical patent/CN106898786B/zh
Publication of CN106898786A publication Critical patent/CN106898786A/zh
Application granted granted Critical
Publication of CN106898786B publication Critical patent/CN106898786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种非铂氧还原催化剂及其制备方法。特征在于:这种非铂催化剂具有三层结构的核壳结构,其核为Fe,Co,Ni金属纳米粒子或者它们的合金;中间层为碳包覆层;外层为剥离的石墨烯纳米片层。非铂催化剂金属核尺寸在1-50纳米;中间的碳包覆层为纳米管结构,纳米管的尺寸在2-100纳米;外层剥离的石墨烯纳米片层同中间的石墨包覆层共价键结合,剥离层表面掺杂有N,O等掺杂元素,这些掺杂元素的浓度在0.5%-20%之间;这种方法合成的催化剂具有优良的氧还原催化性能和稳定性。

Description

一种氧还原催化剂及其制备和应用
技术领域
本发明属于纳米材料电催化领域,主要涉及一种一种非铂催化剂;本发明还涉及非铂氧还原催化剂的制备方法。
技术背景
近年来,低温质子交换膜燃料电池技术发展迅速。然而,受电池高成本因素限制,其商业化进程缓慢。昂贵的铂金催化剂是制约燃料电池成本降低的主要因素。发展低铂和非铂催化剂已经成为燃料电池发展的重要课题。
最近,铁基氧还原催化剂受到很大的重视。大量的研究表明,铁基催化剂中形成的氮稳定的单原子铁为活性中心。然而,这种催化剂在催化氧还原过程表现并不稳定,尤其是在酸性环境中。铁的流失和碳的氧化是造成铁基氧还原催化剂活性降低的主要原因。一些课题组发现,碳包裹的铁在催化氧还原过程中也能表现出良好的性能。理论和实验研究表明,铁的电子能够穿透碳的包裹,在外层催化氧的还原反应。然而,随着包裹的碳层厚度的增加,由于电子穿透效应减弱,催化效果就会明显变差。
为此,我们提出了一种新的催化剂设计方案,催化剂由三层结构构成。如图 1所示:内部为铁,钴和镍纳米颗粒,中间为碳包裹层,外边为被剥离的碳层。这种结构的优势在于,内部的铁纳米颗粒可以通过中间层调控外边剥离碳层的电子结构,同时受到中间完好碳层的保护,能够稳定的存在于酸性介质中。中间的碳层还可以有效的传导电子。这种催化剂的结构设计,有效的提高了催化剂的活性,同时改善了催化剂在酸性介质中的稳定性,是一种优良的氧还原催化剂。
发明内容
本发明针对现有铁基非铂催化剂活性和稳定性问题,提出一种新的催化剂。该催化剂具有三层结构:内部为铁,钴和镍等纳米颗粒,中间为碳包裹层,外边为被剥离的碳层。
一种氧还原催化剂,催化剂具有三层结构的核壳结构,其核为Fe,Co,Ni金属中的一种或二种以上的合金的纳米粒子;中间层为碳包覆层;外层为剥离的石墨烯纳米片层;纳米粒子外依次包裹中间层和外层。
所述核直径在1-50纳米;所述外层与中间层共价键结合。
所述中间的碳包覆层为纳米管结构,纳米管的直径在2-100纳米。
所述外层表面掺杂有N,O中的一种或二种掺杂元素,所述掺杂元素的质量浓度在0.5%-20%之间。
所述氧还原催化剂的制备方法,包括以下步骤:
a.将铵盐,可溶性碳源,Fe、Co、Ni金属中的一种或二种以上的可溶性盐按照比例于溶剂中混合,搅拌至完全溶解后,待金属盐充分和铵盐络合后,将混合物旋转蒸发干燥,得到铵盐,碳源和金属盐的的混合物;
b.于惰性气体保护下对步骤a所得混合物进行高温处理得到碳包覆的金属纳米颗粒;
c.将步骤b所得碳包覆纳米颗粒,置于一定比例混合的硫酸、磷酸和高锰酸钾的混合溶液中,冰浴条件下氧化后,过滤,烘干后于氨气气氛中处理,即得所述三层结构的核壳催化剂。
步骤a所述可溶性碳源为葡萄糖、蔗糖、壳聚糖、聚乙烯醇、聚乙二醇、可溶性淀粉中的一种或两者以上的混合物;所述铵盐为三聚氰胺,腈胺或者尿素中的一种或者两种以上的混合物;所述Fe、Co、Ni金属中的一种或二种以上的可溶性盐为氯化钴、氯化镍、氯化铁、硝酸钴、硝酸镍、硝酸铁、硫酸钴、硫酸镍、硫酸铁、醋酸、钴、醋酸镍、醋酸铁、柠檬酸钴,柠檬酸镍、柠檬酸铁、硫酸亚铁铵、硫酸亚钴铵、硫酸亚镍铵、氟化钴、氟化镍、氟化铁中的一种或者二种以上的混合物。
步骤a中所述可溶性碳源和所述铵盐的摩尔比为1:10-1:100;所述Fe、Co、Ni金属中的一种或二种以上的可溶性盐的总量与铵盐的摩尔比为1:1-1:50。
步骤c中所述硫酸、磷酸和高锰酸钾的混合溶液中磷酸与硫酸的物质量比为10:1-1:10,所述高猛酸钾与磷酸的物质量比为1:10-10:1,所述硫酸终质量浓度50%-98%;所述高锰酸钾与步骤b所得碳包覆纳米颗粒的质量比为1:3-10:1。
步骤b所述惰性气体为氦气、氩气、氮气中的一种或者二种以上的混合气;所述高温处理方式为以1-100℃/min升温速度加热从室温至700-1200℃保温1-24小时。
步骤c所述冰浴搅拌时间为1小时以上,冰浴氧化时间为1小时以上;所述氨气气氛中处理为以1-100℃/min升温速度加热从室温至700-1000℃保温5分钟-24小时。
与现有技术相比,本发明所述催化剂内部的铁纳米颗粒可以通过中间层调控外边剥离碳层的电子结构,同时受到中间完好碳层的保护,能够稳定的存在于酸性介质中。中间的碳层还可以有效的传导电子。本发明所述催化剂应用于氧还原电催化剂时催化剂活性明显提高,同时改善了催化剂在酸性介质中的稳定性,是一种优良的氧还原催化剂。
附图说明:
1一种非铂氧还原催化剂的结构示意
2按照实施例1所合成的催化剂的电镜图片和化学成分;
3按照实施例1合成的催化剂的氧还原催化性能。
具体实施方式
实施例1:
一种非铂氧还原催化剂的制备方法,包括以下步骤,
(a)于95℃去离子水中加入摩尔比为20:1:0.01的三聚氰胺、葡萄糖和三氯化铁,搅拌至完全溶解后得混合溶液;搅拌至混合均匀后旋转蒸发干燥固体粉末;
(b)于管式炉中,在氮气保护下,以5℃/min升温至600℃,保温2小时,然后再以5℃/min升温至900℃,保温2小时,冷却后取出得碳包裹金属结构的纳米材料。
(c)取步骤二所得的样品200mg,加入10mL的磷酸/硫酸(V/V=3:7)混合酸溶液中,冰浴下搅拌2小时后,加入100mg的高锰酸钾,再在冰浴温度下搅拌1小时后,清洗,过滤,干燥;
(d)将步骤c中获得的样品以5℃/min升温至900摄氏度,氨气条件下处理15分钟,得到所设计的催化剂样品粉末。
1为所设计的催化剂结构示意:该催化剂具有三层结构:内部为铁,钴和 镍等纳米颗粒,中间为碳包裹层,外边为被剥离的碳层。这种结构的优势在于,内部的铁纳米颗粒可以通过中间层调控外边剥离碳层的电子结构,同时受到中间完好碳层的保护,能够稳定的存在于酸性介质中。中间的碳层还可以有效的传导电子。
2为实施例1制备的具有三层结构的氧还原催化剂电镜照片和EDX谱。从 a中可以看出,所制备的样品具有管状结构。管径的尺寸大概在30nm左右( b),在管壁内部包裹有20nm左右的金属纳米颗粒( c)。碳管的管壁是封闭的( d),因此电解液不能够进入碳管的管壁内部,腐蚀金属纳米颗粒。EDX成分分析表明,该材料体系含有金属铁和碳元素( e)。
3为采用实施例1制备的催化剂作为氧还原电催化剂的电化学表征性能。电化学测试条件为:0.1M NaOH,催化剂载量为283g cm-2,对电极为铂丝,参比电极为MMO(0.1NaOH)。其中 a为所制备的材料在线性伏安条件下的氧还原性能,从图中可以明显看出催化剂的起始电位为0.05V,在大极化区出现明显的传质极化电流平台。a中插为所制备的催化剂和商品铂催化剂(JM20%Pt/C)的对比,可以看出在相同载量条件下,其氧还原催化活性接近于商品铂催化剂。 b为通过 a计算得到的电子转移数,可以看出其氧还原过程以4电子为主。 c为通过 a计算得到的极化曲线,在高电位区的极化曲线斜率为65度,在低电位去极化曲线斜率为128度。 d为催化剂不同载量条件下的氧还原催化性能,可以看出在不同的催化剂载量条件下,催化剂的活性(极限电流密度)相近,表明催化剂的活性不受催化剂载量的影响。 e为催化剂在酸性介质中的催化活性, f为对应于 e的催化剂在酸性介质中催化氧还原过程的电子转移数,表明催化剂在酸性介质中也有很好的催化性能。
实施例2:
一种非铂氧还原催化剂的制备方法,包括以下步骤,
(a)于95℃去离子水中加入摩尔比为10:1:0.02的三聚氰胺、葡萄糖和醋酸钴,搅拌至完全溶解后得混合溶液;搅拌至混合均匀后旋转蒸发干燥固体粉末;
(b)于管式炉中,在氮气保护下,以5℃/min升温至600℃,保温2小时,然后再以5℃/min升温至900℃,保温2小时,冷却后取出得碳包裹金属结构的纳米材料。
(c)取步骤二所得的样品200mg,加入10mL的磷酸/硫酸(V/V=3:7)混合酸溶液中,冰浴温度下搅拌2小时后,加入100mg的高锰酸钾,再在冰浴温度下搅拌1小时后,清洗,过滤,干燥;
(d)将步骤c中获得的样品以5℃/min升温至900摄氏度,氨气条件下处理15分钟,得到所设计的催化剂样品粉末。
实施例3:
一种非铂氧还原催化剂的制备方法,包括以下步骤,
(a)于95℃去离子水中加入摩尔比为10:1:0.02的三聚氰胺、葡萄糖和醋酸镍,搅拌至完全溶解后得混合溶液;搅拌至混合均匀后旋转蒸发干燥固体粉末;
(b)于管式炉中,在氮气保护下,以5℃/min升温至600℃,保温2小时,然后再以5℃/min升温至900℃,保温2小时,冷却后取出得碳包裹金属结构的纳米材料。
(c)取步骤二所得的样品200mg,加入10mL的磷酸/硫酸(V/V=3:7)混 合酸溶液中,冰浴温度下搅拌2小时后,加入100mg的高锰酸钾,再在冰浴温度下搅拌1小时后,清洗,过滤,干燥;
(d)将步骤c中获得的样品以5℃/min升温至900摄氏度,氨气条件下处理15分钟,得到所设计的催化剂样品粉末。
实施例4:
一种非铂氧还原催化剂的制备方法,包括以下步骤,
(a)于95℃去离子水中加入摩尔比为10:1:0.02的三聚氰胺、葡萄糖和醋酸钴和醋酸镍的混合物(其摩尔比比为1:1),搅拌至完全溶解后得混合溶液;搅拌至混合均匀后旋转蒸发干燥固体粉末;
(b)于管式炉中,在氮气保护下,以5℃/min升温至600℃,保温2小时,然后再以5℃/min升温至900℃,保温2小时,冷却后取出得碳包裹金属结构的纳米材料。
(c)取步骤二所得的样品200mg,加入10mL的磷酸/硫酸(V/V=3:7)混合酸溶液中,冰浴温度下搅拌2小时后,加入100mg的高锰酸钾,再在冰浴温度下搅拌1小时后,清洗,过滤,干燥;
(d)将步骤c中获得的样品以5℃/min升温至1000摄氏度,氨气条件下处理15分钟,得到所设计的催化剂样品粉末。
实施例5:
一种非铂氧还原催化剂的制备方法,包括以下步骤,
(a)于95℃去离子水中加入摩尔比为10:1:0.02的三聚氰胺、葡萄糖和氯化铁和醋酸镍的混合物(其摩尔比比为1:1),搅拌至完全溶解后得混合溶液;搅拌至混合均匀后旋转蒸发干燥固体粉末;
(b)于管式炉中,在氮气保护下,以5℃/min升温至600℃,保温2小时,然后再以5℃/min升温至900℃,保温2小时,冷却后取出得碳包裹金属结构的纳米材料。
(c)取步骤二所得的样品200mg,加入10mL的磷酸/硫酸(V/V=3:7)混合酸溶液中,冰浴温度下搅拌2小时后,加入100mg的高锰酸钾,再在冰浴温度下搅拌1小时后,清洗,过滤,干燥;
(d)将步骤c中获得的样品以5℃/min升温至800摄氏度,氨气条件下处理35分钟,得到所设计的催化剂样品粉末。
实施例6:
一种非铂氧还原催化剂的制备方法,包括以下步骤,
(a)于95℃去离子水中加入摩尔比为20:1:0.02的三聚氰胺、葡萄糖和氯化铁和醋酸钴的混合物(其摩尔比比为1:1),搅拌至完全溶解后得混合溶液;搅拌至混合均匀后旋转蒸发干燥固体粉末;
(b)于管式炉中,在氮气保护下,以5℃/min升温至600℃,保温2小时,然后再以5℃/min升温至900℃,保温2小时,冷却后取出得碳包裹金属结构的纳米材料。
(c)取步骤二所得的样品200mg,加入10mL的磷酸/硫酸(V/V=3:7)混合酸溶液中,冰浴温度下搅拌2小时后,加入100mg的高锰酸钾,再在冰浴温度下搅拌1小时后,清洗,过滤,干燥;
(d)将步骤c中获得的样品以5℃/min升温至800摄氏度,氨气条件下处理15分钟,得到所设计的催化剂样品粉末。

Claims (10)

1.一种氧还原催化剂,其特征在于:催化剂具有三层结构的核壳结构,其核为Fe,Co,Ni金属中的一种或二种以上的合金的纳米粒子;中间层为碳包覆层;外层为剥离的石墨烯纳米片层;纳米粒子外依次包裹中间层和外层。
2.如权利1所述的催化剂,其特征在于:所述核直径在1-50纳米;所述外层与中间层共价键结合。
3.如权利1所述的催化剂,其特征在于:所述中间的碳包覆层为纳米管结构,纳米管的直径在2-100纳米。
4.如权利1所述的催化剂,其特征在于:所述外层表面掺杂有N,O中的一种或二种掺杂元素,所述掺杂元素的质量浓度在0.5%-20%之间。
5.一种权利要求1-4任一所述氧还原催化剂的制备方法,其特征在于:包括以下步骤:
a.将铵盐,可溶性碳源,Fe、Co、Ni金属中的一种或二种以上的可溶性盐按照比例于溶剂中混合,搅拌至完全溶解后,待金属盐充分和铵盐络合后,将混合物旋转蒸发干燥,得到铵盐,碳源和金属盐的的混合物;
b.于惰性气体保护下对步骤a所得混合物进行高温处理得到碳包覆的金属纳米颗粒;
c.将步骤b所得碳包覆纳米颗粒,置于一定比例混合的硫酸和磷酸混合溶液中,冰浴条件下搅拌,再高锰酸钾加入,在冰浴条件下氧化后,过滤,烘干后于氨气气氛中处理,即得所述三层结构的核壳催化剂。
6.如权利要求5所述氧还原催化剂的制备方法,其特征在于:步骤a所述可溶性碳源为葡萄糖、蔗糖、壳聚糖、聚乙烯醇、聚乙二醇、可溶性淀粉中的一种或两者以上的混合物;所述铵盐为三聚氰胺,腈胺或者尿素中的一种或者两种以上的混合物;所述Fe、Co、Ni金属中的一种或二种以上的可溶性盐为氯化钴、氯化镍、氯化铁、硝酸钴、硝酸镍、硝酸铁、硫酸钴、硫酸镍、硫酸铁、醋酸、钴、醋酸镍、醋酸铁、柠檬酸钴,柠檬酸镍、柠檬酸铁、硫酸亚铁铵、硫酸亚钴铵、硫酸亚镍铵、氟化钴、氟化镍、氟化铁中的一种或者二种以上的混合物。
7.如权利要求5所述氧还原催化剂的制备方法,其特征在于:步骤a中所述可溶性碳源和所述铵盐的摩尔比为1:10-1:100;所述Fe、Co、Ni金属中的一种或二种以上的可溶性盐的总量与铵盐的摩尔比为1:1-1:50。
8.如权利要求5所述氧还原催化剂的制备方法,其特征在于:步骤c中所述硫酸、磷酸和高锰酸钾的混合溶液中磷酸与硫酸的物质量比为10:1-1:10,所述高猛酸钾与磷酸的物质量比为1:10-10:1,所述硫酸终质量浓度50%-98%;所述高锰酸钾与步骤b所得碳包覆纳米颗粒的质量比为1:3-10:1。
9.如权利要求5所述氧还原催化剂的制备方法,其特征在于:步骤b所述惰性气体为氦气、氩气、氮气中的一种或者二种以上的混合气;所述高温处理方式为以1-100℃/min升温速度加热从室温至700-1200℃保温1-24小时;步骤c所述冰浴搅拌时间为1小时以上,冰浴氧化时间为1小时以上;所述氨气气氛中处理为以1-100℃/min升温速度加热从室温至700-1000℃保温5分钟-24小时。
10.权利要求1-4任一所述催化剂的应用,其特征在于:所述催化剂为质子交换膜燃料电池、金属空气电池中空气电极的氧还原催化剂。
CN201510961639.0A 2015-12-18 2015-12-18 一种氧还原催化剂及其制备和应用 Active CN106898786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510961639.0A CN106898786B (zh) 2015-12-18 2015-12-18 一种氧还原催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510961639.0A CN106898786B (zh) 2015-12-18 2015-12-18 一种氧还原催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN106898786A true CN106898786A (zh) 2017-06-27
CN106898786B CN106898786B (zh) 2019-07-19

Family

ID=59190567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510961639.0A Active CN106898786B (zh) 2015-12-18 2015-12-18 一种氧还原催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN106898786B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293730A (zh) * 2017-07-31 2017-10-24 中南大学 一种Ni@N‑C复合正极材料、制备方法及在锂空气电池中的应用
CN108400343A (zh) * 2018-02-13 2018-08-14 山东大学 一种高性能钴颗粒修饰的氮载碳纳米片锂氧气电池正极催化剂材料及其制备方法
CN108493461A (zh) * 2018-05-08 2018-09-04 大连理工大学 一种N掺杂多孔碳包覆Fe、Co双金属纳米粒子的催化剂及其制备方法
CN108565477A (zh) * 2018-02-09 2018-09-21 中国科学院长春应用化学研究所 聚合-溶解法构建Fe-N均匀分布的核壳碳纳米氧还原催化剂的方法
CN109305917A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种卤代苯胺的合成方法
CN109530714A (zh) * 2018-11-19 2019-03-29 广州大学 一种复合电极材料及其制备方法和应用
CN109911881A (zh) * 2019-03-11 2019-06-21 唐山学院 一种碳包覆铁纳米颗粒的合成方法
CN109950566A (zh) * 2019-04-15 2019-06-28 南京大学 一种基于表面功能增强的高性能氧还原催化剂及其制法
CN110201695A (zh) * 2019-03-29 2019-09-06 上海理工大学 一种多孔碳材料负载过渡金属Fe、Co复合材料的制备方法
CN110732334A (zh) * 2018-07-19 2020-01-31 中国科学院大连化学物理研究所 一种BCN壳层限域的面心四方PtFe合金纳米催化剂及其制备和应用
CN110756188A (zh) * 2019-08-19 2020-02-07 四川轻化工大学 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
CN111111721A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN112768706A (zh) * 2019-11-05 2021-05-07 中国科学院大连化学物理研究所 一种核壳催化剂及其制备方法与在可充电锌空电池中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089740A1 (en) * 2003-10-25 2005-04-28 Korea Institute Of Science And Technology Solid oxide fuel cell(SOFC) for coproducing syngas and electricity by the internal reforming of carbon dioxide by hydrocarbons and electrochemical membrane reactor system
JP2010161034A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp 金属触媒担持カーボン粉末の製造方法
CN104659381A (zh) * 2015-01-15 2015-05-27 华中科技大学 一种复合材料、其制备方法及应用
CN104841924A (zh) * 2014-02-19 2015-08-19 中国科学院大连化学物理研究所 一种碳完全封装金属纳米颗粒的制备方法
CN104923204A (zh) * 2015-05-21 2015-09-23 大连理工大学 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089740A1 (en) * 2003-10-25 2005-04-28 Korea Institute Of Science And Technology Solid oxide fuel cell(SOFC) for coproducing syngas and electricity by the internal reforming of carbon dioxide by hydrocarbons and electrochemical membrane reactor system
JP2010161034A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp 金属触媒担持カーボン粉末の製造方法
CN104841924A (zh) * 2014-02-19 2015-08-19 中国科学院大连化学物理研究所 一种碳完全封装金属纳米颗粒的制备方法
CN104659381A (zh) * 2015-01-15 2015-05-27 华中科技大学 一种复合材料、其制备方法及应用
CN104923204A (zh) * 2015-05-21 2015-09-23 大连理工大学 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109305917A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种卤代苯胺的合成方法
CN109304202A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 一种碳包覆过渡金属的纳米复合材料及其应用
CN109304201A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN109305917B (zh) * 2017-07-28 2021-11-12 中国石油化工股份有限公司 一种卤代苯胺的合成方法
CN109304201B (zh) * 2017-07-28 2021-08-06 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN107293730B (zh) * 2017-07-31 2020-06-16 中南大学 一种Ni@N-C复合正极材料、制备方法及在锂空气电池中的应用
CN107293730A (zh) * 2017-07-31 2017-10-24 中南大学 一种Ni@N‑C复合正极材料、制备方法及在锂空气电池中的应用
CN108565477A (zh) * 2018-02-09 2018-09-21 中国科学院长春应用化学研究所 聚合-溶解法构建Fe-N均匀分布的核壳碳纳米氧还原催化剂的方法
CN108400343A (zh) * 2018-02-13 2018-08-14 山东大学 一种高性能钴颗粒修饰的氮载碳纳米片锂氧气电池正极催化剂材料及其制备方法
CN108493461A (zh) * 2018-05-08 2018-09-04 大连理工大学 一种N掺杂多孔碳包覆Fe、Co双金属纳米粒子的催化剂及其制备方法
CN110732334B (zh) * 2018-07-19 2021-04-02 中国科学院大连化学物理研究所 一种BCN壳层限域的面心四方PtFe合金纳米催化剂及其制备和应用
CN110732334A (zh) * 2018-07-19 2020-01-31 中国科学院大连化学物理研究所 一种BCN壳层限域的面心四方PtFe合金纳米催化剂及其制备和应用
CN109530714A (zh) * 2018-11-19 2019-03-29 广州大学 一种复合电极材料及其制备方法和应用
CN109911881A (zh) * 2019-03-11 2019-06-21 唐山学院 一种碳包覆铁纳米颗粒的合成方法
CN109911881B (zh) * 2019-03-11 2022-12-06 唐山学院 一种碳包覆铁纳米颗粒的合成方法
CN110201695A (zh) * 2019-03-29 2019-09-06 上海理工大学 一种多孔碳材料负载过渡金属Fe、Co复合材料的制备方法
CN109950566A (zh) * 2019-04-15 2019-06-28 南京大学 一种基于表面功能增强的高性能氧还原催化剂及其制法
CN110756188A (zh) * 2019-08-19 2020-02-07 四川轻化工大学 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
CN110756188B (zh) * 2019-08-19 2022-09-20 四川轻化工大学 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
CN112768706A (zh) * 2019-11-05 2021-05-07 中国科学院大连化学物理研究所 一种核壳催化剂及其制备方法与在可充电锌空电池中的应用
CN111111721A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN111111721B (zh) * 2020-01-19 2022-04-26 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用

Also Published As

Publication number Publication date
CN106898786B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN106898786B (zh) 一种氧还原催化剂及其制备和应用
Wang et al. Continuous synthesis of hollow high‐entropy nanoparticles for energy and catalysis applications
US20160346769A1 (en) Method of forming nitrogen-doped porous graphene envelope
CN105749947B (zh) 一种非贵金属氧还原催化剂及其制备和应用
EP2668688B1 (en) Core-shell structured bifunctional catalysts for metal air battery/fuel cell
JP5931069B2 (ja) 酸素還元触媒の製造方法ならびにその用途
CN113600209A (zh) 制备高分散碳载Pt基有序合金催化剂的方法及催化剂
CN110813363B (zh) 一种氮硫掺杂多孔碳改性碳纳米管担载Pt-Ni合金催化剂及其制备方法
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
Li et al. Enhancing NH3 sensing performance of mixed potential type sensors by chemical exsolution of Ag nanoparticle on AgNbO3 sensing electrode
CN111244484B (zh) 一种亚纳米铂基有序合金的制备方法
JP2016003396A (ja) コアシェル電極触媒のための安定なコアとしての合金ナノ粒子の合成
Yang et al. Effect of pretreatment atmosphere on the particle size and oxygen reduction activity of low-loading platinum impregnated titanium carbide powder electrocatalysts
KR102255855B1 (ko) 산소 환원 반응용 백금계 합금 촉매, 이의 제조방법 및 이를 포함한 연료전지
CN109742415B (zh) 一种高载量负载金属单原子石墨烯材料及其制备方法
Yanli et al. The synergistic effect of NiCo nanoparticles and metal organic framework: Enhancing the oxygen evolution reaction of carbon nanohorn-based catalysts
Su et al. Palladium nanoparticles immobilized in B, N doped porous carbon as electrocatalyst for ethanol oxidation reaction
Tang et al. Self-reconstruction of highly active NiCo2O4 with triple-continuous transfer of electrons, ions, and oxygen for Zn-air batteries
CN112886024B (zh) 杨梅状钴镍硼复合碳材料质子膜燃料电池催化剂的制备方法
CN104607224B (zh) 一种氮掺杂的石墨化碳封装铁纳米颗粒的制备方法
Fu et al. PtCu bimetallic alloy nanotubes with porous surface for oxygen reduction reaction
JP2019218231A (ja) 窒素含有炭素材料及びその製造方法、並びに燃料電池電極
Flores-Lasluisa et al. In-situ synthesis of encapsulated N-doped carbon metal oxide nanostructures for Zn-air battery applications
Aziz et al. Growth of carbon nanotubes over carbon nanofibers catalyzed by bimetallic alloy nanoparticles as a bifunctional electrode for Zn–air batteries
Liu et al. Ag-embedded MnO nanorod: facile synthesis and oxygen reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant